Appendix A

Some more facts about Linear algebra

In the following we will present some more facts about linear algebra, which might help as a reminder. We use the same notation as in Section 2.1 and continue from there.

Linear independence A set $|\phi_1\rangle, \ldots, |\phi_m\rangle \in \mathbb{C}^d$ is called linearly independent if the only way to choose $\alpha_i \in \mathbb{C}$ such that $\sum_{i=1}^m \alpha_i |\phi_i\rangle = 0$ is to choose $\alpha_i = 0$ for all i.

Rank The rank of a matrix $A \in \mathbb{C}^{d \times d}$ is the largest number of linearly independent rows of A.

Inverse matrix If for some matrix $A \in \mathbb{C}^{d \times d}$ there exists some $B \in \mathbb{C}^{d \times d}$ with the property that $AB = I$ then we call B the inverse of A and denote it by A^{-1}. Note that if $AB = I$ then also $BA = I$ [55]. $A \in \mathbb{C}^{d \times d}$ is invertible if and only if A has full rank d.

Unitary matrix A matrix A is called unitary if $AA^\dagger = I$. The following conditions for $A \in \mathbb{C}^{d \times d}$ are equivalent:

1. A is unitary

2. $\forall \phi, \psi \in \mathbb{C}^d : \langle A\phi, A\psi \rangle = \langle \phi, \psi \rangle$ (inner-product preserving)

3. $\forall \phi \in \mathbb{C}^d : ||A\phi|| = ||\phi||$ (norm-preserving),

with $\langle \cdot, \cdot \rangle$ and $|| \cdot ||$ as defined in Section 2.1.
Unitary diagonalization A matrix $A \in \mathbb{C}^{d \times d}$ can be unitarily diagonalized, if there is some matrix $U \in \mathbb{C}^{d \times d}$ and a matrix Λ whose off-diagonal entries are all zero with the property that

$$A = U^\dagger \Lambda U.$$

The values on the diagonal of Λ are called the eigenvalues of A and the columns of U the corresponding eigenvectors.

A matrix A is called normal if $AA^\dagger = A^\dagger A$. It turns out that precisely all normal matrices can be diagonalized in this way.

Hermiticity A matrix A is called hermitian if $A = A^\dagger$. Note that every hermitian matrix is normal and therefore can be unitarily diagonalized as $A = U^\dagger \Lambda U$ as above. From $A = A^\dagger$ it follows that $U^\dagger \Lambda U = U^\dagger \Lambda^\dagger U$, and then further $\Lambda = \Lambda^\dagger$. This means that hermitian matrices only have real eigenvalues.

Tensor products If $A = \mathbb{C}^{a \times a}$ and $B = \mathbb{C}^{b \times b}$, then

$$A \otimes B := \mathbb{C}^{ab \times ab}$$

is called the tensor product of A and B.

For elements $A \in \mathcal{A}$ and $B \in \mathcal{B}$ we define

$$A \otimes B = \begin{pmatrix} A_{11}B & \ldots & A_{1a}B \\ \vdots & \ddots & \vdots \\ A_{a1}B & \ldots & A_{aa}B \end{pmatrix}$$

as the tensor product of A and B. The tensor product enjoys many nice properties, for example

$$(A \otimes B)^* = A^* \otimes B^*$$

$$A \otimes (B + C) = A \otimes B + A \otimes C$$

$$(A \otimes B) \otimes C = A \otimes (B \otimes C)$$

$$(A \otimes B)(C \otimes D) = (AC) \otimes (BD).$$

We will write $A^A \otimes B^B$ if it is otherwise not clear from the context on which space A and B act.

(partial) Trace The trace of a matrix $A \in \mathbb{C}^{d \times d}$ is

$$\text{Tr}(A) = \sum_{i=1}^{d} A_{ii},$$

i.e., it is the sum of all entries on the diagonal of A. Note that for unitarily diagonalizable matrices $\text{Tr}(A)$ is the sum of all its eigenvalues. If $A \in \mathcal{A}$ and $B \in \mathcal{B}$ we define the operator

$$\text{Tr}_A(A \otimes B) = B \cdot \text{Tr}(A).$$
Requiring that $\text{Tr}_A(\cdot)\,$ is linear uniquely defines this operator. Note that $\text{Tr}_A(\cdot)\,$ maps from $A \otimes B$ to B. The operation $\text{Tr}_A(\cdot)\,$ is called the \textit{partial trace over A} or just “tracing out system A”.

Similarly, one can define $\text{Tr}_B(\cdot)$ to be the unique linear operator with the property that

$$\text{Tr}_B(A \otimes B) = A \cdot \text{Tr}(B).$$