Characterisation of polymeric network structures

Peters, R.

Citation for published version (APA):
Content

1. Introduction to polymeric networks and their analysis

1.1. Introduction to polymers 2
1.2. Polymeric networks ... 4
 1.2.1. Chemically vs. physically cross-linked networks 4
 1.2.2. Types of chemically cross-linked networks 4
 1.2.3. Network imperfections 8
1.3. Analysis of polymeric networks 10
 1.3.1. Direct approach 11
 1.3.1.1. Physical/mechanical measurements 11
 1.3.1.2. Spectroscopic approaches 13
 1.3.1.3. Analysis of the starting materials 16
 1.3.2. Indirect approach 17
 1.3.2.1. Pyrolysis 18
 1.3.2.2. Chemical degradation 20
 1.3.2.3. Model compounds 22
1.4. Scope of the thesis ... 22

2. Characterisation of UV-cured acrylate networks by means of hydrolysis followed by aqueous size-exclusion combined with reversed-phase chromatography

2.1. Introduction .. 32
2.2. Experimental .. 36
2.3. Results and discussion 39
 2.3.1. Analytical results 39
 2.3.1.1. Analysis of the purity of the starting materials 39
 2.3.1.2. Determination of k_cl and XL_c by SEC–LC 41
 2.3.1.3. Analysis of extractables 46
 2.3.2. Chemical network structure 47
 2.3.3. Network parameters 51
 2.3.4. Comparison of cross-link densities with s-NMR and DMA data 53
2.4. Conclusion ... 56

3. Integrated approach to characterise the styrene/di-methacrylate network structure

Influence of styrene and radical-transfer agent

3.1. Introduction .. 60
3.2. Experimental .. 64
3.3. Results and discussion

3.3.1. Characterisation of the starting materials by LC-UV-MS and MALDI-TOF-MS

3.3.2. Curing of the network

3.3.3. Glass transition and degradation temperature of network

3.3.4. Analysis of the polymeric backbone

3.4. Chemical network structure

3.5. Conclusion

4. Hydrolytic degradation of poly(D,L-lactide-co-glycolide 50/50)-di-acrylate network as studied by liquid chromatography–mass spectrometry

4.1. Introduction

4.2. Experimental

4.3. Results

4.3.1. Chemical composition of poly-(D,L-lactide-co-glycolide 50/50)-di-acrylate

4.3.2. Weight loss and pH change during the degradation

4.3.3. Liquid chromatography–mass spectrometry analysis of the sol fraction

4.3.3.1 Analysis of oligomers and residual photo-initiator released

4.3.3.2 Analysis of polyacrylate chains released

4.4. Discussion

4.5. Conclusion

5. Low-molecular-weight model study of peroxide cross-linking of EP(D)M rubber using gas chromatography–mass spectrometry

5.1. Introduction

5.2. Experimental

5.3. Results

5.3.1. Qualitative analysis of alkane/peroxide reaction products

5.3.1.1. Identification of DCP decomposition products

5.3.1.2. Identification of alkane reaction products by GC–MS and GC×GC–MS

5.3.1.3. Identification of alkane reaction products by QSPR
5.3.2. Quantitative analysis of alkane reaction products by GC-FID
5.4. Conclusion

6. Low-molecular-weight model study of peroxide cross-linking of EPDM rubber using gas chromatography-mass spectrometry
 Addition and combination

6.1. Introduction
6.2. Experimental
6.3. Results
 6.3.1. Qualitative analysis of alkane/alkene/DCP reaction products
 6.3.2. Quantitative analysis of alkane/alkene/DCP reaction products
 6.3.3. Cross-linking mechanism of EPDM
6.4. Conclusion

7. Characterisation of UV-cured acrylate networks as studied by thermal degradation methods

7.1. Introduction
7.2. Experimental
7.3. Results
 7.3.1. DSC and TGA of cross-linked acrylates
 7.3.2. Pyrolysis-MS of cross-linked acrylates
 7.3.3. MALDI-TOF-MS of cross-linked acrylates
 7.3.4. Pyr-LC-MS of cross-linked acrylates
 7.3.4.1. Off-line Pyr-LC-MS
 7.3.4.2. On-line Pyr-LC-MS
7.4. Discussion and conclusion

Summary
Samenvatting
Dankwoord
Bibliography