Magnetocalorics and magnetism in MnFe(P,Si,Ge) materials
Thanh, D.C.T.

Citation for published version (APA):
Thanh, D. C. T. (2009). Magnetocalorics and magnetism in MnFe(P,Si,Ge) materials Amsterdam

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Chapter 1: Introduction
1.1 Magnetocaloric effect and magnetic refrigeration 1
1.2 Motivation of this work 4
1.3 Thesis briefing 5
References 6

Chapter 2: Theoretical concepts
2.1 Entropy and entropy change 7
2.2 Density functional theory and the family of (L)APW-methods 9
 2.2.1 Density functional theory 9
 2.2.1.1 The Born-Oppenheimer approximation 10
 2.2.1.2 Density functional theory 11
 2.2.1.3 Solving the Kohn-Sham equation 13
 2.2.2 The Augmented Plane Wave method 15
 2.2.3 The Linearized Augmented Plane Wave method 16
 2.2.4 The Linearized Augmented Plane Wave with Local Orbitals 17
 2.2.5 The Augmented Plane Wave plus local orbitals method 17
References 19
Chapter 3: Experimental method

3.1 Sample preparation

3.2 Experiment and equipments

3.2.1 Sample making

3.2.2 Powder x-ray diffractometer

3.2.3 Superconducting Quantum Interference Device (SQUID)

3.2.4 Maglab

3.2.5 Electron Probe Micro-Analyzer (EPMA)

References

Chapter 4: MnFe(P, Si, Ge) compounds

4.1 Structure, magnetism, and magnetocaloric properties of MnFe(P, Si, Ge) compounds

4.1.1 Introduction

4.1.2 Sample preparation

4.1.3 Results and discussion

4.1.3.1 Structure properties

4.1.3.2 Crystallite size investigation

4.1.3.3 Magnetic properties

4.1.3.4 Relation between a, c parameters and Curie temperature

4.1.3.5 Magnetocaloric effect

4.1.3.6 Heat capacity

4.1.3.7 Transport properties

4.1.4 Conclusions

4.2 Influence of Si and Ge on the magnetic and magnetocaloric properties of MnFe(P, Si, Ge) compounds

4.2.1 Introduction

4.2.2 MnFeP$_{0.59}$Si$_{0.41-x}$Ge$_x$ compounds

4.2.2.1 Structure properties
Contents

- calculated with the localized-spherical wave method
- 6.3.1 Motivation 95
- 6.3.2 The Localized-Spherical Wave (LSW) method 96
- 6.3.3 Results and discussion 97
- 6.4 Conclusions 105

References 106

Summary 107

Samenvatting 109

Publications 112

Acknowledgment 114