Palaeoproteomics of bird bones for taxonomic classification

DOI
10.1093/zoolinnean/zlz012

Publication date
2019

Document Version
Final published version

Published in
Zoölogical Journal of the Linnean Society

License
CC BY-NC

Citation for published version (APA):
Palaeoproteomics of bird bones for taxonomic classification

IVO R. HORN1,2*, YVO KENENS1, N. MAGNUS PALMBLAD3, SUZANNE J. VAN DER PLAS-DUIVESTEIJN3, BRAM W. LANGEVELD4, HANNEKE J. M. MEIJER2,5, HANS DALEBOUT3, ROB J. MARISSEN3, F. B. VINCENT FLORENS7, JONAS NIEMANN8, KENNETH F. RIJSDIJK9, ANJA FISCHER6, ANNE S. SCHULP2, JEROEN F. J. LAROS10 and BARBARA GRAVENDEEL1,2,11

1University of Applied Sciences Leiden, Faculty of Science and Technology, Zernikedreef 11, 2333 CK, Leiden, The Netherlands
2Naturalis Biodiversity Center, Endless Forms Group, Darwinweg 2, 2333 CR Leiden, The Netherlands
3Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
4Natural History Museum Rotterdam, Museumpark, Rotterdam, The Netherlands
5University Museum, Department of Natural History, University of Bergen, Bergen, Norway
6University of Amsterdam, Faculty of Humanities, Amsterdam, The Netherlands
7Tropical Island Biodiversity, Ecology and Conservation Pole of Research, University of Mauritius, Réduit, Mauritius
8Natural History Museum of Denmark, Copenhagen, Denmark
9BIOMAC group, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Faculty of Natural Sciences, Science Park 904, Amsterdam, The Netherlands
10Leiden Genome Technology Center, Leiden, The Netherlands
11Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands

Received 16 April 2018; revised 16 January 2019; accepted for publication 18 January 2019

We used proteomic profiling to taxonomically classify extinct, alongside extant bird species using mass spectrometry on ancient bone-derived collagen chains COL1A1 and COL1A2. Proteins of Holocene and Late Pleistocene-aged bones from dodo (Raphus cucullatus) and great auk (Pinguinus impennis), as well as bones from chicken (Gallus gallus), rock dove (Columba livia), zebra finch (Taeniopygia guttata) and peregrine falcon (Falco peregrinus), of various ages ranging from the present to 1455 years old were analysed. HCl and guandine-HCl-based protein extractions from fresh bone materials yielded up to 60% coverage of collagens COL1A1 and COL1A2, and extractions from ancient materials yielded up to 46% coverage of collagens COL1A1 and COL1A2. Data were retrieved from multiple peptide sequences obtained from different specimens and multiple extractions. Upon alignment, and in line with the latest evolutionary insights, protein data obtained from great auk grouped with data from a recently sequenced razorbill (Alca torda) genome. Similarly, protein data obtained from bones of dodo and modern rock dove grouped in a single clade. Lastly, protein data obtained from chicken bones, both from ancient and fresh materials, grouped as a separate, basal clade. Our proteomic analyses enabled taxonomic classification of all ancient bones, thereby complementing phylogenetics based on DNA.

INTRODUCTION

Biomolecules like DNA and proteins can be retrieved from fossils and complete genomes have been sequenced from fossil samples up to approximately 735 000 years ago.
old (Orlando et al., 2013). However, DNA is not always found in ancient samples, as it is liable to decay over time with a half-life in bones of 512 years (Lindahl, 1993; Allentoft et al., 2012). In situations where DNA cannot be retrieved, proteomic profiling using proteins from ancient bones may offer a rapid, efficient and complementary tool for identification. Although the taxonomic resolution offered by protein sequences might be lower because of degeneration of the genetic code, identification of ancient peptide sequences and classification of organisms based on proteomics is possible, and research has predominantly focused on collagen as being the most abundant proteins in ancient bones (Semal & Orban, 1995). Collagen proteins, COL1A1 and COL1A2, are very stable and, therefore, relatively resistant to decay due to their molecular organization, in which three proline-rich polypeptide chains assemble and the overall thermal stability is increased by hydroxylation of the prolines. For an extensive review on collagen biochemistry, see Shoulders & Raines (2009). Because collagens abound in many ancient skeletal remains, studies have focused on optimizing retrieval of specific collagen peptides that are stably preserved in bones (Buckley et al., 2010). In addition, it has been demonstrated that asparagine and glutamine residues are liable to deamidation due to ageing. This process might be of potential use for molecular clock estimates of proteins. Studies on bone degradation and deamidation rates found that deamidation occurs more frequently under alkaline than acid conditions (Wilson et al., 2012). The potential use of deamidation as a marker for antiquity was investigated by Schroeter & Cleland (2016). In the latter study, it was concluded that deamidation might be a good indicator for preservation conditions, but that it is possibly less suited for dating because of the influence of environmental factors such as pH, ionic strength and temperature (Robinson & Robinson, 2001; Hurtado & O’Connor, 2012).

Identification of collagen peptides has successfully been reported from very old and more recent bone material; see, for instance: Asara (2007) and Buckley et al. (2010). Cappellini et al. (2013) demonstrated the value of a combined genomics and proteomics approach by elucidating the correct identity of a nearly 300-year-old ethanol-preserved elephant foetus. The same group was able to retrieve peptides from 126 unique proteins extracted from a 43 290-year-old femur of a woolly mammoth [Mammuthus primigenius (Blumenbach, 1777); Cappellini et al., 2012] and very recently used proteome sequences from 1.77 million years old enamel to investigate the phylogenetic relationships of the Eurasian Pleistocene Rhinocerotidae (Cappellini et al., 2018). It was concluded that palaeoproteomics on enamel can be done on material dating back to the Early Pleistocene. For a recent review on comparison of proteomic methods, guidelines and the growing number of studies in the field of palaeoproteomics, see Hendy et al. (2018).

Recently, taxonomy based on proteomics has been performed on bone specimens of extinct and extant species (Cleland et al., 2015, 2016; Welker et al., 2015; Welker et al., 2016, 2017). These studies included investigations on taxa from very different classes, amongst others from birds. Cleland et al. (2015) have investigated the ancient bones from moa remains (Dinornitidae, species undetermined), with special interest in post-translational modifications for taxonomic purposes. It was shown that several post-translational modifications were biologically derived, whereas others were diagenetically derived, a finding that can be used for further studies on physiology, phylogeny and mechanisms leading to preservation or decay of proteins. In an extensive study by Welker et al. (2015), South American native ungulates were classified solely on protein sequences using proteomic analysis. The authors concluded that the resulting phylogenetic trees correlated well with mammalian phylogenies obtained using genomic methods. Consequently, and with the ever-ongoing refinements in instrumentation, the investigators foresee an important future role for proteomic methods in palaeontology. In a study by Welker et al. (2017), ZooArchaeology by Mass Spectrometry (ZooMS) analysis was performed on Middle and Late Pleistocene peptide sequences from rhinoceros (Stephanorhinus sp.) and peptide sequences from various extant species. The investigators were able to group the investigated species of rhinoceros in the same clades, as found in previous morphological studies. The protein degradation and proteome complexity were consistent with an endogenous origin of the identified proteins. A study performed on Late Pleistocene archaic hominins further strengthened the importance of palaeoproteomics studies (Welker et al., 2016). Proteome data supported by mitochondrial DNA data identified hominin material found in France belonging to clades in the genus Homo. Proteomic profiling has also been used to identify closely related species in archaeological materials, like those found in Danish peat bogs (Brandt et al., 2014). Based on peptide identification, it could be shown that animal material derived from sheep or goat were used for skin garments and costumes that were 2000 to 3000 years old. The oldest authenticated protein sequences from birds were retrieved from ostrich egg shells in a study by Demarchi et al. (2016). The protein sequences retrieved were 3.8 million years old, which is much older than the oldest retrieved DNA sequences.

In the current study, we focus on taxonomic classification of two extinct birds, dodo (Raphus
became extinct in the late 19th century, mainly through overexploitation as food and fuel supplies for sailors and coastal regions, either in beach or in inland regions, resulting in differential preservation conditions (Meijer, unpublished). Two humeri and one femur of great auk (Pinguinus impennis) were sampled. The first was collected in the former Roman castellum at the port of Velsen, The Netherlands, and was dated to the first century AD based on its context (Van Wijngaarden-Bakker, 1978; Groot, 2005). The second one, radio-carbon dated to 7000–6890 calibrated years BP, was collected from the beach of the Zandmotor near The Hague (Langeveld, 2015). The third specimen, radio-carbon dated to 46 460–45 690 calibrated years BP, was collected from the beach of Hoek van Holland. Both beach specimens originate from dredged sediments from the North Sea floor and have been preserved under saline anoxic conditions. The Hoek van Holland specimen’s provenance is unconfirmed, but likely originates from the Eurogeul area (Langeveld, 2013) where extensive sand-dredging has removed the Holocene (marine) overburden and exposed Late Pleistocene and Early Holocene fluvial sediments, making this area a well-known rich fossil locality for Late Pleistocene terrestrial and marine mammals (Rijsdijk et al., 2013; Mol, 2016). The Zandmotor specimen originates from sand source areas about 10 km north-east of the Eurogeul, from which the same vertebrate fauna was obtained (Van der Valk et al., 2011). For both beaches, material was dredged below at least 20 m of water and within 6 m of the seafloor (Langeveld, 2013).

Two lab samples of a femur and a tibiotarsus (GrA-31362 and GrA-31364) of the extinct dodo (Raphus cucullatus) were collected in 2005 at the brackish marsh Mare aux Songes in Mauritius (Meijer et al., 2012) and radio-carbon dated to 4340–4100 and 4285–4095 calibrated years BP, respectively (Rijsdijk et al., 2009). Table 1 summarizes the extinct and extant bird specimens analysed. Museum and ancient specimens were kept as dry bones at room temperature at the Naturalis Biodiversity Center and fresh specimens were frozen prior to analysis.

Bone fragments ranging from 2 to 10 mm in length were sampled in an ancient biomolecules lab using sterilized powder-free nitrile gloves, scalpels...
and drills. We performed three samplings from all materials separately following established protocols and on different days (Cooper & Poinar, 2000; Hendy et al., 2018). Bone fragments were initially cleaned overnight using phosphate-buffered saline in the presence of protease inhibitors (cOmplete ULTRA tablets, EASYpack, Roche Diagnostics) and distilled water, and subsequently stored at 4 °C for further extraction procedures.

Table 1. Details of bone specimens analysed

<table>
<thead>
<tr>
<th>Species</th>
<th>Bone type</th>
<th>Specimen identification number</th>
<th>Age (years)</th>
<th>Collecting location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anolis carolinensis</td>
<td>femur</td>
<td>RMNH.RENA.48333</td>
<td>0</td>
<td>Reared, The Netherlands</td>
</tr>
<tr>
<td>Columbia livia</td>
<td>femur</td>
<td>NMR998900003531</td>
<td>0</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>Columbia livia</td>
<td>femur</td>
<td>RMNH.AVES.156616</td>
<td>24</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>Falco peregrinus</td>
<td>femur</td>
<td>NMR998900003673</td>
<td>0</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>Falco peregrinus</td>
<td>femur</td>
<td>RMNH.AVES.5628</td>
<td>89</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>Gallus gallus</td>
<td>femur</td>
<td>RMNH.AVES.258108</td>
<td>0</td>
<td>Reared, The Netherlands</td>
</tr>
<tr>
<td>Gallus gallus</td>
<td>femur</td>
<td>RMNH.AVES.74692</td>
<td>65</td>
<td>Reared, The Netherlands</td>
</tr>
<tr>
<td>Gallus gallus</td>
<td>ulna distal</td>
<td>Coll. Dubois no. 708-3</td>
<td>1415–1360 cal BP</td>
<td>Java, Goea Djimbe, Indonesia</td>
</tr>
<tr>
<td>Gallus gallus</td>
<td>ulna</td>
<td>Coll. Dubois no. 806-22</td>
<td>1455–1385 cal BP</td>
<td>Java, Goea Djimbe, Indonesia</td>
</tr>
<tr>
<td>Pinguinus impennis</td>
<td>femur</td>
<td>V.53</td>
<td>2000</td>
<td>Velsen, The Netherlands</td>
</tr>
<tr>
<td>Pinguinus impennis</td>
<td>humerus</td>
<td>RMNH.5070466</td>
<td>7000–6890 cal BP</td>
<td>North Sea, Zandmotor, The Netherlands</td>
</tr>
<tr>
<td>Pinguinus impennis</td>
<td>humerus</td>
<td>RMNH.5070467</td>
<td>46 460–45 690 cal BP</td>
<td>North Sea, Hoek van Holland, The Netherlands</td>
</tr>
<tr>
<td>Raphus cucullatus</td>
<td>femur</td>
<td>GrA-31362</td>
<td>4340–4100 cal BP</td>
<td>Mare aux Songes, Mauritius</td>
</tr>
<tr>
<td>Raphus cucullatus</td>
<td>tibiotarsus</td>
<td>GrA-31364</td>
<td>4285–4095 cal BP</td>
<td>Mare aux Songes, Mauritius</td>
</tr>
<tr>
<td>Taeniopygia guttata</td>
<td>femur</td>
<td>Horn s.n.</td>
<td>0</td>
<td>Reared, The Netherlands</td>
</tr>
<tr>
<td>Taeniopygia guttata</td>
<td>femur</td>
<td>RMNH.AVES85442</td>
<td>124</td>
<td>Reared, The Netherlands</td>
</tr>
<tr>
<td>Pinguinus impennis</td>
<td>humerus</td>
<td>RMNH.5070467</td>
<td>46 460–45 690 cal BP</td>
<td>North Sea, Hoek van Holland, The Netherlands</td>
</tr>
</tbody>
</table>

Protein extractions were performed on separate days for the various samples. Bone fragments were treated with 1.2 M HCl, 6 M Guanidine-HCl and 100 mM Tris/6 M Guanidine-HCl according to the protocol described by Van der Plas-Duivesteijn et al. (2016). A single control sample without bone material was analysed next to ancient samples. Fragments were treated for 24 h with 1.2 M HCl followed by washing steps with sterile water. Subsequently, fragments were treated with 6 M guanidine-HCL in 100 mM Tris at pH 7.4 for 72 h. The residues were then incubated with 6 M guanidine-HCL in 100 mM Tris and 0.5 M tetrasodium EDTA at pH 7.4 for 72 h. All steps were done in the presence of protease inhibitors (cOmplete ULTRA tablets, EASYpack, Roche Diagnostics) and after each treatment, samples containing extracted proteins were centrifuged at 16 000 × g at 4 °C. Supernatants were stored at −80 °C for subsequent mass spectrometry analysis. After acetone precipitation and freeze-drying, proteins were dissolved in 50 mM ammonium bicarbonate. Concentrations (ranging between 0.5 and 200 µg total protein yield) were determined using the bicinchoninic acid assay (Bio-Rad) treated with 10 mM dithiothreitol (Sigma Aldrich) and alkylated using 25 mM iodoacetamide (Sigma Aldrich). The procedure was essentially as described by Jiang et al. (2007) and Van der Plas-Duivesteijn et al. (2016). In addition to this extraction procedure, tubes were changed daily for fresh ones, since we noticed that this resulted in a lower level of background noise in the bioinformatic analyses. After alkylation, peptides were digested overnight at 37˚ºC with 0.25 mg/mL trypsin (Sequencing grade, Promega). Digestion was quenched with 10% trifluoroacetic acid. Peptides were stored at −80 °C until further use. During mass spectrometry, Escherichia coli Migula, 1895 negative controls were included for global quality control.

Mass spectrometry procedures

Liquid chromatography separation of peptides and MS/MS measurements followed the standard protocol, as described by Van der Plas-Duivesteijn et al. (2016). In brief, 2 µL (1.5 µg protein) of bone digests were loaded and desalted on a C18 PepMap precolumn (300 µm, 5 mm i.d., 300 Å; Thermo Scientific) and separated by reversed-phase liquid chromatography using two identical ChromXP C18CL columns (150 mm, 0.3 mm i.d., 120 Å; Eksigent) coupled parallel and connected to a split-less NanoLC-Ultra 2D plus system (Eksigent) with a linear 45-min gradient from 4% to
35% acetonitrile in 0.05% formic acid and a constant (4 μL/min) flow rate. The LC system was coupled to an amaZon speed ETD ion trap (Bruker Daltonics) equipped with an Apollo II electrospray ionization (ESI) source. In general, eight samples were analysed in a row, after which a water sample was analysed. After each MS scan, up to ten abundant multiply charged species in the range m/z 300–1300 were selected for MS/MS using collision-induced dissociation (CID) and actively excluded for 1 min after having been selected twice. The LC system was controlled by HyStar 3.2 and the ion trap by trapControl 7.1. Two technical replicates were acquired.

MASS SPECTROMETRY DATA ANALYSES

After MS/MS, peptides were identified using Mascot server v.2.6.1 (available at http://www.matrixscience.com). Individual spectra were searched against all bony vertebrate sequences in SwissProt and NCBI Protein using the public version of Mascot (Perkins et al., 1999). A search against the Mascot contaminant database was simultaneously performed. Tryptic cleavage was assumed, with two missed cleavages allowed. A semi-trypsin search was performed on the old samples as well. Carbamidomethylation of cysteines was considered a fixed modification and oxidation of methionine and proline as variable modifications. A peptide tolerance of 0.6 Da with 2 13C isotope error allowed was used, with an MS/MS tolerance of 0.6 Da. Peptide charges 2+, 3+ and 4+ were considered, as well as all fragment ions corresponding to the ESI-TRAP. To compare the peptides retrieved we used Mascot and the compareMS² tool (Palmblad & Deelder, 2012).

We analysed possible deamidation and oxidation of collagens retrieved from the bone samples using the Mascot server as described in the previous paragraph. However, in our tests for endogeneity, we considered oxidation of lysine, methionine and proline as a variable modification, and we looked for deamidation patterns on asparagine and glutamine residues using NQ as a variable modification, which might be an indicator for the environmental conditions in which the bones were preserved (Schroeter & Cleland, 2016). In all cases, we compared at least two biological replicates.

ALIGNMENTS AND PHYLOGENETIC ANALYSES

Peptide sequences retrieved were aligned in GENEIOUS v.10.2.3 (Biomatters, New Zealand) using MUSCLE applying the UPGMB clustering method, the pseudo-rooting method and the CLUSTALW sequence weighting scheme. For comparison purposes, alignments were prepared using a mix of COL1A1 and COL1A2 protein sequences available in NCBI GenBank and concatemers of peptide sequences newly retrieved in this study. Peptide sequences from great auk underwent local BLAST analysis in GENEIOUS using scaffolds from the recently sequenced genome of the razorbill, Alca torda Linnaeus, 1758 (Gilbert et al., unpublished). Phylogenetic analyses were performed using PAUP* v.4.1 with the options Maximum Parsimony, heuristic search, random addition with ten replicates and TBR swapping. Anolis was used as an outgroup in all analyses. Bootstrap analyses were performed at 1000 iterations using simple stepwise additions, SPR swapping, MULTREES on and holding ten trees per replicate.

DATA DEPOSITION

Protein sequences recovered were deposited under number PDX009204 in the PRIDE Archive using the ProteomeXchange tool (Vizcaino et al., 2016).

RESULTS

COVERAGE OF COL1A1 AND COL1A2 PEPTIDES RETRIEVED

To maximize the number of peptides covering the alpha 1 and 2 chains of collagen I (COL1A1 and COL1A2), two replicates of individual bone fragments were sampled and peptide fractions collected at four different stages during the extraction procedure were subjected to mass spectrometry on different days. Interestingly, in samples collected after a first hydrochloric acid step, we regularly find a high coverage of collagen proteins, whereas in some extracts collected at a later stage in the procedure we find a lower coverage. The reverse is also observed indicating that, in order to obtain a maximum number of peptides of unknown samples, an extensive extraction should be performed, as described previously (Jiang et al., 2007; Van der Plas-Duivesteijn et al., 2016; Cland & Schroeter, 2018). These findings are also in line with the findings of Schroeter et al. (2016), identifying collagens in different extractions in their analyses, but other non-collagen proteins (NCPs) in discrete fractions. For an overview of coverage percentages from the various samples, see Table 2.

In all analyses taken together, COL1A1 and COL1A2 dominate the population of proteins obtained. We identify peptides covering COL1A1 and COL1A2 proteins up to a maximum of 60% and 50%, respectively, from freshly isolated bone materials (Table 2). Coverage percentages are maximally 46% and 32% for COL1A1 and COL1A2 for museum-preserved or ancient bones. Peptide sequence coverage percentages for freshly isolated bones for COL1A1 range from 39% to 60% for the various bird species. The coverage percentages for COL1A2 range from 21% to 50% for these materials.

The museum-preserved bones produce coverage percentages for COL1A1 ranging from 10% to 46%. The coverage percentages for COL1A2 range between 10% and 32%. Interestingly, the 4200-year-old dodo bones demonstrate high coverage percentages of 46% and 32% for COL1A1 and COL1A2, respectively. For these studies, three biological samples and multiple extractions were analysed. The percentages are in the same range as those for fresh material or museum-preserved material of peregrine falcon and rock dove of only 24 to 89 years old. Bones of great auk have maximum coverage percentages of 26% and 23% for COL1A1 and COL1A2, respectively. All great auk bones, found at different locations, yield collagen peptide sequences. Other proteins are also retrieved (see below), but not from all samples, impeding a proper comparison of the results. We, therefore, focus on COL1A1 and COL1A2 sequences. Table 2 also shows the Mascot scores, which are up to 1280 for fresh Columba livia bone, but, remarkably, also high for museum-preserved Falco peregrinus bones having a Mascot value of 1289.

NCPs are retrieved in several analysed fractions (see Table 3). We find α2-HS glycoprotein, decorin and keratins I and II in both fresh and ancient samples, the latter proteins representing common contaminants. Bone sialoprotein 2, tubulin, kininogen, phosphoprotein and ovocleidin-116 are also found, but only in fresh bone samples. Mascot values are higher than 50 and multiple peptide sequences are minimally found in two analyses. In addition, we find calpain15-like protein and cingulin in ancient samples, but in a limited number of analyses, based on two peptide sequences maximally and at Mascot values lower than 50. Next to NCPs, we frequently retrieve sequences from collagens that are other types than COL1A1 or COL1A2. Only COL22A1 and COL23A1 are solely identified in at least 2 samples:

<table>
<thead>
<tr>
<th>Non-collagen protein</th>
<th>Fresh bone</th>
<th>Museum/ancient bones</th>
</tr>
</thead>
<tbody>
<tr>
<td>α2-HS-Glycoprotein</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Decorin</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Bone Sialoprotein 2</td>
<td>yes</td>
<td>not found</td>
</tr>
<tr>
<td>Tubulin</td>
<td>yes</td>
<td>not found</td>
</tr>
<tr>
<td>Kininogen</td>
<td>yes</td>
<td>not found</td>
</tr>
<tr>
<td>Phosphoprotein</td>
<td>yes</td>
<td>not found</td>
</tr>
<tr>
<td>Keratins I and II</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Calpain15-like protein</td>
<td>not found</td>
<td>yes</td>
</tr>
<tr>
<td>Cingulin</td>
<td>not found</td>
<td>yes</td>
</tr>
<tr>
<td>Ovocleidin-116</td>
<td>yes</td>
<td>not found</td>
</tr>
</tbody>
</table>

The museum-preserved bones produce coverage percentages for COL1A1 ranging from 10% to 46%. The coverage percentages for COL1A2 range between 10% and 32%. Interestingly, the c. 4200-year-old dodo bones demonstrate high coverage percentages of 46% and 32% for COL1A1 and COL1A2, respectively. For
Sequences infrequently found are subjected to basic local alignment search tool (BLAST) analysis. In this way, we identified cingulin and calpain15-like protein, but two other peptides are rejected as unspecific (e.g. ABCA13).

Comparison of COL1 peptides retrieved
To compare the peptides retrieved from the ancient bones of chicken, dodo and great auk with modern rock dove spectra, butterfly plots are created using the compareMS² tool (Palmblad & Deelder, 2012; see also Fig. 1). In general, the data are of higher quality for rock dove, for which fresh material was analysed. This is reflected in a higher peptide signal to contaminant background ratio and higher confidence in peptide identifications. Ancient chicken bone yields a butterfly plot with a very low background signal (despite the amplification of the signal), which may reflect a good preservation state. Though the spectra compared were matched to the same peptides by Mascot, as indicated

![Bild](https://academic.oup.com/zoolinnean/article-abstract/186/3/650/5470657)

Figure 1. Comparison of tandem mass spectra derived from ancient bones of great auk (A), dodo (B) and chicken (C) with fresh bones of rock dove. Bird illustrations from phylopic.org.
in the spectra, the ions scores are often higher for rock dove (here 57 and 58, respectively) than for the corresponding spectra from dodo and great auk (17 and 44, respectively). The analyses of chicken bones yields similar results: Mascot values of fresh bone material of chicken as compared with bone material of 65-year-old and ancient bone, are 1186, 169 and 270 for COL1A1, respectively. The values for COL1A2 are 986, 65 and 191, respectively. These results show a high confidence in peptide identifications for fresh bones and lower, but reliable values for museum-preserved and ancient bones, where Mascot probability score values higher than 60 are defined as highly reliable. A limited consensus set of peptide sequences could be retrieved for the seven bird species analysed. A partial alignment is shown in Figure 3, the complete alignment is given in Supporting Information, Figure S1. Representative mass spectra for COL1A1 and COL1A2 peptides are shown in Fig. 2.

Phylogenetic analyses

Alignments constructed from of a mix of full-length published proteins of COL1A1 and COL1A2 and smaller peptide sequences retrieved from bones analysed in this study are phylogenetically analysed using Maximum Parsimony and this results in the bootstrap consensus tree depicted in Figure 4. Dodo (Raphus cucullatus) and rock dove (Columba livia) are part of a single clade, just like great auk (Pinguinus impennis) and razorbill (Alca torda), and peregrine falcon (Falco peregrinus) with zebra finch (Taeniopygia guttata). Chicken (Gallus gallus) ends up in a separate lineage. The former three lineages are part of an unresolved clade.

Deamidation and oxidation

As previously described for collagens (Hurtado & O’Connor, 2012; Schroeter & Cleland, 2016), we find deamidation of glutamine or asparagine up to 50% in all dodo bones analysed. As expected, we also find deamidation in the ancient bones of great auk and chicken, although not in all samples. Mascot analyses of fresh extant bird bones do not show any deamidation of asparagine and glutamine residues, as expected. Deamidation as a possible parameter for diagenesis is also presented in Table 2 for all analyses. Figure 5 shows the mass spectra of a COL1A2 peptide, which is deamidated in both old specimens but not in fresh rock dove material. Oxidation analyses were carried out by looking at lysine, methionine and proline residues. As expected, we predominantly find hydroxylated proline residues in the collagen peptides retrieved for both COL1A1 and COL1A2. Hydroxylation of methionine and lysine are not, or infrequently, found.

Discussion

Coverage of collagen peptides retrieved

We have analysed protein sequences derived from ancient bones obtained from very different localities of two extinct bird species, dodo (Raphus cucullatus) and great auk (Pinguinus impennis), and one extant bird taxon, chicken (Gallus), using liquid chromatography mass spectrometry technology. The high yield obtained may be explained by the fact that we used an extensive extraction method (Jiang et al., 2007) that has been validated (Cleland et al., 2012; Schroeter et al., 2016). We noticed previously that regular tube changing during the procedure may be beneficial for bioinformatic analyses of the data, notwithstanding a probable loss of proteins due to adherence to the plastic consumables used.

Not surprisingly, we find that the Mascot score values tend to be much higher in fresh bones, although we have also obtained a high score for a museum specimen (Falco peregrinus sample). In addition, we notice especially that the relatively thicker bones yield higher yields compared to the thinner bones. The high similarity between spectra suggests that spectral library searching using a library generated from a closely related species may infer additional peptide identification through direct spectral matching. Alternatively, tandem mass spectra can be compared directly and the number of shared spectra tallied, as in compareMS² (Palmblad & Deelder, 2012). Older material analysed, such as the chicken bones from a cave on Java, yielded a coverage of 24% in mass spectrometry. Although not that high, this is promising, since the coverage of collagens of the older Javanese bones, preserved under very different conditions, also yielded high quality protein sequences. Coverage percentages were up to 26%, which is comparable to the ancient chicken bones. The dodo bones obtained from the Mare aux Songes location in Mauritius yielded higher coverage percentages, comparable to coverage percentages of freshly isolated materials, despite being preserved anoxically under brackish conditions. The younger age of the dodo bones may explain the higher protein yield for the Mare aux Songes specimens compared with the older great auk bones (the c. 6900 and c. 46 000 years old specimens) that were preserved under saline marine conditions.

We obtained coverage percentages ranging between 21% and 60% for fresh materials and coverage percentages ranging between 10% and 46% for museum-preserved or ancient bones. These
percentages are lower than reported by others (see, for instance: Cleland et al., 2015), with recorded coverage values up to 84%. We used a capillary flow–ion trap system as this tends to be robust and able to generate comparable data, also from older or less well-preserved samples. Potential improvements could include a more sensitive nano-electrospray source or a recent Orbitrap system. These solutions may have more resolving power aiding phylogenetic studies.

We found that coverage of proteins can be equal in different fractions during the extraction procedure. However, we noticed that in fresh samples, in general, the coverage was higher in the later extractions. For instance, for a fresh chicken sample we noticed an increase from four matching sequences up to 27 matching sequences retrieved in four consecutive extractions (data not shown). The reverse was true for the older materials (for one sample decreasing from five matching sequences in the first extraction to no matching peptide sequences in the later extractions; data not shown). The results may indicate that the proteins and peptides in the older samples were easier to extract, possibly due to the more degraded state of the bones.

Figure 2. Mass spectra of similar COL1A1 peptide sequences retrieved in: A, chicken (recent); B, dodo (c. 4200-year-old specimen); and C, great auk (c. 46 000-year-old specimen). Mass spectra of similar COL1A2 peptide sequences retrieved in: D, chicken (recent); E, dodo (c. 4200-year-old specimen); and F, great auk (c. 46 000-year-old specimen). Black arrows were added to link spectra more clearly to their respective masses.
In a study focused on bone extractomics, it was concluded that coverage percentages of collagens and non-collagenous proteins in different extractions could be rather variable (Schroeter et al., 2016). The authors found that the highest diversity of proteins was generally obtained from fractions that were not yielding the highest protein mass and the number of NCPs was higher in demineralized fractions. In our study, we noticed this as well, although our dataset was limited and we did not specifically investigate this. Bone samples that yielded higher amounts of proteins, in general, over approximately 100 µg per sample, were less diverse than samples that yielded lower amounts of proteins. The highest diversity of proteins was obtained from HCl extracted samples that yielded less than 10 µg of protein.

In the bioinformatic analyses, we found NCPs amongst the large proportion of collagen proteins. NCPs that were regularly encountered were α2-HS-glycoprotein and decorin, which have been reported earlier as proteins that can be retrieved from fresh or ancient bone materials (Cappellini et al., 2012; Wadsworth & Buckley, 2014). A rationale for finding decorins and matrix metalloproteinase (MMP1) peptides, which are associated with the collagen molecules, has been reported (San Antonio et al., 2011). Interestingly, we found some peptides derived from proteins exclusively found in the older materials (calpain15-like protein and cingulin), albeit with lower Mascot values next to the COL1A1 and COL1A2 proteins.

DEAMIDATION AND OXIDATION

Deamidation has been reported as a marker for ancient bone deterioration (Van Doorn et al., 2012). Since
Deamidation has also been shown in later studies as a marker for preservation state and environmental influence, rather than as an endogeneity test (Schroeter & Cleland, 2016), we performed searches aiming for peptides with asparagine to aspartic acid or glutamine to glutamic acid conversion. Converted glutamine and asparagine residues were not encountered in the fresh materials, but they were found in the dodo extracts and, to a lesser extent, in the other ancient samples. In the great auk samples of c. 46 000 years old and chicken samples dated 1455 years BP, we occasionally found conversion of asparagine or glutamine. Environmental factors might play a role in the possible conversion of these residues, since the great auk samples were preserved in marine conditions under temperate mean temperatures, whereas the dodo samples were retrieved from freshwater or brackish conditions, with the dodo from an environment with tropical mean temperatures (Rijsdijk et al., 2016). This is in line with current ideas attributing a greater effect of environmental conditions than age on deamidation rates (Schroeter & Cleland, 2016). Studies performed on the influence of sampling, location and geological age on specimens indicated that HCl-based extraction plays an important role as an inducer of deamidation (Simpson et al., 2016). In addition, these authors concluded that Pleistocene material, in contrast to recent material, are especially liable to undergo deamidation conversion. In our studies, the oldest great auk bone, which dates back to the Late Pleistocene, demonstrated deamidation in some of the analyses, possibly induced by sampling. We think that the marine conditions might have been beneficial for the preservation of the bone proteins, since the younger great auk bone preserved under

Figure 3. Partial alignment of COL1A2 peptides retrieved (coordinates 198–348 based on CO1A2_CHICK, P02467, Uniprot.org).

Figure 4. Bootstrap consensus of Maximum Parsimony analyses of a concatenated COL1A1 and COL1A2 alignment. Only bootstrap supports >50% are shown. Bird illustrations from phylopic.org.
Saline conditions demonstrated lower deamidation levels, whereas in dodo and ancient chicken the level of deamidation was more prominent. However, the limited set of data obtained in this study does not allow us to draw firm conclusions regarding deamidation of collagen proteins under conditions of high ionic strength or under conditions of high temperatures.

Comparison of Collagen Peptides Retrieved

The results of our phylogenetic analyses support current consensus in relatedness of dodo to pigeon (Shapiro et al., 2002; Heupink et al., 2014), great auk to razorbill (Moum et al., 2002) and a more basal position in the phylogeny for chicken (Jarvis et al., 2014). Resolution of the Maximum Parsimony bootstrap consensus tree was insufficient to resolve the relationship between all lineages in more detail. The topology of the consensus tree produced in this study was congruent with the latest evolutionary insights on bird phylogenetics based on full genome DNA sequences (Zhang et al., 2014; Prum et al., 2015). A valuable addition to the molecular classification of archaeological bird samples was recently presented by Presslee et al. (2018). In this study, the authors created a library of mass spectrometry data as a reference for bird materials and successfully compared these to eggshell samples from an archaeological site.

Figure 5. Mass spectra showing deamidation (DE) in two ancient samples: A, recent rock dove sample without deamidation; B, c. 4200 years old dodo sample with deamidation on the glutamine (Q) residue; and C, c. 46 000 years old great auk sample with deamidation on the glutamine (Q) residue.
We conclude that peptide sequences from collagens can be retrieved by mass spectrometry analyses to a high coverage from ancient bones of chicken, dodo and great auk up to c. 46 000 years old. With these sequences, we were able to correctly classify ancient bones to the family level. Our study provides further support for the general conclusion that classification based on palaeoproteomics can complement traditional classification methods, such as morphology and DNA, and provides another case study of extinct bird species to the set of taxa for which this method proves applicable.

ACKNOWLEDGEMENTS

We like to thank Pepijn Kamminga, Natasja den Ouden and Becky Desjardins for permission and access to sample specimens from the zoology collection of the Naturalis Biodiversity Center. Merijn de Bakker (IBL, The Netherlands), Stephan Göbel (Zwammerdam, The Netherlands) and pet shop Parva (Leiden, The Netherlands) kindly contributed zebra finch, rock dove and brown anole specimens. Two of the three great auk bones analysed were collected and donated to the Naturalis Biodiversity Center by Henk Mulder (Monster, The Netherlands) and Niels van Steijn (Leiden, The Netherlands). We thank Tom Gilbert (Natural History Museum of Denmark) for sharing the unpublished razorbill genome sequence with us. We also thank Christian Foo Kune, former CEO of Omnicane and the National Heritage Fund of Mauritius for their permission to analyse dodo bones retrieved from Mare aux Songes in 2005 and 2006. Semih Ekinler (BTP, Leiden) is acknowledged for his advice on data analyses. We thank the two anonymous reviewers who helped improving our manuscript substantially.

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.

Figure S1. Full alignments of COL1A1 and COL1A2 peptides generated in this study.