Noise in quantum and classical computation & non-locality
Unger, F.P.

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Contents

Acknowledgments xi

1 Introduction 1
 1.1 Limits on fault-tolerant computation 2
 1.1.1 Limits on fault-tolerant classical computation 8
 1.2 Entanglement and interactive proof systems 10
 1.2.1 Repetition of XOR games 10
 1.2.2 Limits on non-locality 13

2 Preliminaries 17
 2.1 Linear algebra notation 17
 2.2 Quantum states, operations and computation 19
 2.2.1 Quantum circuits and quantum computation 21
 2.3 Complexity classes 23
 2.4 Communication complexity 25
 2.5 Bloch sphere 27
 2.5.1 Pauli matrices 27
 2.5.2 Bloch-vector representation 27
 2.6 Semidefinite programming 28

I Limits on noisy quantum and classical computation 31

3 Erasure noise 33
 3.1 Erasure vs. depolarizing noise 34
 3.2 Circuit model 35
 3.3 Noise threshold 37
 3.4 Discussion 41