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6 Matter-wave interference

6.1 Introduction

Matter-wave interference is at the heart of quantum mechanics [167, 168], and is
also of practical importance in the form of e.g. electron diffraction [169], electron
microscopy [170, 171] and neutron interferometry [172]. Interferometry based on
free neutral atoms has also already been used for high-precision measurements of
a number of physical quantities [173]. Much more recently, it became possible to
employ samples of ultra cold trapped atoms to generate matter-wave interference
and study the properties of these quantum systems [72,79,82,174].

The experiments detailed in this chapter provide the basis for on-going experi-
ments aimed at investigating interference between degenerate Bose gases in and near
the one-dimensional regime. For this purpose we discuss the optimization performed
in order to observe clear interference patterns between condensates split using the
rf-dressed double-well potential. Emphasis is then given to two key properties of the
interference signal: the phase stability over time and the phase distribution along
the length of the interfering clouds. For vertically-split condensates we observe
curved, or even wiggled, interference fringes characteristic of phase fluctuations in
one-dimensional quasi-condensates.

This chapter is organized as follows. In Sec. 6.2 we provide background informa-
tion related to atom interferometers in general and some issues that are specific to
interferometers employing ultra-cold trapped atoms. These issues include the devel-
opment of the interference pattern in expanding condensates, the peculiar character
of the phase coherence in elongated condensates and the characteristic shape of the
double-well potential used to split a single BEC. In Sec. 6.3 we discuss the general
experimental procedure for the experiments presented in this chapter. We then con-
tinue by describing two experiments aimed at optimizing experimental conditions
for observing matter-wave interference. In the first we vary the hold time in the bare
potential after switch-off of the rf-dressing field to further characterize the potential.
The second experiment is aimed at optimization of the switch-off procedure of the
rf-dressed potential. Section 6.4 describes the interference experiment. We release
two condensates from a vertically-split double-well potential to expand and over-
lap them in time-of-flight, revealing an interference pattern. We provide a detailed
analysis of the interference pattern to determine contrast and phase. The splitting
is partially phase coherent. We observe the evolution of the condensate phase differ-
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86 Matter-wave interference

ence in the double-well. We analyze spatial fluctuations of the phase to determine
the relative phase coherence length. We conclude this chapter with a summary of
the results and an outlook on future interference experiments.

6.2 Background information

6.2.1 Interfering atoms

Before discussing interference of trapped clouds of quantum-degenerate ultra-cold
atoms, we first give some background on more conventional atom interferometers,
in which beams of neutral atoms are split and recombined to yield an interference
pattern [173, 175]. Atom interferometers fit in the broader picture of atom optics
in which the trajectories and the wave properties of neutral atoms are manipulated
similar to the manipulation of light in optics [176]. In atom interferometers the
wavelength of relevance is the de Broglie wavelength

λdB =
h

Mv
, (6.1)

where h is Planck’s constant, M the atomic mass and v the velocity of the atom.
Compared to light interferometers that have a long tradition of precision measure-
ments, atom interferometers are relatively new. The idea was patented in 1973 [177],
but the first atom interferometers only appeared in 1991 [178–181]. Development of
working devices was hindered by the lack of suitable beamsplitters and by the achiev-
able de Broglie wavelength which is generally much shorter than the wavelength of
visible light. Beamsplitters are made of nanostructured gratings or standing-wave
light beams. The reason why considerable effort was put in the development of these
interferometers is the prospect of a very high precision. In a realistic scenario poten-
tial differences of 6.6× 10−12 eV in a 10 cm interaction region should be measurable
(see [173]). Also the atom interferometer has advantages with respect to devices
that operate on neutrons or electrons. A beam of atoms is much easier to obtain
than a beam of neutrons for which an accelerator or nuclear reactor is needed. The
lack of net charge makes atoms robust against stray fields when compared to elec-
trons. By now atom interferometers have been used to sense rotations [182,183] and
accelerations [184,185], measure fundamental constants [184,186], monitor quantum
decoherence [187] and characterize atomic and molecular properties [188].

Interferometers employing trapped cold neutral atoms [79, 82, 174, 189] form a
separate category from the free-space atom interferometers. One of the several dif-
ferences is the way beamsplitting is achieved. Instead of splitting in momentum
space an atom cloud is split in position space by slowly transforming the trapping
potential from single well to double well by ramping up a potential barrier. The
phase can be read out either as population difference between the ground state and
first excited state after recombination of the split cloud in the trap [190] or by re-
leasing the clouds from the potential, overlapping them in expansion to generate
an interference pattern [79]. For quantum degenerate gases the obtained pattern
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is created by interference of the macroscopic wave function instead of single parti-
cle interference as in conventional atom interferometers. An advantage of the fact
that the atoms are trapped is the possibility of long interrogation times promising
more precise measurements, although there is discussion about the mechanism and
timescale of decoherence which could be a limiting factor in this respect [191].

Although trapped cold atom interferometers do not necessarily have to be imple-
mented on atom chips, these chips do have the potential advantage of being compact
and even portable [192]. An additional advantage is that the splitting can be im-
plemented purely magnetically, removing the need for additional lasers and further
simplifying the instrument. Initially it was attempted to construct a atom-chip-
based beamsplitter using purely magneto-static potentials produced by a multi-wire
geometry [50,190]. Shin et al. [155] used such a device to produce interference, but
the phase of the interference was random. Technical difficulties like a weak con-
finement during the splitting and extreme sensitivity to magnetic field fluctuations
prevented this design from being successful. The above technical problems can be
avoided by using rf-dressed potentials to create the double-well, studied first ex-
perimentally by Schumm et al. [79]. This is currently the preferred technique for
making atom-chip-based atom interferometers and is also the technique we use for
the interference experiment which is the subject of this chapter.

6.2.2 The interference pattern

In order to obtain an expression for the interference pattern created by overlapping
two independent condensates after releasing them from a double-well potential we
follow Ref. [193]. We describe the two BECs with single-particle wave functions ψ1

and ψ2, each the solution of the Gross-Pitaevskii equation for its well. We assume
each condensate has a well-defined initial phase. If there is coherence between the
clouds, the state can be described as

ψ(r, t) =
√
N1ψ1(r, t) +

√
N2ψ2(r, t), (6.2)

where the subscripts refer to condensate 1 and 2 and N is the expectation value of
the number of particles in the cloud. After release of the condensates from the trap,
they expand, overlap and interfere. Neglecting particle interactions between the two
clouds, the particle density is given by

n(r, t) = |ψ(r, t)|2 = N1|ψ1(r, t)|2 +N2|ψ2(r, t)|2 + 2
√
N1N2Re [ψ1(r, t)ψ

∗
2(r, t)] ,

(6.3)
where Re denotes the real part. If the clouds are initially spherically symmetric
Gaussian wave packets with radius R0 separated by a vector d the wave functions
are

ψ1,2(r, t) =
eiφ1,2

(πR2
t )

3/4
exp

[
−(r± d/2)2(1 + i�t/MR2

0)

2R2
t

]
, (6.4)

where M is the atomic mass and φ1 and φ2 the initial phases of the two conden-
sates, and the sign in front of d is different for the two clouds. For non-spherical
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condensates scaling equations are available [194, 195]. The radius of the expanding
wave function as a function of t is

R2
t = R2

0 +

(
�t

MR0

)2

. (6.5)

Substituting Eq. (6.4) in Eq. (6.3) yields

2
√
N1N2Re [ψ1(r, t)ψ

∗
2(r, t)] = c cos

(
�

M

r · d
R2

0R
2
t

t+ φ1 − φ2

)
, (6.6)

where c is an amplitude that slowly varies with spatial coordinates. The cosine term
describes the interference pattern. From the argument of the cosine and for large
expansion times such that R2

t � R2
0, we see that the fringe spacing is equal to

Δz � ht

M |d| . (6.7)

The lines of maximum intensity in the interference pattern are perpendicular to d
and the exact position of the maxima depends on the phase difference between the
clouds φ1 − φ2. The fringe spacing is equal to the de Broglie wavelength [Eq. (6.1)]
of a particle with a velocity |d|/t.

This treatment ignores the fact that an uncertainty relation exists between the
particle numbers and the phase of a BEC [109, 193]. Despite this shortcoming we
give this simple description here as it provides quick insight in the generation of the
interference pattern. More advanced treatments employing phase states or number
states that do obey the uncertainty relation (full quantum statistics), arrive at the
very same result as Eq. (6.6) [109,193].

6.2.3 The phase of the macroscopic wave function

Because the phase of the interference pattern is a measure for the phase difference
between the two interfering condensates, it is only natural at this stage to look at a
few of the most important properties of the phase of the macroscopic wave function
describing a condensate. The condensate phase and long-range order have been the
subject of many theoretical investigations. The ones most relevant here deal with
the relation between long-range order and the dimensionality of the condensate [74,
113,196–198].

The general picture is as follows. In three dimensions density fluctuations and
phase fluctuations quickly vanish as a trapped Bose gas is cooled below Tc, the criti-
cal temperature for Bose-Einstein condensation. The fluctuations are suppressed by
the mean-field interaction, yielding long-range order. In elongated three-dimensional
(kBT, μ > �ω⊥) and one-dimensional (kBT, μ < �ω⊥) systems the situation is dif-
ferent. At finite temperature T � Tc the density fluctuations are small, but along
the length of the cloud phase fluctuations are present originating from thermal ex-
citations. Such a phase fluctuating condensate is called a quasi-condensate. The
characteristic length of the phase fluctuations is the phase coherence length:

Lφ =
�
2nl

MkBT
, (6.8)
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where nl is the longitudinal (linear) density. As the temperature is decreased the
phase coherence length increases. Tφ is defined as the temperature for which the
phase coherence length is equal to the condensate half length L such that the system
crosses over to a true condensate, i.e.:

T

Tφ
=

L

Lφ

, (6.9)

and thus

Tφ =
�
2nl

MkBL
. (6.10)

Condensates in our setup are normally in the 3D to 1D cross-over (μ ∼ �ω⊥) with
a phase coherence length shorter than the length of the cloud (T > Tφ). On slow
transformation of the single-well potential to a double-well the cloud is split coher-
ently meaning that the two resulting independent systems start with the same phase
pattern as the initial gas. As soon as the gases are fully separated the phases will
develop independently. After release from the trap the density decreases rapidly,
switching off the interactions and freezing in the phase pattern. If the two con-
densates are released immediately after splitting, the phases have not had time to
develop. Thus the phase difference is zero, independent on the position along the
cloud and we expect straight interference fringes. If the condensates spend more
time in the split potential the phase difference along the cloud can develop into
a random pattern, resulting in a varying spatial phase of the interference pattern
along the length of the cloud. As a consequence the fringes will appear wavy.

6.2.4 Properties of the double-well potential

Of practical importance in experiments employing a double-well potential for inter-
ferometric purposes as described here, are the exact splitting point, the double-well
separation and the height of the barrier between the wells. The splitting frequency,
or critical frequency ω0, was found in Ch. 5 [Eq. (5.4)] to be

ω0 =
|gFμB|

�

(
BI − b2rf

4BI

)
, (6.11)

where gF is the Landé factor, μB the Bohr magneton, BI the offset field in the
longitudinal (x) direction and brf the strength of the rf-dressing field. At ω0 the
potential lacks harmonic confinement and is quartic in the splitting direction. For
ω < ω0 the potential has a single minimum, while for ω > ω0 it is a double-well
potential. The separation |d| between the two wells is [Eq. (5.6)]

|d| = 2

q

√
B2

0 −B2
I , (6.12)

where q is the static magnetic field gradient above the chip and B0, the strength of
the static magnetic field in the potential minimum, is the positive solution to the
quartic equation

B0 − �ω

|gFμB| −
b2rfB

2
I

4B3
0

= 0. (6.13)
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For small separation, such that |d| � BI/q, the magnetic field varies roughly
quadratically with distance. Here we can approximate the separation with

|d| = 2
√
2

q

√
�BI

|gFμB|
√
ω − ω0. (6.14)

The potential barrier, Ub, is defined as zero for ω < ω0. For frequencies ω0 < ω < ωL

the minimum potential barrier is located in the middle between the two potential
minima. We find to lowest order in ω − ω0

Ub ≈ m̃�
2 (ω − ω0)

2

|gFμB|brf

[(
1 +

3

4

b2rf
B2

I

)√
1 +

b2rf
4B2

I

]−1
. (6.15)

For our experimental parameters the term within the square brackets yields approx-
imately 1. For ω > ωL the barrier height is no longer determined by the potential
on the straight line connecting the two potential wells, but by the potential on the
resonance circle in the y-z plane for a particular x. As a result the barrier increases
more slowly for increasing rf frequency, and for ω � ωL approaches the asymptote
m̃|gFμB|brf/2 as

Ub ≈ m̃|gFμB|brf
2

(
1− |gFμB|BI

�ω

)
. (6.16)

6.3 Experimental optimization

6.3.1 General procedure

The experimental procedure for preparation of a BEC in the experiments described
in this chapter is very similar to the procedure discussed in Ch. 5. In short, we
produce a cold thermal cloud (T ∼ 1 μK) containing 1.5 × 105 87Rb atoms in the
F = 2,mF = 2 state in the static magnetic trap (following the procedure detailed
in Sec. 4.5). The magnetic field at the trap minimum is 2.86 G which corresponds
to ωL = 2π × 2.00 MHz. We switch on the rf-dressing field by ramping up the rf
amplitude at a fixed frequency which is lower than ωL, typically 0.99ωL. At these
settings the rf-dressed potential has a single minimum. We apply another weak rf
field (∼ 15 mG) to perform forced evaporative cooling in the dressed potential. The
trap depth is reduced to approximately 1 μK over 350 ms by lowering the evaporation
frequency. The resulting BEC contains 3 × 104 atoms. Next, the shape of the rf-
dressed potential is changed by changing the frequency and/or the amplitude of
the rf-dressing field. After a variable hold time in the final dressed potential, it
is switched off. First the rf-dressing field is switched off by ramping down the rf
amplitude to zero within 20 μs after which the static magnetic field is switched off
by setting the currents through all wires and coils to zero.

Normally the entire switch-off procedure is fast with respect to the trap frequency
to prevent the atoms from gaining momentum during switch-off. Because of the
rapid switch-off we do not transfer all the atoms adiabatically from the m̃ = 2 into
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Figure 6.1: Cartoon illustrating the experimental procedure for switching off the double-well potential.

A condensate is trapped in one of the potential minima of a vertically split double-well potential (a).

After a certain hold time in this potential the rf-dressing field is switched off, creating a superposition

of Zeeman states in the bare magnetic potential (b). The atoms start to accelerate in the magnetic

potential — separating the spin components. Next the bare magnetic potential is also switched off

allowing the atom cloud(s) to expand and accelerate under the influence of gravity (c).

the mF = 2 state. Instead we typically obtain a distribution of the atoms over
all available Zeeman states. This happens in all (atom-chip-based) experiments in
which atoms are released from an rf-dressed potential [199], but is not necessarily
a problem. It does cause trouble if small uncontrolled magnetic field gradients are
present that accelerate the different Zeeman states differently, scrambling the spatial
atomic distribution, leading to reduced observable fringe contrast. In the following
two experiments we add a short (� 2 ms) hold time in between switch-off of the
rf and static field to completely separate each Zeeman component. After typically
15 ms of expansion we record a resonant absorption image with an illumination time
of 80 μs. The switch-off procedure is shown schematically in Fig. 6.1.

6.3.2 Bare-trap dynamics after switch-off of the rf dressing

In this first experiment we use the Zeeman states that are created at switch-off of the
rf-dressed potential to further characterize the underlying bare magnetic potential.
This also yields unambiguous identification of the Zeeman components. The key
ingredient in this experiment is a variable hold time in between the switch-off of
the rf-dressing field and the static magnetic field. The difference in position of the
minima of the two potentials gives the cloud a sizable amount of kinetic energy
causing it to oscillate around the bare magnetic potential minimum. Two Zeeman
states oscillate at their own frequency, one falls freely under gravity and two are
accelerated to the chip surface making identification possible.

The precise experimental procedure deviates slightly from the general procedure

(a) (c)(b)

z

atom chip
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Figure 6.2: Oscillation of clouds of atoms in different Zeeman states in the bare magnetic trap

after switch-off of the rf-dressed double-well potential. The atoms are imaged after 15 ms of ballistic

expansion. The figure shows 40 images measured for a hold time of 0 to 2 ms. Each image is the

average of ∼7 cycles of the experiment. The colored lines are fits to the data assuming harmonic

confinement for mF = 2, 1 and free fall for mF = 0. The colors denote the different Zeeman states;
red: mF = 2, green: mF = 1, blue: mF = 0 and brown: mF = −1.

described in Sec. 6.3.1. We switch on the rf-dressing field at 1.90 MHz and ramp it
up to 2.05 MHz, vertically splitting the potential minimum before performing forced
rf evaporation. A strong rf-dressing field gradient over-compensates gravity putting
most atoms of the cold, but thermal, cloud in the upper of the two potential wells.
Note that the Rabi frequency Ω is different for the potential wells due to the different
distance to the field-producing wires. It is larger in the lower well, cf. Sec. 5.4.3. In
the following stage of rf evaporation we sweep down the evaporation field frequency
to 375 kHz. This is in between the two Rabi frequencies at the respective minima
of the two wells, and efficiently removes all atoms from the lower potential well,
while leaving a BEC in the upper well. The condensate contains ∼ 3 × 104 atoms.
Switch-off of the rf-dressing field is done by ramping down the rf amplitude in 2.1 μs
creating atoms in all Zeeman states. After a variable oscillation time t in that bare
magnetic trap, we also switch that off. The atoms are imaged after 15 ms of time
of flight.

The resulting absorption images as a function of oscillation time are shown in
Fig. 6.2. Each image is the average result of 7 cycles of the experiment. Because
of the relatively long time of flight, the measured relative position of the clouds is
dominated by the velocity at switch-off. The relative position of the clouds after time
of flight is plotted at the left-hand side, while the corresponding velocity immediately
after release is indicated at the right of the figure. From fitting sine functions to the
data (shown as red and green curves in the figure) we find oscillation frequencies
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ω⊥/2π, of 1339 ± 6 and 942 ± 3 Hz. The fast oscillating cloud we identify as the
mF = 2 state, while the other is the mF = 1 state. The ratio of the frequencies is
∼√2 confirming the factor 2 difference in magnetic energy of these two states. The
mF = 0 state accelerates under influence of gravity (blue curve). In 2 ms this cloud
acquires a velocity of 2 cm/s. The mF = −1 state is accelerated out of the trapping
region in the first few images (brown curve).

The amplitude of the oscillation reflects the separation, d, of the two minima in
the double-well potential as d = 2v0/ω where v0 is the maximum velocity. We find
d = 9.9 μm and d = 8.1 μm for the mF = 1 and the mF = 2 clouds respectively.
Both overestimate the calculated separation of the potential minima of 7.1 μm.
Also notice that the oscillation centers of the two clouds do not match. A small
magnetic field gradient at switch-off of the static magnetic potential may explain
these observations.

As a final observation, we note that the shape of the different clouds in Fig. 6.2
changes with delay time t0. The radial size (the vertical extension of the clouds)
oscillates due to the change in radial confinement on going from the dressed to the
bare potential. In the other, longitudinal direction we see the effect of condensate fo-
cusing. Condensate focusing is a technique in which a strong harmonic confinement
is pulsed on briefly in order to transfer the momentum distribution of an elongated
condensate to a spatial distribution allowing an direct, easy measurement of the mo-
mentum distribution [88,200,201]. In the experiment described here the longitudinal
confinement is initially weak in the rf-dressed potential. In the following short hold
time the atoms experience the bare potential with strong longitudinal confinement
(50 Hz for mF = 2) and are focused. By scanning the hold time in the bare trap
the strength of the focus pulse is varied. For ∼0.8 ms the focus time matches the
expansion time of 15 ms and we see a narrow atom distribution in Fig. 6.2. For the
mF = 1 state the focus pulse is weaker and it thus needs to stay on longer (∼1.5 ms)
to have the same effect.

This simple experiment in which we vary the trap time in the bare potential
after switching off the rf dressing field provides information about the transverse
and longitudinal confinement in the bare trap, the separation of the minima in the
double-well potential and helps to identify the Zeeman states that are produced
switching off the dressed potential.

6.3.3 Spin distribution

In this second experiment we study the influence of the rate at which we switch
off the rf-dressed potential on the resulting spin state distribution. We aim to find
a switch-off procedure which concentrates all atoms in one single Zeeman state,
eliminating the complication of spatially separated atom distributions in time-of-
flight.

For loading atoms in the dressed potential we use the general procedure described
in Sec. 6.3.1. The rf-dressing field is switched on at 1.80 MHz. The rf amplitude,
and thus also the rf gradient, we keep low (Ω ∼ 2π × 75 kHz), such that gravity
is not compensated [Eq. (5.9)], transferring the condensate completely to the lower
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Figure 6.3: Population of spin states after release of a BEC trapped in one well of a double-well

potential as a function of the rf-dressing field amplitude ramp down time. (a) Absorption images of

the spatially separated spin states after 14 ms of expansion. The list of the states at the right (mF=-2

(�), mF=-1 (•), mF=0 (�), mF=+1 (�), mF=+2 (	)) shows the order of the states in (a). The
population of the spin states in (b) was obtained from integration of the absorption images.

minimum of the vertically-split double-well potential. After reaching the final rf-
dressing frequency of 2.02 MHz we increase the rf amplitude again to a more typical
value (Ω ∼ 2π × 300 kHz). Finally we release the atoms from the trap by ramping
down the rf amplitude in a time t (0 ≤ t ≤ 11 μs). Simultaneously we decrease
the rf-dressing frequency at a rate of 5 kHz/μs to shift the resonant surface away
from the position of the atoms. After a hold time in the remaining bare magnetic
potential of 0.2 ms to increase the spatial separation of the Zeeman states after
time-of-flight, we also switch off the static magnetic trap.

The resulting distribution of the atoms over the Zeeman levels as a function of
t is shown in Fig. 6.3. The absorption images in (a) show the spatial distribution
of the atoms after 14 ms of time-of-flight. Each image is obtained from a single
experimental cycle and thus has not been averaged. The 5 Zeeman states correspond
to the 5 vertically separated clouds as indicated at the right-hand side of the figure.
From integration of the absorption images we get the distribution of the atoms
over the Zeeman states against rf-amplitude ramp-down time (b). It is observed to
oscillate between a situation in which the atoms primarily occupy the m = +2 state
and a one in which they are spread essentially over all available states.

To account for the observed Zeeman state distribution as a function of rf-
amplitude ramp-down time we performed a numerical integration of the Schrödinger
equation in the rotating frame [Eq. (A.9)]. The matrix elements H̃km are taken time-
dependent as both the rf-dressing field amplitude and frequency vary in time. The
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switch-off is fast with respect to the external movement of the atoms so to good
approximation the atoms do not move through the static magnetic field during
switch-off. In the calculation we keep the angular frequency of the rotating frame
constant at the initial rf frequency throughout the integration. With this calculation
we fail to reproduce the observed oscillatory behavior. Instead the population of the
mF = 2 state grows gradually over time until it saturates at 1 for switch-off times
of 10 μs and longer. For the result it does not matter if we model the rf amplitude
ramp down as a linear decrease over time or as a series of 0.7 μs steps, which is more
realistic in view of the 0.7 μs programming time of the rf generators (see Sec. 4.4).
The only way we can synthesize the oscillatory spin state population is by assuming
initially a superposition of m̃ = 1 and m̃ = 2 in the double-well potential. A spec-
ulative explanation of the observed behavior is that such a superposition is created
by an uncontrolled sudden variation in the potential at the start of the switch-off.

Although unable to account for the details of the observed behavior we can still
optimize the experimental parameters to put as many atoms as possible in a single
state. For the experimental conditions of Fig. 6.3 this would mean a ramp down
time of 9.8 μs. We perform this optimization for each experiment as the optimum
setting varies with rf dressing frequency and amplitude.

We conclude this section with a final remark on the phase of the rf-dressing
field at switch-off. There are some concerns that the rf-dressing field phase has
an influence on the Zeeman state distribution after release of the atoms from the
trap [199]. We have performed a few experiments to investigate this. We varied
the rf-dressing field phase while keeping all other parameters of the dressing field
constant and not changing the rf-dressing field switch-off procedure. Under these
conditions we did not observe any relation between the rf phase and the Zeeman
state distribution.

6.4 Matter-wave interference

In a final experiment we succeeded in using the rf-dressed double-well potential
to produce matter-wave interference. To realize an interference pattern that we
can resolve optically (≥ 3 μm) we need a double-well potential with a separation
relatively small (≤ 23 μm) compared to experiments previously described in this
thesis and a BEC as pure as possible, equally divided over the two potential minima.
The experimental procedure (Sec. 6.3.1) was optimized to achieve this.

The rf-dressing field is switched on at 1.95 MHz with Ω ≈ 2π × 300 kHz to
make a potential which is just below the splitting point (ω0 = 2π × 1.955 MHz for
these settings). After forced rf-evaporation in which a nearly pure BEC containing
∼ 3 × 104 atoms is produced, the rf-dressing frequency is ramped to 1.99 MHz to
produce a double-well potential with a small separation calculated to be 5.8 μm.
The rf evaporation field is left on after evaporative cooling to mitigate heating. As
a result the atom number has dropped to ∼ 2× 104 at the time of imaging. After a
variable hold time the two clouds are released from the trap. The rf-dressing field
amplitude ramp down time was set to 14.7 μs, optimized to put (nearly) all atoms
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(c)(b)(a)

Figure 6.4: Absorption images of two BECs interfering after 15 ms of ballistic expansion following

the release from the atom-chip-based rf-dressed double-well potential. Dimensions of each image are

108 μm × 161 μm. The hold time in the double-well potential is 6 ms and the final atom number

∼ 2× 104. The three images were produced for identical experimental conditions.

in the mF = 2 state after release (see Sec. 6.3.3). The release from the potential is
fast with respect to all trap frequencies such that the atoms do not gain momentum
during release. After 15 ms of ballistic expansion we perform absorption imaging of
the overlapping clouds and observe the interference pattern.

To check whether the initial BEC is split completely we compare the chemical
potential in the resulting double well to the height of the barrier separating the
two final condensates. We obtain the chemical potential μ using the Thomas-Fermi
approximation from numerical integration of the trapping potential

N =

∫∫∫
1

g
(μ− V (x, y, z))Θ(μ− V )dxdydz, (6.17)

where g is the 3D coupling constant as defined by Eq. (2.38) and Θ(x) the Heaviside
step function. The chemical potential is h×1300 Hz and h×1550 Hz for a combined
atom number in the two wells of 2× 104 and 3× 104, respectively. Both values are
significantly less than the barrier height which is h× 4 kHz [Eq. (6.15)], confirming
the general picture described earlier in which the two clouds were treated as isolated
condensates.

Three typical individual absorption images obtained under identical experimen-
tal conditions are shown in Fig. 6.4. We observe a matter-wave interference pattern
containing 4 or 5 fringes. The fringes are not entirely straight indicating a develop-
ment of the phase difference between the two condensates along the length of the
two clouds during the period between splitting and release. From comparison of
Fig. 6.4(a), (b) and (c) we see the exact pattern is different for each realization of
the experiment.

To obtain more quantitative information information about the interference pat-
tern we take a vertical slice integrated over a horizontal width of 10.75 μm (5 pixels)
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Figure 6.5: Phase distribution of the matter-wave interference pattern for ∼100 realizations of the
experiment. The plotted phase is with respect to the Gaussian center of the cloud. The radius

corresponds to the interference contrast (maximum 0.25). The data in (a) is for a hold time in the

double well potential of 1 ms and has a mean phase of 4.6 rad, the width of the phase distribution is

σ = 1.4 rad and the average interference contrast is 0.17 ± 0.03. The data in (b) are for a hold time
of 6 ms and the values are 2.0 rad, 1.9 rad and 0.18± 0.02, respectively.

through the center of the cloud and fit the function

F (y) = A exp

[
−(y − y0)

2

r2

] [
1 + C cos

(
2π

y − y0
λ

+ φ

)]
, (6.18)

where A is the overall amplitude, y0 the cloud central position, C the interference
contrast, λ the period of the interference pattern and φ the phase of the interference
pattern with respect to y0. The first, Gaussian, part of the function accounts for the
overall shape of the cloud, while the cosine takes care of the interference pattern.
After a time-of-flight of 15 ms the measured fringe period, λ = 16.5 μm, is 39%
larger than the prediction of [Eq. (6.7)], ht/md = 11.9 μm. This is likely due
to interactions and the exact shape of the potential. Schumm et al. have found
a similar discrepancy in their experiments for small separations d [79, 202]. They
compare the experimental data to the results of integration of the time-dependent
Gross-Pitaevskii equation, along the lines of Ref. [203] and find much improved
agreement compared to the above simple relation based on non-interacting clouds.

Because the phase information obtained from this fitting procedure has a circular
nature, the usual ways to calculate average, standard deviation and variance do not
suffice here. Instead we use definitions of these quantities that take into account
the circular nature of the data [204]. This has already proven useful in matter-wave
interference experiments [109]; we follow the same approach here. We transfer a set
of measured phases φk to a unit circle

reiφ =
1

N

N∑
k=1

eiφk , (6.19)
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Figure 6.6: Development of the mean phase (a) and the circular standard deviation (b) against hold

time in the double-well potential. The error bars in (a) also correspond to the circular standard deviation

of the measured phases. The solid red curve is a linear fit to the data points for hold times up to 7 ms,

having a slope of -0.34 rad/ms. For a hold time ≥ 8 ms σ becomes too large (see text for details),

indicating a random distribution. In this case the mean phase does not carry any information. The

dashed line (b) is a linear fit to the data points.

where N is the number of values, φ the average phase and r the mean resultant
length. This last quantity is a measure of the width of the distribution. It varies
between 0 for a uniform distribution and 1 when all the phase values coincide. One
can define the circular standard deviation [204], σ, as

σ =
√
−2 ln(r). (6.20)

For small σ (σ � 2π) the circular standard deviation is the same as that of the
usual normal distribution. In this case it can be approximated by σ =

√
2(1− r).

For large σ it corresponds to the width of a normal distribution wrapped around
the unit circle,

f(φ) =
1√
2πσ

∞∑
k=−∞

e−
1
2
(φ−φ+2πk)2

σ2 . (6.21)

The Rayleigh test [204] is used to distinguish between uniform and non-uniform
distributions of circular data. An approximate form is given by

P = exp
[√

(1 + 4N + 4N2(1− r2))− (1 + 2N)
]
, (6.22)

where P is the probability that a uniform distributed data set produces a mean
resultant length greater than r. Taking N = 100 and P = 0.5 shows that under
these circumstances a distribution with a σ ≥ 2.2 is most likely not to have a
preferred direction.

The measured phase distribution for two different hold times is shown in Fig. 6.5.
The phase is referred to the vertical center of the cloud removing the influence of
shot-to-shot variations in the vertical cloud position after time-of-flight from the
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Figure 6.7: Distribution of the phase difference along the length of the cloud against the spatial

distance s for ∼100 realizations of the interference experiment with a hold time of 6 ms in the double-
well potential (a). The solid red curve is the mean phase difference. The curve in (b) shows the circular

standard deviation of the distribution.

data∗. We find a mean phase of 4.6 rad with σ = 1.4 (2.0 rad with σ = 2.0) for 1 ms
(6 ms) hold time. From Eq. (6.22) with σ = 1.4 and N = 98 we find P = 3.4× 10−7
while for t = 6 ms (N = 97) we find P = 4.0 × 10−2, indicating it is unlikely that
either data set is associated with a uniform probability distribution.

The interference contrast is plotted as the radius in Fig. 6.5. The average is
0.18 ± 0.03 and approximately independent of hold time. The deviation of the
interference contrast from 1 can be partially attributed to the resolution of the
imaging system. For a fringe period of λ = 16.5 μm the maximum observable
contrast is 60%.

Figure 6.6 shows the development of the mean phase and the circular standard
deviation of the phase distribution against hold time. The increase of σ with hold
time indicates a dephasing of the two condensates. As it becomes larger than 2.2
(hold time larger than 7 ms) the distribution can not be distinguished from a random
distribution and the mean phase no longer carries any useful information. The solid
curve in Fig. 6.6(a) is a linear fit to the plotted data points. The fact that we see a
variation of the mean phase over time shows the phases of the two condensates are
developing at different rates. The slope is -0.34 rad/ms corresponding to an energy
difference of h× 54 Hz possibly caused by an asymmetry in the trapping potential
or a population imbalance of 9%. This is much smaller than the chemical potential
and thus provides an excellent illustration of the sensitivity of atom interferometry.

To analyze the variation of the phase of the interference pattern along the length
of the cloud we calculate Φ(s) = φ(s/2)−φ(−s/2), the phase difference between two
points separated by a distance s, where these points are located at x = −s/2 and x =
+s/2 with x = 0 the longitudinal center of the cloud. From one absorption image

∗These variations in the cloud position are of the same magnitude of the period of the inter-
ference pattern. We attribute them to small, random fluctuations in the current of the magnetic
field generating elements.
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we obtain a series of Φ values for s = 0 to s ≤ 2L, with L the condensate half length.
By repeating the experiment we build up a full phase distribution distribution for
each separation. The mean of this distribution is Φ(s) and the circular standard
deviation is σΦ(s), calculated from Eq. (6.19) and Eq. (6.20) respectively.

Figure 6.7 shows Φ(s) and σΦ(s) extracted from the absorption images of ∼100
realizations for a hold time of 6 ms in the split trap. For this data φ(x) was obtained
by integrating over a horizontal width of 4.3 μm (2 pixels) and fitting the function
in Eq. (6.18), similar to the analysis for Fig. 6.5. In Fig. 6.7(a) all the data points
and the corresponding average are shown as a function of s. The analysis presented
here confirms the observations of Fig. 6.4 that the interference pattern is different
for each experimental realization. The non-zero slope of mean phase difference with
distance, shows that the interference fringes are, on average, not oriented perfectly
horizontal, but have a preferred tilt. The curvature of the mean phase as a function
of s indicates the fringes are not straight. The width of the phase distribution in
Fig. 6.7(a) is shown in Fig. 6.7(b) by way of the circular standard deviation. We
are now interested in the gradient of both the mean phase and of σ2

Φ for s→ 0. We
assume the curvature near s = 0 is small enough for both quantities such that we can
obtain the gradients by taking the slope of a linear curve fitted to the data points in
the first 10 μm. The phase gradient dΦ

ds
is plotted in Fig. 6.8(a) against hold time.

It is observed to vary between +0.3 rad/μm and -0.1 rad/μm. In our absorption
images these phase gradients correspond to an average tilt of the interference fringes
of +38◦ and -15◦, respectively. The observed phase gradient corresponds to a relative
momentum of the two BECs, with a maximum velocity of 220 μm/s. If we assume
a harmonic oscillation with 25 Hz (the longitudinal trap frequency of the split trap)
the amplitude is 1.4 μm, small compared to our optical resolution, and unobserved
in the absorption images.

In order to extract a phase coherence length from our data it is useful to first
recall the usual treatment for a single condensate. Petrov et al. [196] and Gerbier et
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Figure 6.8: The relative phase gradient dΦ/ds (a) and the phase coherence length L̃φ [• in (b)] as
a function of hold time in the split double-well potential. See the text for information on how these

quantities are obtained. The condensate half length (L) [� in (b)] is plotted for comparison.
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al. [205] relate σ2
Φ of the phase difference between two points separated by a distance

s to the phase coherence length. The relation

σ2
Φ(s) ≈

T

Tφ

s

L
, (6.23)

connects the variance to a dimensionless temperature and a dimensionless separa-
tion. By substituting the characteristic phase-coherence length [Eq. (6.9)] one finds

Lφ =
s

σ2
Φ

. (6.24)

For the phase coherence length in our experiments we now use the notation L̃φ

to distinguish between the phase profile of a single condensate (Lφ) and the relative
phase of two interfering clouds (L̃φ). We assume that the latter is similarly inversely
proportional to the phase variance. We determine L̃φ by taking the inverse of the
slope of a linear curve fitted to the variance data for 0 ≥ s ≥ 15 μm. The result is
plotted in Fig. 6.8(b) as a function of hold time.

For perfect splitting, one would expect the phase patterns along the lengths of
the split clouds to be identical, and L̃φ to be infinite. This would then be followed by
a gradual decrease to an equilibrium value as the phases develop independently [72].
We observe a different behavior. The phase coherence length increases for longer
splitting times. We attribute this increase to the oscillation of the cloud length
induced by the reduction of the longitudinal confinement of the double-well potential
with respect to the potential in which the condensate was prepared.

6.5 Summary and outlook

In this chapter we have described results of initial experiments in which we interfere
condensates released from a vertically split double-well rf-dressed potential and given
information on the experimental optimization necessary to achieve these results. We
have shown that upon switch-off of the rf-dressing field a distribution of Zeeman
states is created, but by ramping down the rf amplitude in a controlled way in
∼ 10 μs it is possible to put almost all atoms in the F = 2,mF = 2 state. A great
amount of information on the Zeeman state distribution and the trapping potential
can be obtained from a simple experiment in which the trapping time in the bare
potential after switch-off of the rf-dressing field is varied.

Releasing a split condensate from the double-well potential we observe interfer-
ence fringes having an average contrast of 0.18. Detailed analysis of the phase of the
interference pattern shows that splitting is at least partially coherent but the phase
randomizes within 10 ms. Immediately after splitting we see a linear development
of the mean phase indicating an energy difference between the two condensates of
h × 54 Hz. The observed interference fringes have a wavy appearance as one ex-
pects for elongated quasi-condensates. From analysis of the spatial fluctuations of
the phase we find that the phase gradient varies in time between +0.3 rad/μm and
-0.1 rad/μm which corresponds to a momentum of �220 μm/s or a dipole oscillation
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amplitude of 1.4 μm. We also derive a phase coherence length which is typically
6 μm and grows larger possibly due to an oscillation of the condensate length. The
oscillation is caused by a change in the longitudinal confinement when the transverse
profile of the rf-dressed potential is changed. This effect was investigated in detail
in Ch. 5 of this thesis.

Although the interference contrast is relatively low and there are signs the co-
herence is influenced by collective excitations of the condensate we still manage
to extract useful information from the interference pattern. To improve on this in
future experiments we intend to implement several changes: implementing longitudi-
nal imaging and careful optimization to further enhance stability and reproducibility
should prove useful. The analysis of the interference fringe pattern will be easier
for longitudinal images as the fringes will be straight (not perturbed by longitudinal
phase fluctuations). Also longitudinal images will allow one to see interference inde-
pendent of the splitting direction of the double-well potential (including horizontal
splitting to minimize the influence of gravity) as all directions are perpendicular to
the imaging direction. By further careful optimization of the trapping and cooling
sequence, collective excitations can be minimized. This should allow further inter-
ferometric studies of the intriguing coherence properties of (quasi)-one-dimensional
degenerate Bose gases [72,83].


