Iteratively algebraic orders
Rodenburg, P.H.

Citation for published version (APA):
Iteratively algebraic orders

P.H. Rodenburg

Institute for Informatics, University of Amsterdam

Introduction

In a preliminary version of [1], Grätzer asked if there exists a lattice that is isomorphic to its lattice of ideals and in which not every ideal is principal. This question was answered in the negative by D. Higgs [2].

A related question was posed by H.-E. Hoffmann in [3]: whether an algebraic order (poset) whose compact elements again form an algebraic order and so on, can have noncompact elements. It was answered in the negative by M.H. Albert [4].

Having forgotten a crucial element of Higgs’ proof, and unable to understand the proof in [4], I invented a simpler proof, which I present below, after a brief rehearsal of definitions. At the end I will indicate what baffled me.

Substance

This paper is about ordered sets, that is, sets with a (partial) ordering relation \(\leq \) on them. We write \(x < y \) if \(x \leq y \) and \(x \neq y \), and \(x \prec y \) if \(y \) is an upper cover of \(x \), that is, \(x < y \) and if \(x \leq z \leq y \) then \(z \) is either \(x \) or \(y \). A chain is a linearly ordered set.

Definition 1. A subset \(X \) of an ordered set \(L \) is directed if every finite subset of \(X \) has an upper bound in \(L \).

In particular, the void subset of a directed set has an upper bound, so directed sets are nonvoid.

Definition 2. An ordered set \(L \) is upwards complete if every directed \(X \subseteq L \) has a supremum in \(L \).

The supremum of \(X \) is denoted by \(\bigvee X \). We write \((X)_L \), omitting the subscript if it can be derived from the context, for
\[\{y \in L\} \text{ for some } x \in X, y \leq x. \]
Instead of \((\{x\})\), we write \((x)\). Dually we have \([X]\) and \([x]\).

Definition 3. An element \(k \) of an ordered set \(L \) is compact if for every directed \(X \subseteq L \), \(k \leq \bigvee X \) implies \(k \in (X) \).

We denote the set of compact elements of an ordered set \(L \) by \(K(L) \). We put \(K^0(L) = L \), \(K^{n+1}(L) = K(K^n(L)) \).
Definition 4. An ordered set L is algebraic if it is upwards complete and for every $x \in L$, $(x] \cap K(L)$ is directed and x is its supremum. It is iteratively algebraic if for all n, $K^n(L)$ is algebraic.

Theorem. If an ordered set A is iteratively algebraic, $A = K(A)$.

Proof. Assume A is iteratively algebraic, and $A \neq K(A)$. Since the supremum of a chain of noncompact elements is noncompact, by Zorn’s Lemma, A contains a maximal noncompact element m. Clearly, $[m]$ satisfies the ACC — the supremum of an infinitely ascending chain cannot be compact. Let

$$m \prec c_1 \prec c_2 \prec \ldots \prec c_n$$

$(n \geq 0)$ be a maximal chain in $[m]$. The element m is the supremum of a set C of compact elements. We know that m is not in $K(A)$; but $C \subseteq K(A)$, and since $K(A)$ is algebraic, C has a supremum in $K(A)$, which must be c_1. So n was not zero after all. But now c_1 is noncompact in $K(A)$. Let $m' = c_i$ be the greatest element of $\{c_1, \ldots, c_n\}$ that is noncompact in $K(A)$. Then we have a maximal chain

$$m' \prec c_{i+1} \prec c_{i+2} \prec \ldots \prec c_n$$

$(n \geq i)$ in $[m']_{K(A)}$. Then as before, n cannot be i; but proceeding to $K^2(A)$, we shall get an even shorter chain, and eventually a contradiction. So $A = K(A)$.

Corollary. If a lattice L is isomorphic to its ideal lattice, all its ideals are principal.

Proof. As an ordered set, the ideal lattice $\text{Idl}(L)$ is algebraic; so likewise L is algebraic. $(L$ will even be an algebraic lattice if it has a 0.) The compact elements of $\text{Idl}(L)$ are the principal ideals. The sublattice of principal ideals is obviously isomorphic to L, so $L \cong K(L)$, which implies that L is iteratively algebraic. Then by the Theorem, all the elements of L, and hence all the elements of $\text{Idl}(L)$, are compact.

Discussion

The proof of the theorem certainly owes to Higgs, but omits his main idea: a construction of double sequences of compact elements, based on the observation that a lower cover of an ideal generated by a compact element must be principal. Albert [4] claims to prove the theorem, but his conclusion that $A = K(A)$, after a transfinite lopping off of maximal elements, appears right out of the blue. Hansoul [5] suggests a proof of the dual of Albert’s theorem along the lines of [2].

References

