Quantitative perspectives on syntactic variation in Dutch dialects
Spruit, M.R.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
List of tables

Table 1-1: Examples of syntactic variables in context for each syntactic domain/chapter in SAND1. Please refer to Table 5-1 to Table 5-4 for more detailed variable examples... 26

Table 2-1: Example of a syntactic feature and its recorded variants. Map 68a in SAND1 shows the geographical distribution of the syntactic feature weak reflexive pronoun as object of inherent reflexive verb. Five feature variants have been recorded for this phenomenon throughout the Dutch language area: zich, hem, zijn eigen, zichzelf, hemzelf... 36

Table 2-2: Hamming distance algorithm applied to measure syntactic variation in dialects... 36

Table 2-3: Fragment of the SAND1 Hamming distance matrix. Each dialect pair distance is an integer between 0 and 510 which represents the total number of different feature variant realisations... 37

Table 2-4: Correlation between the original sets of SAND1 feature variants and the corresponding representation after reducing each set to three dimensions via MDS................................. 39

Table 3-1: Map 68a in SAND1 shows the five syntactic variables in the context of weak reflexive pronoun as object of inherent reflexive verb... 48

Table 3-2: Map 82b in SAND1 shows the six syntactic variables in the context of short object relative... 48

Table 3-3: Fragment of the distance measurement between two dialects using five syntactic variables... 49

Table 3-4: Fragment of the SAND1 Hamming distance matrix... 50

Table 3-5: Mapping from atomic variables (first column) to feature variables (first row) with respect to reflexive pronouns... 56

Table 3-6: Fragment of the distance measurement between two dialects using five feature variables (first column)... 57

Table 3-7: Mapping from atomic variables (first column) to feature variables (first row) with respect to reciprocal pronouns... 63

Table 3-8: Mapping from atomic variables (first column) to feature variables (first row) with respect to one-pronominalisation... 63

Table 4-1: Map 14b in SAND1 shows seven syntactic variables in the context of complementiser of comparative if-clause... 69

Table 4-2: Map 54a in SAND1 shows four syntactic variables in the context of subject doubling 2 singular... 69

Table 4-3: String alignment and Levenshtein distance calculation between two pronunciations of the Dutch word hart ‘heart’. ... 71

Table 4-4: Weighted similarity calculation between two dialects based on word choices for the three concepts of vriend ‘friend’, schip ‘ship’ and duwen ‘to push’ using the gewichteter Identitätswert (GIW) measure... 72

Table 4-5: Reliability coefficients (g) of our measurement results at the pronunciational, lexical and syntactic levels... 79

Table 4-6: Associations between aggregate pronunciational, lexical and syntactic distances... 79

Table 4-7: Correlations between geographical distances and pronunciational, lexical and syntactic distances... 83

Table 4-8: Associations between aggregate pronunciational, lexical and syntactic distances controlling for the influence of geography as an underlying factor... 84

Table 4-9: The percentage of the correlation attributable to geography... 85

Table 5-1: Map 14b in SAND1 shows seven syntactic variables in the complementisers domain... 94
Table 5-2: Map 54a in SAND1 shows four syntactic variables in the subject doubling domain.

Table 5-3: Map 68a in SAND1 shows five syntactic variables in the reflexives domain.

Table 5-4: Map 84a in SAND1 shows four syntactic variables in the fronting domain.

Table 5-5: Algorithm to non-recursive evaluate all association rules.

Table 5-6: Evaluation factors to help determine the quality of association rule ‘A \(\rightarrow C \).’

Table 5-7: Piatetsky-Shapiro’s principles for rule interestingness (RI) measures.

Table 5-8: The eight most interesting association rules in the sample data set as shown in Figure 5-3 and Figure 5-4 sorted on descending interestingness, ascending complexity and descending accuracy.

Table 5-9: Example of a highly ranked association rule in SAND1 with one variable disjunct: “if either antecedent variable A1 or A2 occurs, then it is certain that the consequent variable also occurs”.

Table 5-10: The most interesting rule in SAND1 without variable disjuncts.

Table 5-11: More potentially interesting consequents in association rules which have the complex pronoun ‘ge + lieden’ as their antecedent, in addition to the rule consequent in Table 5-10.

Table 5-12: The most interesting implicational chain of association rules between four syntactic variables: d54a:after_v \(\rightarrow d55a:after_v \rightarrow p46a:adj \rightarrow p38bag/j\).}

Table 6-1: A classification of syntactic variable types.

Table 6-2: Definitions of a selection of nominal measures of syntactic distance.

Table 6-3: Example distance measurements using atomic variables based on Table 3-3.

Table 6-4: Example distance measurements using feature variables based on Table 3-6.

Table 6-5: The corresponding matrix for the feature variable hierarchy in Figure 6-3.

Table 6-6: Map 84a in SAND1 shows three syntactic variables in the fronting domain.

Table 6-7: Fractional distance matrix in the short object relative context in Table 6-6, based on the feature variable mapping in Table 6-5.

Table 6-8: Examples of syntactic variables in context for each syntactic domain/chapter in SAND2.

Table 6-9: Visualisation perspectives on syntactic variation in Dutch dialects.