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Chapter 4

Extended SDP-Simulation approach:

production breaks and fixed order

costs

4.1 Introduction

In this chapter we extend the SDP-Simulation approach, such that it solves non-stationary

problems. Although the approach is more general we discuss the extension in the con-

text of the platelet production problem (PPP). In practice the PPP may be virtually

stationary, except for a number of periods during which additional production breaks

occur because of holidays, e.g. Easter, Christmas and New Year’s Day. This kind of short

production breaks are known well in advance.

• Setting the right production volumes to anticipate near-future production breaks is

in general difficult. Formal support through an extended SDP-Simulation approach

is thus needed to support blood bank managers.

The distinction of young-demand from any-demand is not common to all blood banks.

Therefore and to simplify the discussion we assume a single demand category. Another

reason for doing so is the fact that when the maximal shelf life of BPPs is 5 days only,

no ‘young’ BPPs are available after a production stop of 3 or more days. Mismatch costs

are thus excluded from the model. Moreover, we simplify the discussion by meeting all

demand with the oldest BPPs in stock first (FIFO), which is common to blood banks.
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After applying the extended approach to one of the Dutch blood banks, we consider a

case where demand volumes are 10 times as small. For the latter case one may think of

a small blood bank or a medium-sized or large hospital. In The Netherlands only a few

hospitals keep BPPs in stock. The lead time for regular orders is assumed to be one day.

Further, we provide answers to questions raised in the discussion at the end of the previous

chapter:

• At a small blood bank or at a medium-large hospital, the coefficient of variation of

the demand usually is higher. We expect that the optimal ordering policy is then

more complicated. Therefore we investigate for a few cases whether an order-up-to

S rule fits well or that other rules should be considered.

• When operating at a small scale fixed set-up costs may apply for each production

run or fixed order costs may apply to hospitals. How do these fixed costs affect

the optimal strategy? Is the SDP-Simulation approach also in this case helpful in

deriving a nearly-optimal rule and the respective parameter values? In particular

we are interested whether an (s, S)-policy fits well and whether nearly optimal

thresholds s can be read from the frequency tables.

Answers to these questions are of interest to inventory managers at both blood banks and

hospitals as well as to Operations Researchers.

Outline

In Section 4.2 we extend the SDP-Simulation approach such that it can deal with periods

where production and demand may be non-stationary. Throughout the whole chapter, we

assume that all demand is met by issuing the oldest BPPs in stock first, i.e. all demand is

‘FIFO-demand’. Consequently mismatch costs are zero as no distinction is made between

young-demand and any-demand. In Section 4.3 we present case study results for a Dutch

blood bank that faces short production breaks during Christmas, New Year’s Day and

Easter.

Next, we consider in Section 4.4 a stationary order problem for a blood bank with much

smaller average demand volumes. Alternatively one may think of a hospital that faces an

average demand that is only a tenth of the demand at the blood bank. In Section 4.5 we

add fixed order costs to the cost structure.
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4.2 Extended SDP-Simulation approach

4.2.1 Problem: non-stationary production breaks

A practical question for production-inventory managers, and for blood bank managers in

particular, that remained unanswered is: ”How should one anticipate irregular production

breaks like at Easter and Christmas?” When regular production stops for a few days, while

demand continues (as usual) one should anticipate breaks by producing somewhat more

some days before the break. Consequently the age distribution of the BPPs in stock is

affected and thus the optimal production volumes immediately after a break might be

different as well.

In the PPP most weeks are stochastically the same: the supply of whole blood (by

voluntary donors) and the demand for BPPs are stationary processes. However, during a

short holiday break production might be impossible, since donors do not show up.

As an example we consider, in Section 4.3, two cases of particular interest to blood bank

managers:

1. A Christmas period (December 25 and 26) falling on Tuesday and Wednesday, fol-

lowed by the New Year’s Day (NYD) on the next Tuesday.

2. The four-days Easter period from Good Friday to Easter Monday. In The Nether-

lands the (regular) production is stopped for four consecutive days, while the max-

imal shelf life of BPPs is only 5 days.

In practice it is difficult to find nearly optimal production volumes on days around holi-

days. Due to the occasional nature of these events, it is not possible getting experienced.

Formal support is thus needed. In the next section we extend the SDP-Simulation ap-

proach to include non-stationary production breaks and apply it to the BPP production-

inventory management.
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4.2.2 Approach

We discuss our approach by considering the breaks at a Christmas period and an Easter

weekend. As the time between these breaks is very long compared the maximal shelf life

of the products, one may analyze these periods independently of each other. In Figure

4.1 we illustrate our approach for the 4-days Easter weekend. The gray squared blocks

on the time bar indicate production stops.

4-days Easter

Stationary periodNon-stationary period

V0(1,x) = 0V7(1,x)

W0(x) = R(1,x) =

W7(x)W14(x) lim
n→∞

[Vn(1,x)− Vn(1,0)]

S S M T WF T F S SM T W T F S S M T W T M T W T F S S

weekend

Figure 4.1: The SDP-Simulation approach splits the horizon in two parts, since the system
behaves stationary a few days after a break

We model the problem as an infinite horizon problem, that consists of two parts. The first

part is the irregular period containing the non-stationary production break(s). The second

part relates to the stationary problem. In the example in Figure 4.1, the age distribution

of the BPPs in stock on the Tuesday immediately after the break differs from an ordinary

Tuesday, the optimal ordering policy may be different than on ordinary Tuesdays. But

we may assume that the system returns to the stationary problem a few days after the

irregular period has elapsed. We assume that from the next Monday onwards the system

behaves indeed stationary.

By stochastic dynamic programming (SDP) the optimal ordering strategy can be com-

puted for both the stationary and the non-stationary problems. We first apply successive

approximation to solve the stationary problem and thus obtain the optimal ordering strat-

egy for regular weekdays, Monday to Friday. As a by-product we compute relative values

of each stock state that are used as terminal costs to solve in a backward fashion the

non-stationary problem. In the next two sections we formalize the approach.
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4.2.3 Stationary MDP formulation

The SDP-simulation approach starts with solving the MDP for the stationary problem,

since its solution is input to the stochastic dynamic program for the non-stationary prob-

lem. The MDP formulation differs only slightly from the one formulated in the previous

chapter, as we now deal with only a single demand category, which is met through a FIFO

issuing policy.

The stock transition from weekday d to the next day, given that demand is met by a

FIFO-issuing policy, follows from the stock transition function y(x, k, a) and depend on

the initial stock x, the demand k, and the production volume a. At the end of the day

BPPs that have become outdated are disposed of. The transition probability relate to

the demand distribution for weekday d is denoted by pd(k).

The immediate or direct costs to incur in a slot is now much easier than before, as we

consider only a single demand category and no mismatch costs. Let C(d,x, k) denote the

costs to incur in on weekday d, when the demand on that day is k and the initial stock is

x. With the total stock level denoted by x =
m∑

r=1

xr, the direct cost C(d,x, k) are:

C(d,x, k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cO · (xm − k)+ outdating costs,

+cS · (k − ∑m
r=1 xr)

+ shortage costs,

+cH · x holding costs.

(4.1)

Note that in the definition of C(·) we have omitted the parameter I of the issuing policy

as in this chapter we consider FIFO issuing only. The expected immediate costs to incur

in state (d,x) are simply:

EC(d,x) =
∑

k

pd(k) · C(d,x, k). (4.2)
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Using Equation (4.6), the MDP is tractable through a SA algorithm, unless the state

space X is too large.

Vn(d,x) = min
a∈A(d,x)

(
EC(d,x) +

∑
k

pd(k) · Vn−1 (d + 1, y(x, k, a))

)
. (4.3)

We start the SA algorithm by setting V0(1,x) = 0 for all states x ∈ X . The choice the

start at a Monday (d = 1) is arbitrary, we could as well choose any other weekday to start

with. Next V1(7,x), V2(6,x),. . . ,V7(1,x),etc. are computed for all states x.

The span(Vn −Vn−7) is checked every 7 iterations, hence at iteration n = 7, 14, 21, etc.

Suppose span(Vn−Vn−7) is for the first time smaller than a pre-specified small value ε at

iteration N −7, with N a multiple of 7 days. Optimal actions for each state x on Monday

to Sunday are derived from Equation (4.4) from the last 7 iterations (n = N − 6, N −
5, . . . , N). Hence after N iterations an optimal stationary strategy is approximated by:

π(d,x) = arg min
a∈A(d,x)

∑
k

pd(k) VN−d(d + 1, y(x, k, a)). (4.4)

In the last 7 iterations the optimal production strategy π is stored. As N is a multiple

of 7, the value vector VN relates to a Monday. VN is a relative value vector that can be

used as terminal costs in solving the finite horizon problem of the non-stationary period.

4.2.4 Extension – Including non-stationary periods

In a very similar way the ordering decisions for each day of the non-stationary finite

horizon problem are computed. For example, in Figure 4.1, the special period lasts two

weeks (14 days) with the 4-days Easter weekend in the middle of the time interval. Note

that we have chosen more or less arbitrarily that the finite horizon problem ends a few

days after the break on a Monday morning.

For each of the 14 days of the special period the optimal production strategy is determined

by Stochastic Dynamic Programming in a backward fashion, using the so-called relative

values R(1, ·) as terminal costs. The relative values R(1,x) are used to compare stock

states x within the same periodic class, namely the class related to Mondays, the value

vector VN(1,x can be used for this purpose. Instead of storing the optimal policy for each

working day, we now store the policy for all 14 days of the non-stationary period.
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The extended SDP-Simulation approach consists of the following five steps:

Step I. Compute relative values of the states for the stationary problem:

• First, the stationary problem is solved (maybe after scaling the problem),

using Equations (4.6) and (4.4).

• Next, we choose an arbitrary reference state on Monday, say (1,0), and

compute for every possible stock state x on Monday the difference in ex-

pected future costs relative to this reference state:

R(1,x) = lim
n→∞

[ Vn(1,x) − Vn(1,0) ] ≈ VN(1,x) − VN(1,0) (4.5)

These differences, R(1, ·), are feasible relative values, when N is sufficiently

large. VN(1,x) is finite when N is finite. Therefore setting R(1,x) = VN(1,x)

is also feasible.

Step II. Solving the non-stationary problem by SDP:

Let the irregular period last T days, with the last day being a Sunday. The

days of this period are numbered backwards and denoted by t. t = 1 thus

refers to the last day of the period (a Sunday) and day T is the first day of the

finite horizon. Index t thus denotes the number of days to go until the end of

the irregular period. In addition to the notation in Equations (4.6) and 4.4 we

define:

pirr
t (k) = the probability of a (composite) demand k on day t.

If the demand remains stationary even during a break, then pirr
t (k) equals

pd(k) for d = 7 − (t − 1) mod 7.

A′
t(x) = action space at day t as bounded by the (artificial) production and

storage capacity. Clearly the action space depends on the stock state x.

If production is not possible on day t, A′
t(x) = {0}.

Wt(x) = the total expected costs under an optimal strategy from day t onwards

when starting in inventory state x and at the end of the irregular period

terminal cost are accounted.

W0(x) ≡ R(1,x).

πt(x) = the optimal decision at day t given the inventory state is x.
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By stochastic dynamic programming one recursively computes and stores suc-

cessively for t = 1, 2, . . . , T , for all states x in the state space X ′(t) :

Wt(x) = min
a∈A′

t(x)

(
ECt(x) +

∑
k

pd(k) · Wt−1(y(x, k, a))

)
. (4.6)

with ECt(x) =
∑

k pirr
t (k) · C(d,x, k), in which d is the weekday related to t.

The optimal ordering quantity on day t follows from

πt(x) = arg min
a∈A′

t(x)

∑
k

pirr
t (k)Wt−1(y(x, k, a)). (4.7)

Step III. Read simple rule from simulation-based frequency table

Again the optimal strategy may be fairly complex. Hence simulation is used

to investigate the structure of the optimal strategy for each day of the special

period. That is: frequency tables for each day t of the irregular period are

generated and, if applicable, an order-up-to S rule is read for each day of the

week or any other appropriate ordering rule.

Step IV. Finally, by a detailed simulation program the rule is put to the test and its

performance, in terms of outdating and shortage figures, is compared to the

figures for the optimal stock-age-dependent strategy.

Step V. In case the initial problem is scaled the simple rule is simulated for the full-size

problem after re-scaling the parameters of the simple rule.
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4.3 Case study – optimal policy around breaks

In this section we apply the extended SDP-Simulation approach using realistic data, as

summarized in Section 4.3.1. The results for the problem around Christmas and New

Year’s Day are presented in Section 4.3.3. In section 4.3.4 we discuss the 4-days Easter

weekend. The results are integrated in Section 4.3.5. We will show that a simple rule

applies even around breaks, although we do not provide a detailed sensitivity study as we

have done in the previous chapter. We limit the illustration to the first four steps of the

SDP-simulation approach.

4.3.1 Data

The case study is constructed by modifying the data for one of the four Dutch Blood

banks (Sanquin, division North-East). The demand is aggregated into a single category

that will receive the oldest BPPs in stock (FIFO issuing). The demand for 144 BPPs a

week is spread over Monday to Sunday as in Table 4.1. To make the MDP tractable we

scale the problem by a factor 4, resulting in the mean demand figures in the last row of

Table 4.1.

Table 4.1: Demand distributions: means and coefficients of variation (cv).

Mon Tue Wed Thu Fri Sat Sun

original mean 26 21 32 21 26 8 10

cv 0.28 0.31 0.25 0.31 0.28 0.50 0.45

scaled mean 6.5 5.25 8 5.25 6.5 2 2.5

The coefficient of variation (cv) of the demand is set to 1.4 times the cv when demand

would be Poisson distributed. In fact, this assumption corresponds to the worst case of

Section 3.7.2, where one demand category, comprising two thirds of the average demand,

is Poisson distributed, but the cv of the remaining third of the demand is twice as high.

The cv over all demand is then
√

2 ≈ 1.4 times1 the cv for the Poisson case.

1Consider three stochastic variables X, X1 and X2. Let X = X1 + X2, with mean μ. X1 is
Poisson(μ1 = 2

3
μ) distributed, X2 has mean μ2 = 1

3
μ and coefficient of variation cv2 = 2 · 1√

μ2
. Hence

variance of X is (cv1 · μ1)2 + (cv2 · μ2)2 = μ1 + 4μ2 = 2

3
μ + 4

3
μ = 2μ. Hence the coefficient of variation

of X is
√

2/μ =
√

2 · cv(Poisson(μ)).
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For each day of the week d we fit a discrete probability distribution pd(·) on the mean

demand and the reported cv. Conform [2] the unscaled demand distributions are mixtures

of two negative binomial distributions. For the scaled problem, the demand distributions

are fitted using a mixture of two binomial distributions.

The other problem data for the unscaled case remain unchanged:

Annual demand 7,488 BPPs or 1,872 batches

Costs outdating 150 per outdated BPP,

shortage costs 750 per BPP short,

all other costs are zero,

Production Monday – Friday, but no during breaks

Maximal shelf life m = 5 days.

For a high accuracy performances statistics will be obtained from 100 detailed simulation

runs of 1,000,000 weeks each.

4.3.2 Step I – Stationary problem

After scaling the MDP and solving the scaled problem, we simulate the resulting optimal

strategy. Table 4.2 presents the simulation-based frequency tables for Monday to Friday.

In the first column we read the order-up-to levels related to the optimal actions. From

the last column we read which level is most frequent. On Mondays the most-frequent

order-up-to level is 21 and it fits to 59% of the 1 million states visited. Similarly, we

find most-frequent order-up-to levels (21, 21, 21, 19, 24) batches (of 4 BPPs) for Monday

to Friday.

In Table 4.3 we compare the order-up-to rule with order-up-to levels fixed to (21, 21, 21, 19, 24)

against the optimal (age-dependent) strategy. The upper half of the table shows the char-

acteristics of the optimal MDP strategy, the lower half shows the performance of a fixed

replenishment rule. As expected from the results and the discussion in the previous chap-

ter, the order-up-to S rule appears to perform nearly optimal. The absolute outdating

and shortage figures per week should be related to a weekly demand of 36 batches of 4

pools. The annual results relate to an average annual demand for 1872 batches.
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Table 4.2: Simulation frequency tables of scaled MDP strategy with FIFO demand only.

(a) (State, action)-frequency tables for 1,000,000 simulated Mondays.
Stock x 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Freq(S1)

Up-to S1
24 4 6 12 153 101 250 27 553
23 4 46 2906 17596 5508 1262 27322
22 5 1156 121403 79791 39802 242157
21 116497 152240 167708 154513 590958
20 39450 74336 113786
19 17209 17209
18 5976 5976
17 1657 1657
16 332 332
15 50 50
14 0
: :
0 0

Freq(x) 50 332 1657 5976 17209 39450 74336 116497 152240 167713 155669 121407 79841 42714 17608 5661 1363 250 27 1000000

(b) (State, action)-frequency tables for 1,000,000 simulated Tuesdays.
Stock x 0 . . . 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Freq(S2)

Up-to S2
26 1 1
25 1 1 3 5
24 2 6 42 33 22 1 106
23 5 277 622 898 247 16 2065
22 40 653 5055 15270 10982 2259 215 34474
21 786 9588 44321 83285 143525 191312 198489 159515 95150 32597 4316 427 963311
20 38 38
19 0
: :
0 0

Freq(x) 0 38 786 9588 44321 83285 143525 191312 198529 160168 100210 48146 15926 3628 496 41 1 1000000

(c) (State, action)-frequency tables for 1,000,000 simulated Wednesdays.
Stock x 0 . . . 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Freq(S3)

Up-to S3
25 3 3
24 2 72 103 87 2 266
23 9 173 1314 4637 1865 592 8590
22 9 988 6708 49510 99883 31271 5334 193703
21 16565 59327 136626 214317 231213 136611 794659
20 167 2612 2779
19 0
: :
0 0

Freq(x) 0 167 2612 16565 59327 136635 215305 237930 186296 101197 35980 7302 682 2 1000000

(d) (State, action)-frequency tables for 1,000,000 simulated Thursdays
Stock x 0 . . . 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Freq(S4)

Up-to S4
22 3 6 9
21 106 753 204 1063
20 1156 7482 44639 30494 8368 931 93070
19 7114 24181 58816 110748 164500 196650 184235 129167 28890 904301
18 145 1401 1546
17 7 7
16 0
: :
1 0
0 4 4

Freq(x) 0 7 145 1401 7114 24181 58816 110748 164500 196650 185391 136649 73529 30494 8474 1684 207 10 1000000

(e) (State, action)-frequency tables for 1,000,000 simulated Fridays.
Stock x 0 . . . 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Freq(S5)

Up-to S5
28 1 2 3
27 2 2
26 30 262 223 70 585
25 1 378 2670 17755 20380 9471 1110 51765
24 141 2406 15686 57196 132318 210586 235857 185682 87884 19889 947645
23 0
: :
0 0

Freq(x) 0 141 2406 15686 57196 132318 210587 236235 188352 105639 40299 9733 1333 73 2 1000000
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Table 4.3: Order-up-to S rule vs MDP policy for a regular (stationary) week (statistics
in batches of 4 pools obtained by simulation for 100 million weeks).

Weekday Mon Tue Wed Thu Fri Sat Sun Weekly Annual

MDP policy

# batches outdated 0 0.01 0.06 −a −a 0 0.01 0.08 4.30 (0.23%)

# batches short 0.01 0 0 0 0 0 0 0.01 0.71 (0.04%)

Annual costs 4,698 euro

Order-up-to S rule

Levels Sd 21 21 21 19 24 − −
Goodness-of-fit 59% 96% 79% 90% 95% − −
# batches outdated 0 0.01 0.06 −a −a 0 0.01 0.08 4.18 (0.22%)

# batches short 0.01 0 0 0 0 0 0 0.01 0.74 (0.04%)

Annual costs 4,724 euro

aOutdating must be zero on Thursday and Friday, as m = 5 and production stops in
the weekends.

From the scaled MDP results we conclude that

• Compared to the current practice, it seems that the annual outdating can be reduced

from about 15% to 0.2%, even when demand is more stochastic than Poisson.

• Shortages occur virtually never: only 0.04% of the total annual demand cannot be

met immediately from stock.

• The order-up-to S policy as read from the frequency tables closely approximates the

structure of the optimal strategy and is only 0.6% off from the optimal cost level.

Remark For the unscaled case, the replenishment levels are re-scaled by multiplication

with a factor 4. In the previous chapter we have already shown that the resulting order-

up-to levels are nearly optimal. More results for cases where all demand is aggregated

into a single category are found in [56], [57], [58], [149], [77].

4.3.3 Steps II to IV – Christmas and New Year’s Day

For example, we consider a year in which Christmas falls on Tuesday and Wednesday,

and New Year’s Day (NYD) on the next Tuesday. On these days (regular) production is

stopped because of a lack of donors. As depicted on the timeline in Figure 4.2 there is

only a single day between the weekend and the two Christmas holidays. On this Monday

one has to produce additional BPPs to anticipate the production stop for the next two

days. In this section we consider a worst case where demand for platelet pools continues

as usual.
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Christmas

Stationary periodNon-stationary period

V0(1,x) = 0W7(1,x)

W0(x) = R(1,x) =

W14(x)W21(x) lim
n→∞

[Vn(1,x)− Vn(1,0)]

NYD

M T W T F S S M T W T F S S M T W T F S S M T W T F S S

Figure 4.2: The SDP-Simulation approach splits the horizon into two parts, as if the
system behaves stationary a few days after a break

What to expect?

When the production capacity on Monday is not restrictive, as in our case, then the

production on Monday has to be set high enough to anticipate the production stop on

the next two days. When the production capacity on Monday is normally high enough

but too restrictive to anticipate the two-day production stop, then the production volume

on Friday is raised as well. When no holding costs and quality mismatch costs apply, the

capacity restrictions will hardly affect the cost-level. Compared to the stationary case the

optimal cost level does increase, since outdating and shortages are likely more prevalent.

Shortages mostly occur on the Thursday after Christmas. Excessive production on the

Monday before Christmas outdates the next Saturday.

We assume that the production and storage capacity are not restrictive. (Artificial bounds,

which are set to make the state space finite, are set high enough to ensure that the optimal

policy is not affected.) The length of the non-stationary period can then be reduced from 3

weeks (as in Figure 4.2) to 2 weeks, as the problem in the first week maybe still stationary.

When the production capacity on Wednesdays, January 2nd, is not restrictive then the

production strategy on Thursday January 3rd, may differ only slightly from that on an

ordinary Thursday. Moreover, given m = 5, no BPPs will expire on Thursday, as no

BPPs in stock on Thursdays are older than three days.

Results for optimal strategy

Table 4.4 shows the impact of the irregular production breaks on the optimal strategy

over a ten-days period from Monday (December, 24th) to Wednesday (January, 2nd). The

results are presented in batches of 4 pools, since the MDP is scaled to reduce the state

space. The average demand over the 10-days period is almost 56 batches (223 pools).
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Table 4.4: Impact of production breaks around Christmas and New Year’s Day.

(a) Impact of breaks on outdating and shortages (in batches) under MDP policy.

10-days period Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Total

Stationary case

# batches outdated 0 0.01 0.06 −a −a 0 0.01 0 0.01 0.06 0.15

# batches short 0.01 0 0 0 0 0 0 0.01 0 0 0.03

Irregular breaks Dec-25 Dec-26 Jan-1

# batches outdated 0 0.01 0.11 −a −a 0.59 0 −a −a 0.05 0.77

# batches short 0 0 0 0.06 0 0 0 0.01 0 0.01 0.08

aNo outdating m = 5 days after weekends and holidays, since production is zero.

(b) Impact of breaks on order-up-to levels St as read from the optimal MDP policy.
10-days period Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed
Stationary case
Order-up-to St 21 21 21 19 24 − − 21 21 21
Goodness-of-fit 59% 96% 79% 90% 95% − − 59% 96% 79%
Irregular breaks Dec-25 Dec-26 Jan-1
Order-up-to St 31 − − 20 24 − − 27 − 21
Goodness-of-fit 98% − − 49% 44% − − 93% − 48%

Table 4.4(a) shows that outdating for this ten-days period has increased from 0.15 batches

(0.6 pools) to 0.77 batches (3.1 pools). Expected relative outdating thus is about 1.4%.

Since the results relate to the optimal strategy one has to accept this increase, which

is primarily due to the outdating of pools produced on the Monday before Christmas.

Although not reported in the table, we have observed that only 0.55% of the BPPs (0.08

batch) produced on the Monday before News Year’s Day becomes outdated on the next

Saturday.

Order-up-to rule vs Optimal strategy

Since in practice one prefers a simple rule, we hope that an order-up-to S rule resembles

the structure of the optimal policy. By simulation we generate (state, action)-frequency

tables for each day of the special period in a similar way as for the stationary case. In

Table 4.4(b) we report the most-frequent order-up-to levels for the ten-days period and

compare them against the stationary ones. As expected the order-up-to levels on the

Mondays before the two breaks are considerably higher than in the stationary case: e.g.

31 vs 21 before Christmas. Remarkably, an order-up-to S rule fits even better on Mondays

just before a break, than on a regular Monday: 98% before Christmas versus 59% on the

regular Mondays. On the days after a break the order-up-to S rule fits to almost 50% of

the states visited, whereas in the stationary case this figure falls in 79%-95%.

We evaluate the order-up-to S rule with the most-frequent order-up-to levels from the
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Table 4.5: Order-up-to S vs MDP policy around Christmas and New Year’s Day.

10-days period Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Total

Irregular breaks Dec-25 Dec-26 Jan-1

MDP policy

# batches outdated 0 0.01 0.11 −a −a 0.59 −a −a 0 0.05 0.77

# batches short 0 0 0 0.06 0 0 0 0.01 0 0.01 0.08

Order-up-to S rule

Levels St 31 − − 20 24 − − 27 − 21

# batches outdated 0 0.01 0.11 −a −a 0.59 −a −a 0.01 0.04 0.75

# batches short 0 0 0 0.06 0 0 0 0.02 0 0.01 0.10

aNo outdating m = 5 days after weekends and holidays, since production is zero.

frequency tables by a long simulation (100 million replications) and compare its perfor-

mance against the optimal strategy. (The results could be computed in an exact way

by solving the underlying Markov chains under modified cost structures.) Although the

order-up-to S rule does not fit for 100% at each day, its performance is very close to

optimal as reported in Table 4.5. Over the given ten-days period on average only 0.1

batch (out of the 56 batches demanded) cannot be met from stock: the shortage rate is

thus less than 0.2%. Outdating is in the order of 1.3%.

Re-scaling After re-scaling the order-up-to levels, one obtains a nearly optimal order-

up-to S rule for the real-sized case. Given the robustness of the rule with respect to minor

changes in the order-up-to levels as shown in the previous chapter we skip step V of our

extended SDP-Simulation approach.

Conclusions – Results breaks during Christmas and New Year’s Day

It appears that:

• an order-up-to S policy with increased order-up-to levels for the Monday before

Christmas and the Monday before New Year’s Day is nearly optimal,

• age plays an more important role after Christmas and New Year’s Day, but the

absolute impact on outdating and shortages is relatively small, and

• outdating over a ten-days period, including the breaks, is as low as 1.4%, while

shortages are less than 0.2%.
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4.3.4 Steps II to IV – Four-days Easter weekend

The second example of a non-stationary problem with irregular production breaks is the

4-days Easter weekend, as depicted before in Figure 4.1. The long weekend from Good

Friday to Easter Monday is considerably more difficult, since the production is stopped for

four consecutive days, while the shelf life is only 5 days and demand remains stationary.

We assume that the production and storage capacity are not restrictive.

What to expect?

Again, we expect that primarily the production volumes one day before the break, in

this case on the Thursday before Good Friday, are increased dramatically to anticipate

the production stops for the next four days. The available stock plus the production on

Thursday should be enough to survive until the next Wednesday morning when new stock

is released. The order-up-to level on Thursday before the break can be derived by the

Newsboy model, since no BPPs will survive until Wednesday.

The marginal return of ordering z batches instead of z − 1 batches is the savings on

shortages. The marginal costs are an increase in the expected outdating costs. Let

the stochastic variable Z denote the demand in batches over the six-days period from

Thursday to Tuesday, and P (·) is the cumulative distribution of Z. P (·) is obtained

from the convolution of the six demand distributions. The optimal order-up-to level on

Thursday is the greatest value of z for which the expected marginal savings on shortage

costs is still larger than the expected marginal outdating costs, as reflected in Equation

(4.8).

cS · P (Z ≥ z) ≥ cO · P (Z ≤ z − 1) (4.8)

Hence the best order-up-to level is the greatest z for which holds:

P (Z ≤ z − 1) ≤ cS

cS + cO
. (4.9)

For the given demand distributions and the cost figures, the order-up-to level on the

Thursday before the break is according to the Newsboy equation 31 batches. The pro-

duction volume just before the break is thus likely much higher than on a regular Thursday.

Consequently, outdating mostly happens five days later on Tuesday, just after the break.
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Since production stops from Friday to Monday, shortages primarily happen on Tuesday

given that the production lead time is one day. We expect shortages and outdating to be

far more prevalent than over the Christmas period.

On Tuesday morning after Easter Monday all products in stock, if any, are of the same

age. The optimal production strategy is thus not stock-age-dependent. No BPPs produced

before the break will survive until Wednesday morning, hence one may expect that the

production volume on Tuesday is fixed to a target inventory level on Wednesday morning.

Consequently, the optimal production volume on Wednesday is also fixed, as Tuesdays

production becomes available only at the start of Wednesday morning and all products

in stock are of the same age. From Thursday onwards the optimal production strategy is

again stock-age-dependent.

Results of optimal strategy

After scaling and solving the MDP, we can check our expectations. Through simulation

we generate frequency tables from which we read the structure of the optimal strategy.

A selection of them is found in Table 4.6. As expected and argued before, according to

the upward diagonal in Table 4.6(a), a fixed production volume applies on the Tuesday

just after Easter Monday. All batches produced before the break will not survive until

the Wednesday morning after Easter.

Since all stock present on Tuesday morning after Easter Monday will perish the same

day, the initial stock on Wednesday morning consists only of the 15 batches produced

on Tuesday. From Table 4.6(a) we observe that a fixed order-up-to level of 21 batches

applies on Wednesday, which implies a fixed production volume of 6 batches. Note that

an order-up-to level of 21 batches corresponds to the stationary order-up-to level reported

in Table 4.4(b).

The order-up-to level on Thursday after the break equals 19, which corresponds to the

stationary order-up-to level. This illustrates that the stationary order-up-to levels apply

from Wednesday onwards. Although not reported the outdating and shortages figures

from the Thursday after the break onwards do not differ significantly from those on

regular days. One positive exception, not visible in the table, is that outdating on the

Sunday after the break is significantly lower than usual.

The optimal production policy on Thursday prior to Good Friday resembles for virtually

100% an order-up-to S rule with fixed order-up-to level 32. This is inline with our expec-

tations: the newsboy model suggest an order-up-to level of 31 batches. As the initial stock
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Table 4.6: Frequency tables from 1 million simulations of MDP policy around Easter.
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may not survive till the next ordering moment, the best order-up-to level is 1 higher. The

order-up-to level 32 is 13 batches higher than on a regular Thursday (see Section 4.3.2).

Just as for the Christmas and New Year’s Day period, on the day before a production

break an order-up-to S rule (with increased levels) fits even better than in the stationary

case. Apparently the age-distribution of the stock is less relevant on a day prior to a

production break.

Order-up-to rule vs Optimal strategy

The structure of the optimal policy seems thus, again, to be very well presented by an

order-up-to S rule. In Table 4.7 we report over a ten-days period, including the Easter

weekend, the outdating and shortage volumes around Easter under both the optimal

production policies and the order-up-to S rule. In the table Good Friday and Easter

Monday are abbreviated by GF respectively EM.

In the last column of Table 4.7 we observe that the order-up-to S rule performs almost

equally well as the optimal MDP policy. As expected, outdating and shortages happen

mostly on the Tuesday after Easter Monday. Under both strategies on average approxi-

mately 4.3 batches will outdate and stock falls on average 0.28 batches short. The average

demand over the ten-days period is on average almost 56 batches and the average pro-

duction to cover the demand over this period is roughly 60 batches. Relative outdating

over the ten-days period is thus 4.3
60

= 7.2%. The shortage rate over the ten-days period

is 0.28
56

= 0.5%.

Table 4.7: Order-up-to S rule vs MDP policy around Good Friday and Easter Monday.

10-days period Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Total

Irregular breaks GF EM

MDP policy

# batches outdated 0 0.01 0.06 −a −a 0 0.03 0.07 4.16 −a 4.34

# batches short 0.01 0 0 0 0 0 0 0 0.26 0 0.28

Order-up-to S rule

Levels St 23 22 24 32 − − − − 15b 21

Goodness-of-fit 44% 75% 64% 100% − − − − 100%b 100%

# batches outdated 0 0.01 0.06 −a −a 0 0.03 0.04 4.19 −a 4.33

# batches short 0.01 0 0 0 0 0 0 0 0.26 0 0.28

aNo outdating 5(= m) days after weekends and holidays, since production is zero.
bA fixed production volume applies since all batches in stock are outdated at the end of the day.
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Conclusions – Results four-day Easter weekend

The major conclusions over a ten-days period that includes the four-days Easter weekend

are:

• A simple replenishment rule performs nearly optimal and results in:

– an outdating figure of only 7.2%,

– shortages to be less than 1%.

• Outdating and shortages happen mostly on the Tuesday after Easter Monday, indi-

cating the difficulty in anticipating a four-days production stop when the maximal

shelf life is only 5 days.

• The production levels on the Thursday before and the Tuesday after the weekend

are considerably higher than in the stationary case.

– On the Tuesday after Easter Monday a fixed production quantity applies, since

pools produced before Good Friday will not survive until Wednesday.

– Shortly after the break (from Wednesday onwards) the stationary order-up-to

S rule resumes as a very good approximation of the optimal MDP policy.
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4.3.5 Conclusions – Extended SDP-Simulation Approach

Extended SDP-Simulation Approach

The SDP-Simulation approach can be applied to solve the order problem of perishables

with a (short) fixed shelf life. We have extended the approach such that it can deal with

(non-stationary) production breaks. It appears to be a powerful approach for deriving an

optimal stock-age-dependent (scaled) policy and for investigating the structure such that

a practical rule can be derived from it.

Results over a year including Easter and Christmas

We have tested the approach on a PPP using realistic data for a single category of demand.

For the PPP under consideration even around breaks simple order-up-to S rules apply

and optimal order-up-to levels are easily read from simulation-based frequency tables.

By combining the results from the previous sections, the following conclusions can be

drawn concerning the performance of the SDP-Simulation approach over a year which

includes the breaks during Christmas, New Year’s Day and the 4-day Easter weekend:

• Average annual shortage = 1.1 batch = 4.2 pools < 0.1%

• Average annual outdating = 9.0 batches = 36 pools < 1%

Compared to the current practice the potential savings are substantial: it seems that the

current outdating figure of 15-20% can be reduced to less than 1%, while shortages arise

only a few times per year.
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4.4 The hospital case with no order costs

The SDP-Simulation approach provides insights into the structure of the optimal strategy.

It shows whether an order-up-to S is appropriate, and if so, it suggests nearly optimal

order-up-to levels for each weekday. The ‘relative uncertainty’ in the demand, as measured

by the coefficient of variation, depends on the scale at which the problem plays. Therefore

we may expect that an order-up-to S rule fits less well to an production-inventory problem

that plays at a much smaller scale: i.e. at a much smaller blood bank or at a medium-large

hospital.

Then fixed set-up costs per production run or fixed order costs may apply, as we will

discuss in the next section. In this section we leave any fixed order costs out of the model,

and focus on the impact of the demand uncertainty on the structure of the optimal policy,

and the resulting outdating and shortage figures.

4.4.1 Problem and data

Thus far we have studied the BPP inventory problem using data of one of the four Dutch

blood banks. Since other (foreign) blood banks might operate at a smaller scale, and

surely do most hospitals do, we now consider the order problem at a much smaller scale.

We refer to the problem in this section as the Hospital case, although we do not change

the modeling of the order problem. Again, we assume a fixed lead time of one day: regular

replenishment orders are placed early in the morning and these do arrive at the end of

the day, say early the next morning.

We investigate the optimal stationary ordering policy for a hospital with an average

demand that is 10 times as low as that for the blood bank considered in the previous

section. The average weekly demand is thus 14.4 pools. Emergency orders to resolve

shortages are delivered from the blood banks more or less instantaneously. The costs of

emergency deliveries to resolve any shortages are fixed to 750 per BPP.

Again, we assume that the demand is Poisson distributed. On Mondays the mean de-

mand is 2.6 pools and the coefficient of variation (cv) is thus 1/
√

2.6 ≈ 0.62. Table 4.8

summarizes the daily demand characteristics. Since demands happens occasionally during

weekends, the cv on some days can well exceed 1, but is on most days around 0.65. The

cv of the demand over an entire week is 1/
√

14.4 ≈ 0.26.

Since demands are Poisson distributed with low means, the coefficients of variation are

very high. Therefore we expect an increase in the relative outdating and shortage figures
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Table 4.8: Poisson demand distributions: means and coefficients of variation (cv).

Mon Tue Wed Thu Fri Sat Sun

original mean 2.6 2.1 3.2 2.1 2.6 0.8 1.0

cv 0.62 0.69 0.56 0.69 0.62 1.12 1.00

and the optimal policy to be ‘more’ stock-age-dependent.

• An open question to answer in the next sections is whether a simple order-up-to S

rule is still close to optimal for such a small-scale problem.

Given that BPPs have to be transported from a blood bank to the hospital, daily ordering

by the hospital may be inefficient. Instead of daily ordering, one may restrict the number

of decision epochs to say Mondays, Wednesdays, and Fridays. An interesting question is

thus:

• How does the optimal ordering strategy look like, when orders can be placed only

on Mondays, Wednesdays and Fridays.

Hence additional production breaks are introduced on Tuesdays and Thursdays. Alter-

natively one may incur fixed order costs to reflect the costs involved with the transport

of the pools from the blood bank to the hospital.

In Table 4.9, an overview is given of the several studies for the ‘Hospital case’. Although,

in The Netherlands, these costs are not (directly) billed to the hospital, the effect of fixed

order costs is studied in Section 4.5.

Table 4.9: Overview of study of small scale problem.

Hospital case or Small blood bank

‘FIFO-demand’ only : 14.4 BPPs per week

No fixed order costs (cF = 0) With fixed order costs cF

Order daily Order only on low high

(Mon to Fri) Mon, Wed, Fri cF = 75 cF = 150 or 500

Section 4.4.2 Section 4.4.3 Section 4.5.2 Section 4.5.3
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4.4.2 Daily ordering

The formulation of the MDP is similar to that in Section 4.2.3. Since this problem plays

at a small scale direct computation of an optimal strategy is possible without scaling the

problem. Still we investigate the structure of the resulting optimal strategy in search

for a practical rule. From simulation-based frequency tables (see Table 4.10) we read an

ordinary order-up-to S rule with order-up-to levels (11, 10, 11, 9, 11) for Monday to Friday.

The order-up-to S rule fits to 47-66% of the states visited during the simulation. The

performance of the rule and the optimal MDP strategy is evaluated by a long simulation

for 100 million weeks. The main results and conclusions are:

1. Even under the optimal MDP policy, the relative outdating and shortage figures for

the hospital case are much higher than those reported for the blood bank (in Table

4.3), due to the high coefficient of variation of the demand and the small scale at

which the hospital problem plays:

• outdating = 8.5%,

• shortages = 1%.

2. An order-up-to S rule rule appears to perform nearly optimal with slightly more

shortages:

• outdating = 8.5%,

• shortages = 1.3%,

• The order-up-to S rule shows a 10% increase in costs compared to the cost-

optimal MDP policy:

– weekly shortage and outdating costs under MDP: 303,

– weekly costs of order-up-to S rule: 337

.

For now, we conclude that, even for the small scale problem under consideration, the

order-up-to S rule performs quite well.
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Table 4.10: Frequency tables from 1 million simulations of MDP policy with daily ordering
independent of the fixed order costs.

(a) (State, action)-frequency table for Monday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Freq(S1)

Up-to S1
14 55 121 176
13 194 6543 4242 10979
12 226 44582 104321 22168 171297
11 31536 252641 185848 470025
10 59645 101872 134222 295739
9 13301 30744 44045
8 5276 5276
7 2463 2463
6 0
: :
0 0

Freq(x) 2463 5276 13301 30744 59645 101872 165758 252867 230430 104515 28711 4297 121 0 1000000

(b) (State, action)-frequency table for Tuesday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Freq(S2)

Up-to S2
15 11 11
14 113 413 10 536
13 260 2744 1256 4260
12 204 10805 17370 28379
11 25 7719 184917 108229 300890
10 13789 39903 103890 167811 217563 119774 662730
9 8 1131 1139
8 0
: :
1 0
0 1764 291 2055

Freq(x) 0 0 8 1131 13789 39903 103890 167836 225282 304895 119294 21991 1960 21 1000000

(c) (State, action)-frequency table for Wednesday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Freq(S3)

Up-to S3
14 4 15 19
13 599 3001 3600
12 21291 45764 829 67884
11 249 127232 323870 45411 496762
10 843 79943 156663 148673 386122
9 2819 10810 31400 45029
8 538 538
7 46 46
6 0
: :
0 0

Freq(x) 0 46 538 2819 10810 32243 79943 156912 275905 345161 91774 3834 15 0 1000000

(d) (State, action)-frequency table for Thursday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Freq(S4)

Up-to S4
12 379 379
11 3378 18643 22021
10 8315 263097 77619 349031
9 17646 48379 86116 150772 319554 622467
8 4613 4613
7 76 76
6 0
: :
1 0
0 1413 1413

Freq(x) 0 76 4613 17646 48379 86116 150772 327869 263097 80997 18643 1792 0 0 1000000

(e) (State, action)-frequency table for Friday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Freq(S5)

Up-to S5
16 48 48
15 584 584
14 2305 2197 4502
13 283 20966 43832 265 65346
12 67 17357 246413 150981 2899 417717
11 30246 78344 158916 220214 12319 500039
10 2382 9345 11727
9 37 37
8 0
: :
0 0

Freq(x) 0 37 2382 9345 30246 78344 158983 237571 259015 171947 49036 3046 48 0 1000000
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4.4.3 Order only on Mondays, Wednesdays and Fridays

When orders can be placed only on Monday, Wednesday and Friday, one can expect to

order more at a time to anticipate the additional stationary ordering breaks on Tuesday

and Thursday. Consequently one expect to observe an increase in both outdating and

shortages. The frequency tables in Table 4.11 show the structure of the optimal strategy.

Again a simple order-up-to S rule seems to fit reasonably well to the optimal MDP policy,

with goodness-of-fit percentages close to 50%.

Both the optimal MDP strategy and the order-up-to S rules are simulated for 100 million

weeks. In Table 4.12(a) and Table 4.12(b) we compare daily ordering on Monday to Friday

against ordering on Monday, Wednesday and Thursday only.

We observe:

• Under the optimal MDP policy with ordering on Monday, Wednesday and Friday

only the outdating and shortages rates are respectively 11.7% and 1.2%. Com-

pared to daily ordering the additional breaks on Tuesday and Thursday thus have

significant negative effect on the outdating of pools.

• Under the order-up-to S rule, with order-up-to levels (13, 0, 12, 0, 12) for Monday to

Friday, outdating and shortages are respectively 11.7% and 2.0%. An order-up-to

S rule yields thus only 0.8% more shortages than the optimal stock-age-dependent

strategy, but at the same amount of outdated BPPs.

• The resulting cost level of the order-up-to S rule is about 500−416
416

= 20% above the

cost level of the optimal MDP strategy with ordering on Mondays, Wednesdays,

and Fridays only.

The main conclusion is that the costs under daily ordering are much lower than when

ordering on Tuesday and Thursday is prohibited: when applying an order-up-to S rule

the gap is about 163 euros per week. When ordering would costs 75 euros per order, then

daily ordering is 163 − 2 · 75 = 13 euros per week cheaper. But when the fixed order

costs are twice as high, 150 euro per order, then not ordering on Tuesdays and Thursdays

implies a cost saving of 163 − 2 · 150 = 137 compared to daily ordering.
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Table 4.11: Frequency tables from 1 million simulations of MDP policy with ordering
every Monday, Wednesday and Friday independent of the fixed order costs.

(a) (State, action)-frequency table for Monday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Freq(S1)

Up-to S1
18 44 78 122
17 1624 1984 258 3866
16 4860 8519 2065 426 15870
15 5845 31922 31769 5329 74865
14 4125 162516 114021 5688 286350
13 16628 153762 224439 80156 474985
12 18923 43547 71030 133500
11 2348 7184 9532
10 910 910
9 0
: :
0 0

Freq(x) 910 2348 7184 18923 43547 87658 153762 228564 248517 150803 47600 9422 762 0 1000000

(b) (State, action)-frequency table for Tuesday: zero production.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Freq(S2)

Up-to S2
0 625 6171 29367 67457 129870 374060 309674 72958 9818 1000000

Freq(x) 0 0 0 0 0 625 6171 29367 67457 129870 374060 309674 72958 9818 1000000

(c) (State, action)-frequency table for Wednesday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Freq(S3)

Up-to S3
17 306 306
16 2150 279 2429
15 15339 8300 644 24283
14 2729 39526 43900 1103 87258
13 50893 208093 107255 366241
12 55810 101847 160175 158537 476369
11 10953 26371 37324
10 3987 3987
9 1276 1276
8 527 527
7 0
: :
0 0

Freq(x) 527 1276 3987 10953 26371 55810 101847 160175 209430 210822 146781 59239 11553 1229 1000000

(d) (State, action)-frequency table for Thursday: zero production.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Freq(S4)

Up-to S4
0 1 216 4424 16363 41376 95387 153179 330485 268262 78406 11637 264 1000000

Freq(x) 0 0 1 216 4424 16363 41376 95387 153179 330485 268262 78406 11637 264 1000000

(e) (State, action)-frequency table for Friday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Freq(S5)

Up-to S5
17 119 32 151
16 872 446 1318
15 6817 4741 966 12524
14 379 22776 37499 7176 67830
13 427 120672 109750 12028 242877
12 141 163203 198773 70900 433017
11 35466 67646 112238 215350
10 16588 16588
9 6850 6850
8 3495 3495
7 0
: :
0 0

Freq(x) 3495 6850 16588 35466 67646 112379 163203 199200 191951 132526 56344 12789 1531 32 1000000
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Table 4.12: Impact of ordering on Monday, Wednesday and Friday only, compared to
daily ordering on Monday to Friday.

(a) Order-up-to S rule.

Order-up-to S rule S1 S2 S3 S4 S5 Outdating Shortage Weekly costs

Daily 11 10 11 9 11 8.5% 1.3% 337

Only on Mon-Wed-Fri 13 0 12 0 12 11.7% 2.0% 500

(b) Optimal stock-age-dependent policy (MDP).

MDP Outdating Shortage Weekly costs

Daily 8.5% 1.0% 303

Only on Mon-Wed-Fri 11.7% 1.2% 416
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4.5 The hospital case with fixed order costs

In this section we will investigate the impact of making the order costs explicit in the MDP

model. The modification of the cost structure in the MDP model is discussed in Section

4.5.1. We investigate the structure of the optimal ordering policy for two scenarios: one

with fixed order costs of 75 euro per order, another with fixed order costs of 150 euro per

order. Numerical results are presented in Sections 4.5.2 respectively Section 4.5.3.

4.5.1 Optimal control under fixed order costs

An optimal ordering policy can be computed in a similar way as described in Section 4.2.3.

The SA algorithm is unaltered except that C(d,x, k) is to be replaced by C(d,x, a, k):

C(d,x, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cF · I(a > 0) fixed order costs,

cO · (xm − k)+ outdating costs,

+cS · (k − ∑m
r=1 xr)

+ shortage costs,

+cH · x holding costs.

(4.10)

After a sufficiently large number of iterations, say N , an the optimal strategy with fixed

order costs is known, or, if optimal actions are not stored, is to be computed from:

π(d,x) = arg min
a∈A(d,x)

(
cF · I(a > 0) +

∑
k

pd(k) VN−d(d + 1, y(x, k, a))

)
, (4.11)

with VN(d,x), the expected costs over an horizon of N − d days when the the horizon

starts in state (d,x).

After simulation of the resulting optimal policy, one aims in the SDP-Simulation approach

at finding a more simple nearly optimal rule. From the literature review, we may expect

that an (s, S) policy could be nearly optimal. This is to be checked, and further one need

to find for each working day d nearly optimal parameter values sd and Sd. Hopefully these

can be read from the simulation-based frequency tables.
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4.5.2 Structure optimal policy when cF = 75

For numerical results we use the following costs figures:

• cF = fixed order costs: 75 per order,

• cO = proportional outdating costs: 150 per outdated pool,

• cS = proportional shortage costs: 750 per pool short.

The fixed order costs of cF = 75 euro is a reasonable estimate of the costs involved in

the (scheduled) transport of one or more pools from a blood bank to the hospital. Since

multiple deliveries at hospitals can be combined in a route by the same vehicle, the fixed

order costs do not relate to a single trip from a blood bank to a hospital. When the

hospitals are geographically more dispersed the transportation costs should be set higher.

Higher fixed order costs are considered in the next section.

An optimal stock-age-dependent strategy is computed and simulated to investigate its

structure. In a simulation of 1 million weeks we count for each observed total stock level

x, how often the MDP policy implies a certain order-up-to level. The results are tabulated

in the frequency tables in Table 4.13. Optimal order size 0 is made explicit by translating

it into order-up-to level 0, as reported in the next-to-last row of each table.

At first sight the tables look similar to those in Table 4.10, but the great difference is read

in the next-to-last row of each table from which we read how often the optimal strategy

implies zero ordering. Especially on Tuesday and Thursday we observe that in more than

75% respectively 51% of the states visited the optimal order size is zero.

Reading an (s, S)-rule:

An (s, S)-policy seems to apply, since zero ordering is prevalent when the stock level x

exceeds some threshold value s. The thresholds are visualized in the Table 4.13(a) to

Table 4.13(e) by the additional vertical line. For example, the threshold on Thursday is

s4 = 7: when x > 7 no orders are placed. Positive order quantities on Thursdays are

found only when x ≤ 7; the optimal order quantity can be approximated by an order-up-

to level S4 = 9, which is the most-frequent positive order-up-to level. Apparently for the

given cost structure the minimum order-quantity on Thursday is S4 − s4 = 2 BPPs.

Similarly one reads thresholds sd and order-up-to levels Sd for the other weekdays. On

Friday no threshold is found. On Monday, Tuesday and Wednesday, the optimal strategy
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Table 4.13: Frequency tables from 1 million simulations of MDP policy with cF = 75.

(a) (State, action)-frequency table for Monday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Freq(S1)

Up-to S1
18 1 14 32 47
17 10 34 90 134
16 8 59 368 18 453
15 2 161 5251 375 5789
14 1 912 32311 57378 90602
13 1 133 139106 195198 334438
12 24140 51679 97652 176127 110056 459654
11 3541 9682 13223
10 1539 1539
: 0
0 52174 35584 6018 345 94121

Freq(x) 1539 3541 9682 24141 51680 97654 176268 250084 227671 114862 36361 6140 377 0 0 1000000

(b) (State, action)-frequency table for Tuesday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Freq(S2)

Up-to S2
16 88 7 95
15 830 229 1059
14 3706 3012 6718
13 8861 8680 17541
12 27055 20073 47128
11 12065 985 67639 80689
10 2131 5189 3030 16968 44963 27564 99845
9 773 773
8 82 228 310
: 0
0 167138 306259 204034 59062 9326 23 745842

Freq(x) 82 228 773 2131 5189 15095 45008 73897 107589 170980 306576 204041 59062 9326 23 1000000

(c) (State, action)-frequency table for Wednesday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Freq(S3)

Up-to S3
16 19 19
15 82 82
14 19 19
13 6 85540 85546
12 1 84241 109089 193331
11 4494 71595 156108 148289 380486
10 1128 14066 37276 14488 66958
9 279 279
8 72 72
: 0
0 42389 180333 44803 5503 180 273208

Freq(x) 72 279 1128 4494 14067 37282 86102 156190 232549 237018 180333 44803 5503 180 0 1000000

(d) (State, action)-frequency table for Thursday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Freq(S4)

Up-to S4
10 93309 29467 122776
9 11265 32605 133097 71791 109159 357917
8 3407 3407
7 1281 1281
6 561 561
: 0
0 167515 287990 49481 8763 309 514058

Freq(x) 561 1281 3407 11265 32605 133097 165100 138626 167515 287990 49481 8763 309 0 0 1000000

(e) (State, action)-frequency table for Friday.
Stock x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Freq(S5)

Up-to S5
17 4 42 46
16 157 23 456 636
15 927 778 2684 343 4732
14 1519 3833 14525 12191 344 32412
13 1530 5962 33791 61866 8473 111622
12 518 4741 104397 196390 196975 47995 551016
11 14453 47594 99474 83962 48177 293660
10 4409 4409
9 1092 1092
8 352 352
: 0
0 23 23

Freq(x) 352 1092 4409 14453 48112 104215 189889 252048 235526 125321 23375 1166 42 0 0 1000000
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Table 4.14: Goodness-of-fit of (s, S)-policy at order costs cF = 75.

(s, S)-policy Mon Tue Wed Thu Fri

Threshold sd 9 8 9 7 S5

Order-up-to levels Sd 12 10 11 9 12

Goodness-of-fit 55% 85% 65% 87% 55%

Freq. x ≤ sd (do order) 96% 25% 77% 49% 100%

is more stock-age-dependent such that a threshold might not hold uniformly. In some

states the order quantity is positive even when the total stock level exceeds the threshold.

The threshold sd on day d is chosen such that at column x = sd + 1 in the majority of

states the production is zero and at column x = sd production is positive at the majority

of states. For determining the most-frequent order-up-to level one should restrict to the

states where x ≤ sd. (Alternatively one may compute the average order-up-to level over

all positive (non-zero) order-up-to levels.)

The goodness-of-fit of the (s, S)-ordering strategy is the frequency of states in which the

(s, S)-policy prescribes the same order quantity as the optimal MDP policy. The (s, S)-

policy on Thursday fits to 357, 917 + 514, 058 = 871, 975 out of the 1 million states. The

goodness-of-fit of the (s, S)-rule on Thursday with (s4 = 7, S4 = 9) is thus 87%.

In Table 4.14 we summarize the best parameter values as read from the frequency tables,

when the fixed order costs are 75 euro. On Friday there seems to apply no threshold

s5, to emphasize this we report s5 = S5. Considering the goodness-of-fit values of the

(s, S)-policy we conclude that it resembles for a great part the optimal MDP strategy.

The last line in the table shows how frequent orders are placed. Virtually every Monday

and Friday an order is placed. Only on 25% of the Tuesday BPPs are ordered. On 77%

of the Wednesdays and 49% of the Thursdays an order is placed.

In Table 4.15 we compare three policies with respect to their shortage and outdating

rates and the average number of orders placed per week. The cost optimal MDP policy

gives the best trade-off between these three criteria for the given cost structure. The

(s, S)-policy and order-up-to S rule performs nearly-optimal with respect to the shortage

and outdating rate. The (s, S)-policy results on average in 1 order more over a period

of 1
0.2

= 5 weeks. Ignoring the thresholds sd results in much more frequent ordering: 4.3

orders per week against 3.4 orders under the optimal strategy.
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Compared to the results for ordering on Mondays, Wednesdays, and Fridays only, as

reported in Table 4.12, the savings on outdating and shortage is significant. Compared to

daily ordering and ignoring any fixed order costs, outdating and shortages have increased,

but the number of orders placed per week is much lower: for the optimal stock-age-

dependent policy the average number of orders drops form 5 to 3.4 times per week.

Table 4.15: Performance of different policies when cF = 75

# orders Total

cF = 75 Outdating Shortage per week weekly costs

Optimal MDP policy 10% 1.2% 3.4 601

(s, S)-policy:

s = (9, 8, 8, 7, S5)

S = (12, 10, 11, 9, 12) 10% 1.2% 3.6 633

Order-up-to S

S = (12, 10, 11, 9, 12) 10% 1.1% 4.3 660

Conclusions

• The SDP-Simulation approach with fixed order costs successfully solves the MDP

and finds nearly optimal (s, S)- policies.

• Order frequencies on Tuesday and Thursday are (much) lower than on the other

weekdays.

• On Fridays an ordinary order-up-to S rule applies.

In the next section we investigate the impact of higher fixed order costs on the structure

of the optimal strategy.
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4.5.3 Higher fixed order costs

We consider two case in which the fixed order costs are increased to cF = 150, respectively

cF = 500 euro per order.

Doubled fixed order costs: cF = 150

When the fixed order costs are doubled, one tends to order less frequently and thus more

at a time. Consequently one may expect the BPPs in stock to be somewhat older and

that outdating thus becomes more prevalent. The optimal strategy likely is thus more

stock-age-dependent than when the fixed order costs are low.

In terms of the (s, S)-policy, the thresholds s are expected to be lower and the order-up-to

levels S are expected to be higher than for the case with cF = 75. The minimum order

quantity Sd − sd is thus higher when the order costs are increased.

The above expectations are supported by numerical results obtained by the SDP-Simulation

approach with the fixed order costs equal to 150 euros. The nearly optimal parameter

values that one reads for each working day are summarized in Table 4.16. Compared to

Table 4.14 where the fixed order costs were 75, the thresholds s of the (s, S)-policy are

indeed somewhat lower and the order-up-to levels S are slightly raised, but not dramat-

ically. Although the optimal strategy is a bit more stock-age-dependent, given that in

relatively more states where x > sd the order-size is positive, the (s, S)-policy fits even

better to the optimal strategy when cF = 150 than for cF = 75.

In Table 4.17 we compare the performance of the (s, S)-rule against that of the optimal

stock-age-dependent policy. The (s, S)-rule performs nearly optimal, besides an additional

0.3% of the demand (or on average 2 BPPs per year) cannot be met from stock. The

average number of orders per week is only 2.9.

Table 4.16: Goodness-of-fit of (s, S)-policy at order costs cF = 150.

(s, S)-policy Mon Tue Wed Thu Fri

Threshold sd 8 7 8 6 S5

Order-up-to levels Sd 13 12 11 9 12

Goodness-of-fit 85% 94% 78% 81% 52%

Freq. x <= sd (do order) 87% 15% 50% 41% 99.9%
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Table 4.17: Performance of different policies when cF = 150.

# orders Total

cF = 150 Outdating Shortage per week weekly costs

Optimal MDP policy 11% 1.2% 2.9 836

(s, S)-policy:

s = (8, 7, 8, 6, S5)

S = (13, 12, 11, 9, 12) 11% 1.5% 2.9 865

Very high fixed order costs: cF = 500

When the fixed order costs are extremely high, say 500 euro, we observe that the unnatural

(s,Q) policy then performs equally well as the more natural (s, S)-policy. In Table 4.18

we report on the performance when the order costs are extremely high (500 euro per

order). In general, shortages increase when fixed order costs are raised. The optimal

strategy limit shortages since its order quantities depend on the ages of the BPPs in

stock. When ages are ignored as in the stock-level-dependent policies (e.g. the (s,Q) and

(s, S)- policies), then shortages are much more prevalent. The resulting average weekly

costs of the stock-level-dependent policies are more than 20% above the optimal cost level.

If this is unacceptable one should search for better rules by developing simple rules that

are stock-age-dependent, similarly as we did in Section 3.4.

Table 4.18: Performance of different policies when cF = 500

# orders Total

cF = 500 Outdating Shortage per week weekly costs

Optimal MDP policy 17% 1.8% 2.0 1, 600

(s, S)-policy:

s = (7, 6, 6, 6, 8)

S = (14, 14, 14, 13, 13) 18% 4.8% 1.9 1, 943

(s,Q)-policy:

s = (7, 6, 6, 6, 8)

Q = (10, 8, 11, 9, 8) 19% 4.9% 1.9 1, 952



158 CHAPTER 4. EXTENDED SDP-SIMULATION APPROACH

4.6 Summary and conclusions

The contribution of this chapter is two-fold:

1. The SDP-Simulation approach is extended such that it can deal with non-stationary

periods (e.g. additional production breaks during holidays), in a further stationary

horizon.

2. It is shown how the SDP-Simulation approach derives efficient ordering rules when

average demand volumes are much smaller than in the previous chapter. In partic-

ular, the problem is studied with fixed order costs.

We have studied the PPP in a setting where no distinction is made between young-demand

and any-demand: any age-preference regarding the issued BPPs is ignored. All demand

is met by issuing the oldest BPPs first (FIFO), and no mismatch costs apply. In the next

two subsections, we summarize the main conclusions for a number of cases.

Production breaks at blood banks

We have investigated the impact on the ordering strategy of some additional production

breaks that occur during a year: i.e. on Good Friday, Easter Monday, the two Christmas

days and New Years Day. Therefore, the mean demand figures from one of the Dutch

blood banks are used. In fact, a bit more difficult case is studied as we assume the demand

uncertainty to be somewhat higher than under Poisson distributed demands. We draw

the following conclusions:

• Additional outdating and shortages on the day(s) after a production break are to

be accepted even under the truly-optimal MDP policy.

• An order-up-to S rule resembles the optimal policy even better on the day prior to

an additional production break than on ordinary weekdays.

• When the production break last m − 1 days, the order problem on the day before

the break is a single period problems. The best order-up-to level S just before the

break is then a bit higher than the one suggested by a Newsboy equation, as the

initial stock will not survive until the next order moment.



4.6. SUMMARY AND CONCLUSIONS 159

• Simulation results over a year, including the production breaks during Christmas,

New Year’s Day and the 4-days Easter weekend, indicate that compared to the

current practice overall outdating and shortage figures can be reduced significantly:

– outdating from 15-20% to less than 1%,

– shortages from about 1% to less than 0.1%).

Fixed order costs for hospitals

For Poisson distributed demands the coefficient of variation (cv) of the demand is much

higher when the mean demand figures are much lower. Consequently, the trade-off be-

tween shortages and outdating is then much more difficult to make. We have executed a

numerical study for a case where the demand is only 14.4 BPPs per week, or on average

only 2 per day. The cv is then about 0.7. Typically, one may think of a hospital that

keeps BPPs in stock, or a small blood bank.

When any fixed ordering costs are neglected, the SDP-Simulation shows that the optimal

ordering policy is still well structured: an ordinary order-up-to S rule performs nearly

optimal. Nevertheless, for the given data the outdating is substantial: 8.5% under both

the optimal policy and the order-up-to S rule. When operating at this scale, the outdating

cannot be reduced more through the ordering policy, unless one accepts more shortages.

As daily ordering may be not efficient, regarding the efforts to set-up an order and to

arrange the transportation of BPPs to an hospital, ordering on Monday, Wednesday and

Friday only will reduce the number of orders to place. Alternatively, we can add any

set-up and transportation costs in the form of a fixed order costs per order. The fixed

order costs can be high when the hospital is quite isolated from other hospitals and blood

banks.

The SDP-Simulation approach successfully solves the PPP with fixed order costs. From

the simulation-based frequency tables (s, S) policies can be read. On day d a threshold

value sd applies for ordering: if the stock level is above sd, no orders are placed. When

the total stock level x is on or below the threshold value Sd − x BPPs are ordered.

1. Incorporating the fixed order costs in the MDP model results in cost optimal bal-

ancing of shortage, outdating and order costs,

2. An (s, S)-ordering strategy appears to be nearly optimal even for the given relatively

short fixed shelf life and the high uncertainty in the demand,
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3. Optimal parameter values for the seven thresholds sd and seven order-up-to levels

Sd are easily generated by the SDP-Simulation approach,

4. When the fixed order costs are increased the optimal ordering strategy becomes

more stock-age-dependent: the stock-level-dependent (s, S)-policy results in many

shortages and is far from optimal when the order costs are extremely high.


