Children's grammars grow more abstract with age - Evidence from an automatic procedure for identifying the productive units of language

Borensztajn, G.; Zuidema, W.; Bod, R.

Publication date
2008

Published in
Proceedings of the 30th Annual Conference of the Cognitive Science Society

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Children’s Grammars Grow More Abstract with Age – Evidence from an Automatic Procedure for Identifying the Productive Units of Language

Gideon Borensztajn (gideon@science.uva.nl)
Willem Zuidema (jzuidema@science.uva.nl)
Rens Bod (rens@science.uva.nl)

Institute for Logic, Language and Computation, University of Amsterdam
Plantage Muidergracht 24, 1018 TV, Amsterdam, The Netherlands

Abstract

We develop an approach to automatically identify the most probable multi-word constructions used in children’s utterances, given syntactically annotated utterances from the Brown corpus of CHILDES. The found constructions cover many interesting linguistic phenomena from the language acquisition literature, and show a progression from very concrete towards abstract constructions. We show quantitatively that for all children of the Brown corpus grammatical abstraction, defined as the relative number of variable slots in the productive units of their grammar, increases globally with age.

Keywords: First language acquisition; Usage Based Grammar; Constructions; Data-oriented Parsing

Introduction

Many contemporary theories of language acquisition assume that the basic units of language acquisition are constructions: associations between a semantic frame and a syntactic pattern, for which the meaning or form is not strictly predictable from its component parts. Learning, in this framework, consists of the gradual acquisition of a structured inventory of constructions, a constructicon, where the constructions are of various sizes and varying degrees of complexity and abstractness (Goldberg, 2006; Tomasello, 2003).

Empirical studies in this tradition (e.g., Peters, 1983; Tomasello, 2003) show that, first, the primary units of speech of children in their first stage of language acquisition are not words but complete utterances, or holophrases. Second, in the earliest stages the child’s language is item-based in nature (Tomasello, 2000). Verb constructions are typically learned case-by-case (so-called verb islands), without reference to a general verb-class. The scope of the syntactic rules is limited to specific constructions, and system-wide syntactic rules or categories are mostly lacking. Third, in subsequent stages the child breaks down the item-based constructions, introducing variables, such as in Where’s the X?, I wanna X, etc.

The acquisition of constructions with variable slots forms the beginning of abstraction and category formation, and it marks the beginning of grammar. Such Usage Based theories of language acquisition assume a dynamically changing grammar that follows a route from simple and concrete to complex and abstract constructions. This view is in sharp contrast with the view on language acquisition taken in many versions of generative grammar. Here, grammar rules and categories are assumed to be universally and innately specified by a Universal Grammar. The reason that children do not produce adult-like grammatical sentences is their limited memory and attentional abilities (Chomsky, 1980); most of the knowledge of language is in place from birth, and only their parametrization needs to be set by the environmental triggers (Clahsen, 1996). Hence, in this tradition children are assumed to have, at least in competence, the same syntactic categories and rules as adults; this is referred to as the continuity assumption (e.g. Crain & Thornton, 2005).

These opposing views on the units of language acquisition are, of course, best investigated empirically, on the basis of actual language usage. Several in-depth case-by-case analyses on the productive units in children’s corpora have been reported. For instance, Hodges, Krugler, and Law (2004) analyzed the item-based nature of the acquisition of the complex construction ‘I V (NP) to VP-INF’, as in I want (you) to play. Lieven, Behrens, Speares, and Tomasello (2003) traced back the sources of creativity of target utterances in the child’s speech. The target utterances were reconstructed (manually) from a set of utterances used in the previous 6 weeks. They found that 74% of all novel target utterances produced in one day by a 2 year old child could be reduced to previously produced utterances by using a single combinatorial operation. Their finding supports the hypothesis that the smallest units used in language production are often memorized multi-word constructions, rather than single words.

To resolve the controversy, however, we believe it is essential to move beyond the typical handful of linguistic examples that support one view over the other. In the current study, we develop computational tools for automatically identifying the most likely primitive units that were used by the child to produce the utterances in a given corpus. We apply these tools to a well-known English-language corpus (the Brown corpus in CHILDES) with longitudinal data from three children. We then present a qualitative and quantitative analysis of the productive units that these children employ in progressive stages of acquisition. Note that we do not model the actual process of language acquisition or attempt to directly choose between usage-based and generative theories of language acquisition. Rather, we aim at providing a new way to evaluate predictions from theories of language performance in either tradition about the productive units in child language.

Choosing the right representation

In this section, we develop a formal definition of the productive units of language and a probability model that defines the likelihood of various hypotheses on the units used. The for-
A formalism with the required flexibility is that of Tree Substitution Grammar (TSG), which forms a generalization over the well-known context-free grammars (CFG) and a sub-class of the Tree Adjoining Grammars (Joshi, 2004). TSGs can model complex multi-word syntactic primitives as well as single unit primitives (see Figure 1 for an illustration). The generative components of a TSG are tree fragments of arbitrary size and depth, which can be (partly) lexicalized or abstract. In the latter case the fragments contain variable slots for syntactic categories (nonterminals), making them suitable for representing abstract constructions or abstract rules.

TSGs are used extensively in the framework of Data Oriented Parsing (DOP) (Bod, 2003; Scha, Bod, & Sima’an, 1999), which provides the techniques to parse new sentences using fragments from sentences observed in a corpus. In DOP, the elementary tree fragments of the TSG can in principle be any subtree occurring in an annotated corpus (the treebank). Two elementary tree fragments can be combined by means of the substitution operator if the left-most non-terminal leaf node of the first fragment is identical to the root node of the other fragment. A derivation of a sentence in DOP is a sequence of elementary tree fragments $t_1 \circ t_2 \circ \ldots \circ t_n$ such that the root of the first fragment is S and the leaves of the resulting tree are terminals (see Figure 1).

Figure 1: Derivation for ‘I making Mr Grant fly’ (Adam, 3;3.04). The substitution site is marked with ↓.

In the DOP-framework, several probability models have been worked out. In the simplest set-up, it is assumed that the probability of any substitution is independent of the context; the probability of a derivation is therefore the product of probabilities of the fragments used:

$$P(t_1 \circ t_2 \circ \ldots \circ t_n) = \prod_i P(t_i|r(t_i))$$

where $P(t_i|r(t_i))$ is the probability of a single substitution of a leaf node with a fragment t_i, of which the root $r(t_i)$ has the same label as the leaf node. Enriched with probabilities, TSGs become probabilistic tree substitution grammars.

Several alternative methods (estimators) for finding the probabilities $P(t_i|r(t_i))$ of the fragments (the parameters of the DOP grammar) have been proposed. The earliest estimator is known as DOP1 (Bod, 1998), and assigns probabilities based on relative frequencies. For the current work we adopted a recent estimator, “push-n-pull” (Zuidema, 2006, 2007), which yields linguistically more plausible results.

Formal details of push-n-pull fall outside the scope of this paper, but the basic idea is as follows. The algorithm uses the discrepancy between the observed frequency of the subtrees in the treebank and their expected frequency (as predicted by the current parameters of the grammar) to either push probability mass from a subtree to the elementary trees involved in its derivation, or pull probability mass from the elementary trees to the subtree. The algorithm includes a parameter that regulates the strength of a bias toward smaller subtrees. The difference between observed and expected frequency is highest for subtrees in the corpus that are most overrepresented relative to what should be expected based on the frequencies of their components; many of these subtrees correspond to linguistically interesting constructions. By iterating the process, probability mass is shifted between subtrees until expected frequencies approach observed frequencies.

Given a TSG as described above and a probability distribution $P(t_i|r(t_i))$ as found by push-n-pull, we can use standard statistical parsing techniques to find the most probable derivation of any sentence in a corpus. This yields a decomposition of the sentence into those elementary tree fragments that together constitute a hypothesis on how the sentence was generated. This way, we can use DOP as a statistical approach for discovering the constructions in child language.

All the analyses reported here were conducted with the push-n-pull algorithm, with the bias parameter set to 0.3. We have also performed tests with different settings of the bias and with the DOP1 estimator, and found the same, and sometimes even more pronounced trends than are reported here.

Method

The studies were conducted on the Brown corpus (Brown, 1973) from the CHILDES database (MacWhinney, 2000). This corpus contains transcribed longitudinal recordings of three children, Adam, Eve and Sarah. We split each of these subcorpora into three parts of roughly equal size, representing three consecutive time periods (see Table 1). We removed the parental speech and any annotation or comments. We also removed from the child’s speech incomplete and interrupted sentences (‘+...’, ‘+/.’ and ‘+,’), and sentences containing pauses (‘#’). These account for approximately 20% of the sentences. Furthermore, we discarded the final punctuation.

In splitting the data, we did not attempt to match children on either age, Mean Length of Utterance (MLU) or traditional “stages” of language development (Brown, 1973); we
Table 1: Statistics of input (P1=Period 1; MLU= range of numbers of morphemes per utterance, averaged per file; a.s.l.= number of words per utterance, averaged per period; vocab.= number of distinct words; t/t = type/token frequency-ratio of words).

<table>
<thead>
<tr>
<th></th>
<th>files</th>
<th>age range</th>
<th>#sent.</th>
<th>MLU</th>
<th>a.s.l.</th>
<th>vocab.</th>
<th>t/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>P1</td>
<td>1-16</td>
<td>2:3-2:11</td>
<td>11184</td>
<td>1.83-2.90</td>
<td>2.23</td>
<td>1407</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>17-32</td>
<td>2:11-3:6</td>
<td>11578</td>
<td>2.44-4.06</td>
<td>3.29</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>33-48</td>
<td>3:6-4:5</td>
<td>9071</td>
<td>3.63-4.97</td>
<td>4.0</td>
<td>2006</td>
</tr>
<tr>
<td>Eve</td>
<td>P1</td>
<td>1-7</td>
<td>1:6-1:9</td>
<td>3485</td>
<td>1.53-2.28</td>
<td>1.88</td>
<td>669</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>8-14</td>
<td>1:9-2:0</td>
<td>3395</td>
<td>2.51-3.22</td>
<td>2.80</td>
<td>785</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>15-20</td>
<td>2:1-2:3</td>
<td>3535</td>
<td>2.60-3.41</td>
<td>3.13</td>
<td>958</td>
</tr>
<tr>
<td>Sarah</td>
<td>P1</td>
<td>1-45</td>
<td>2:3-3:2</td>
<td>11693</td>
<td>1.48-2.70</td>
<td>1.87</td>
<td>1389</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>46-90</td>
<td>3:2-4:1</td>
<td>8384</td>
<td>2.23-3.70</td>
<td>2.71</td>
<td>1706</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>91-135</td>
<td>4:1-5:0</td>
<td>8525</td>
<td>2.98-4.86</td>
<td>3.2</td>
<td>1944</td>
</tr>
</tbody>
</table>

Figure 2: Sentence length distribution for Adam.

can thus only compare grammatical development within each child, and not between them. Table 1 summarizes the input used for our studies, after all preprocessing steps. Note that, unsurprisingly, average sentence lengths increase markedly in each child; in Figure 2 we plot the number of sentences of each length for each of the three parts of the Adam corpus.

Push-n-pull was trained on syntactically annotated sentences from each of the subcorpora. Recently the Brown corpus has been augmented with syntactic dependency annotations by Sagae, Davis, Lavie, MacWhinney, and Winter (2007). The authors labeled the dependencies using 37 distinct grammatical relations (details of the procedure and a complete list of the labels can be found in (Sagae et al., 2007)). Their parser uses the parts of speech from the MORTagger, described in (MacWhinney, 2000). In Table 2 we list the most frequent grammatical relations and PoS tags.

We converted the dependency annotation and labels of Sagae et al. (2007) to a constituency annotation for further processing. The conversion heuristic we used is similar to that of (Xia & Palmer, 2001). From Table 3 it can be seen, that at times the conversion introduced a dummy node (labeled X), to fill up a gap in the (binary) parse tree, where the dependency annotation did not provide this.

Table 2: Frequent PoS tags and Grammatical Relations.

<table>
<thead>
<tr>
<th>Parts of Speech Category</th>
<th>Gramm. Relation Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>N, N:PROP</td>
<td>ROOT</td>
</tr>
<tr>
<td>V, V:AUX</td>
<td>SUBJ, OBJ</td>
</tr>
<tr>
<td>DET, DET:NUM</td>
<td>PRED</td>
</tr>
<tr>
<td>ADJ, ADV</td>
<td>COMP, XCOMP</td>
</tr>
<tr>
<td>PRO, PRO:DEM,</td>
<td>JCT</td>
</tr>
<tr>
<td>PRO:WH</td>
<td>AUX, NEG</td>
</tr>
<tr>
<td>CONJ</td>
<td>LOC</td>
</tr>
<tr>
<td>INF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

Qualitative analysis

In the current setup, the syntactic categories (nonterminals) are pregiven; our method only determines the size of the productive units involved in the generation of each sentence. We are interested in those cases where larger fragments seem necessary than implicit in the existing corpus annotations; for our analysis, we therefore focus on elementary trees of depth larger than 1 and will refer to these as the constructions.

Our method found linguistically very informative constructions in all children. In Table 3 we give Adam’s 15 most frequently used constructions of each period, as well as the 15 most frequent discontiguous ones. In the figure, part of speech tags are indicated in capitals, and grammatical relations appear in bold capitals. Explanations of the labels are in Table 2. A few things may be noted from Table 3:

- Whereas in Period 1 most constructions are very concrete, starting from Period 2 constructions become abstract (as can be seen from the increased number of substitution sites). We further support this observation by quantitative results in the next section.

1Approximately 10% of the sentences failed to convert, mostly due to a dependency having more than a single root, or the postag (MOR) and syntax (XSYN) sequence being of unequal length.

2Details at http://staff.science.uva.nl/~gideon/cogsci/
of variable slots in linguistic constructions, which can be operationalized as the ratio between the number of substitution sites (non-terminals) and the number of lexical items (terminals) in the elementary trees of each derivation.

- Are all elementary trees contiguous? The occurrence of discontinuous constructions, where a substitution site is preceded and followed by a lexical item would help explain long distance dependencies (such as agreement of number and tense) between the lexical items.

A first observation from Table 4 is that constructions become ubiquitous with age (see the column #constructions/sentence). For all children there is a sharp increase in the number of constructions between P1-P2, and for all except Eve also between P2-P3. The overall averages of most of the relevant quantities show an increase with age for all children (for instance for the number of nodes, nonterminals, terminals, depth, discontinuity: see Table 4). However, before drawing conclusions about changes of the nature of constructions with time, it is important to rule out the possibility that the effects are only due to sentence length distributions, which are shifting toward longer sentences for the later peri-
ods. This is a major methodological challenge, because most of the quantities of interest, such as size and depth, depend on the length of the sentence in which the construction appears.

Therefore, in all the following studies, we neutralized the MLU factor by comparing sentences across periods according to their length. We computed the average quantity (e.g., depth, #nodes) for (constructions belonging to) different sentence lengths separately. Averages were computed over at least 30 constructions or discarded otherwise. We then computed, still for each sentence length separately, growth rates of those quantities. These were averaged, to obtain an average growth rate for the quantity between any two periods (note that average growth rate is different from the growth rate of the average, as computable from Table 4).

After sentence length has been factored out, there is hardly any effect left of age on construction size (the total number of nodes in a construction). As can be seen in Table 5, most growth rates are just above one, so the size of the construction within sentences of a certain length remains close to constant (the variance is written within the parentheses). The same is true for construction depth, which (unsurprisingly) correlates well with construction size.

Table 5: Growth rates of construction size and depth. Shown are averages of the growth rates per sentence length.

<table>
<thead>
<tr>
<th></th>
<th>P1→P2</th>
<th>P2→P3</th>
<th>P1→P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adam</td>
<td>1.019 (.042)</td>
<td>1.002 (.016)</td>
<td>1.024 (.054)</td>
</tr>
<tr>
<td>Eve</td>
<td>1.020 (.045)</td>
<td>1.002 (.042)</td>
<td>1.013 (.052)</td>
</tr>
<tr>
<td>Sarah</td>
<td>0.998 (.033)</td>
<td>1.006 (.029)</td>
<td>0.992 (.023)</td>
</tr>
<tr>
<td>Construction depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adam</td>
<td>1.016 (.019)</td>
<td>1.001 (.009)</td>
<td>1.022 (.021)</td>
</tr>
<tr>
<td>Eve</td>
<td>1.047 (.029)</td>
<td>1.033 (.033)</td>
<td>1.059 (.037)</td>
</tr>
<tr>
<td>Sarah</td>
<td>0.988 (.015)</td>
<td>1.008 (.009)</td>
<td>0.996 (.009)</td>
</tr>
</tbody>
</table>

Whereas the number of nodes of the constructions remains constant with age, the number of nonterminals increases with age for all sentence lengths independently; the number of nonterminals in the leaves of constructions increases even more quickly. At the same time, the number of terminals in constructions decreases. In Table 6 we show the time development of the average ‘abstraction’ of the constructions, which is defined as the ratio between leaf non-terminals and leaf nodes in a construction. It can be seen, that abstraction of the constructions increases with age for all children. The big variance is due to sentence length 2 (“holophrases”), for which the constructions remain very concrete in all stages; if we leave these out, abstraction still increases significantly with age. Note that there is no simple explanation for increasing abstraction in terms of the type/token frequency of the vocabulary, since these quantities are neither positively nor negatively correlated (see Table 1).

Table 6: Growth rates of abstraction of constructions.

<table>
<thead>
<tr>
<th></th>
<th>P1→P2</th>
<th>P2→P3</th>
<th>P1→P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>1.15 (.20)</td>
<td>1.06 (.17)</td>
<td>1.32 (.39)</td>
</tr>
<tr>
<td>Eve</td>
<td>1.41 (.37)</td>
<td>1.30 (.14)</td>
<td>1.68 (.39)</td>
</tr>
<tr>
<td>Sarah</td>
<td>1.33 (.35)</td>
<td>1.01 (.22)</td>
<td>1.25 (.19)</td>
</tr>
</tbody>
</table>

In Figure 4 we plot the average abstraction per sentence length for Sarah; results for Adam and Eve are similar.

Figure 4: Abstraction (ratio leaf non-terminals/leaf nodes in constructions) against sentence length for Sarah.

This result is striking, because when we look at the parse trees in their entirety, the ratio between non-terminals and ter-
A fundamental problem for research on the continuity hypothesis, and language acquisition in general, is that no consensus exists about reliable methods to identify the productive units of language. Here, we explored an approach to identifying the basic building blocks of language based on distributional patterns alone, but alternative sources of information are also available, such as those explored in approaches based on processing data (e.g., reading times, errors) or relations to linguistic input (tracing back sentences to child-directed speech, (Lieven et al., 2003)). Our method, applied to the Brown corpus, confirms the progressive abstraction hypothesis: abstraction, defined as the relative number of non-terminal leaves in multi-word constructions, increases with age. We show that it does so independently of sentence length. Complex constructions lose their lexical parts to specialized lexical rewrite rules, and in the process the construction becomes more abstract.

This finding is in line with the theory of item-based learning and clearly point to an incremental learning path, but we believe it goes further than the state-of-the-art. By making available the found constructions of the entire Brown corpus, our version of the progressive abstraction hypothesis now becomes falsifiable: using other approaches to identify the elementary units of language, researchers can evaluate the quality of the hypothesized constructions. Although we cannot exclude the possibility that the performance-competence distinction might rescue the continuity hypothesis, the onus is now on its defenders to demonstrate that either our hypothesized constructions are incorrect, or that a generative performance theory makes identical predictions.

Conclusions and discussion

This study presented a novel and automatic procedure for the discovery of multi-word constructions. Our approach is a promising alternative to the evaluation of some of the core assumptions in theories of language acquisition. We believe there is much useful information available in the distributional patterns in corpora of child language that remains heretofore underexplored; this information can be accessed using sophisticated statistical methods, such as used here, that are flexible enough to accommodate for multi-word constructions. Note that the fact that our method works without information about the semantics and pragmatics should not be interpreted as implying a minor role for semantics in language acquisition. In fact, we believe semantics is central in acquisition as well as use, but we aimed at developing techniques that work with the information present in current corpora.

Acknowledgments

We thank Alon Lavie and colleagues for supplying us with the syntactic annotation of the Brown corpus in an early stage, and three anonymous reviewers for valuable comments. This research was funded by the Netherlands Organization for Scientific Research (NWO), through a Vici-grant “Integrating Cognition” (277.70.006) to RB and a Veni-grant “Discovering Grammar” (639.021.612) to WZ.

References