Triacylglycerol structures and the chocolate fat bloom mechanism
van Mechelen, J.B.

Citation for published version (APA):
van Mechelen, J. B. (2008). Triacylglycerol structures and the chocolate fat bloom mechanism
Chapter 3 Structures of mono-unsaturated triacylglycerols Part II 49
The β_2 polymorph
3.1 Abstract 50
3.2 Introduction 50
3.3 Experimental methods
 3.3.1 Samples, sample preparation and data collection 51
 3.3.2 Indexing, model building, structure determination and refinement 52
3.4 Results and discussion
 3.4.1 Data collection 54
 3.4.2 Anisotropic cell-parameter contraction 56
 3.4.3 The novel β_2-POS and β_2-SOA polymorphs 57
 3.4.4 Indexing, structure determination and refinement of the β_2 polymorphs 58
3.5 The novel β_2 polymorph crystal structure model
 3.5.1 Conformation of TAGs 59
 3.5.2 Built-up and stacking of 'three packs' 60
 3.5.3 Subcell 60
 3.5.4 Fingerprint area interpretation 61
 3.5.5 Methyl end-plane packing and melting points 62
 3.5.6 The β_2 to β_1 phase transition 63
3.6 Conclusions 65
3.7 Acknowledgements 66
3.8 References 66
3.9 Appendix Rietveld refinement results of β_2 structures 68

Chapter 4 Structures of mono-unsaturated triacylglycerols Part III 71
The β_2 polymorphs of trans-mono-unsaturated triacylglycerols, and related fully saturated triacylglycerols
4.1 Abstract 72
4.2 Introduction 72
4.3 Experimental
 4.3.1 Samples, sample preparation and data collection 73
 4.3.2 Indexing, model building, structure determination and refinement 74
4.4 Results and discussion
 4.4.1 Packing of the β_2 TAGs 78
 4.4.2 The methyl end-plane 82
 4.4.3 The packing of LMM and PSS 86
 4.4.4 The problem of local minima 87
4.5 Conclusions 89
Chapter 5 Structures of mono-unsaturated triacylglycerols Part IV

The highest melting β''-2 polymorphs of trans-mono-unsaturated triacylglycerols and related TAGs and their polymorphic stability

5.1 Abstract 100
5.2 Introduction 100
5.3 Experimental 102
 5.3.1 Samples, sample preparation and data collection 102
 5.3.2 Indexing, model building, structure determination and refinement 103
5.4 Results and discussion 107
 5.4.1 The structure determination process 107
 5.4.1.1 β''_1-2 PEP, β''_1-2 PSP, β''_1-2 PPE and β''_1-2 PPS 107
 5.4.1.2 β''_0-2 PSS 108
 5.4.2 The role of temperature in the interpretation of XRPD patterns 109
 5.4.3 Phase transitions and stability of polymorphs 111
 5.4.3.1 The α→β''_2 Phase transition 111
 5.4.3.2 The β''_2→β''_1 phase transition 112
 5.4.3.3 Stability of β''_1-2 112
 5.4.3.4 β''_0-2 PSS 114
 5.4.4 Packing and methyl end-plane 115
 5.4.4.1 β''_1-2 PEP, β''_1-2 PSP, β''_1-2 PPE and β''_1-2 PPS 115
 5.4.4.2 β''_0-2 PSS 118
 5.4.5 Comparison of β' structures 119
 5.4.6 Comparison of β' and the β structures 121
5.5 Conclusions 121
5.6 Acknowledgements 123
5.7 References 123
5.8 Appendix Rietveld refinement results of β''-2 structures 125

Summary 129
Samenvatting 131
List of publications 133
Nawoord 135