The spectra of supersymmetric states in string theory

Cheng, M.C.N.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Introduction

I Superstring Theory

1. **Type IIA and Type IIB Superstring Theory**
 1.1 The World-Sheet Action
 1.1.1 Canonical Quantisation
 1.1.2 Massless Spectrum
 1.1.3 T-Duality
 1.2 Low Energy Effective Action
 1.2.1 Supergravity Theory in Eleven and Ten Dimensions
 1.2.2 Couplings of String Theory
 1.3 Non-Perturbative Aspects
 1.3.1 M-theory
 1.3.2 Branes
 1.3.3 D-brane World-Volume Action
 1.3.4 Gauge/Gravity Correspondence
 1.3.5 S-duality

II String Compactification

2. **Calabi-Yau Compactifications**
 2.1 (2,2) Superconformal Field Theory
 2.1.1 $\mathcal{N} = 2$ Superconformal Algebra
 2.1.2 Chiral Ring
 2.1.3 Spectral Flow
2.1.4 Topological String Theory 52
2.1.5 Elliptic Genus and Vector-Valued Modular Forms 56
2.1.6 Mirror Symmetry and Non-perturbative Effects 60

2.2 Spacetime Physics 61
2.2.1 Moduli Space and Special Geometry 61
2.2.2 Four- and Five-Dimensional Low Energy Supergravity Theory 68
2.2.3 Range of Validity and Higher Order Corrections 76

3 K3 Compactification 79
3.1 (4,4) Superconformal Field Theory 79
3.2 Moduli Space of K3 81
3.3 Four-Dimensional Theories and Heterotic String Dualities 83
 3.3.1 $\mathcal{N} = 4, d = 4$ Supergravity 84
 3.3.2 Heterotic String Dualities 86

III Multi-Holes and Bubbling Solutions 89

4 Black Holes and Multi-Holes 93
4.1 General Stationary Solutions 93
4.2 Extremal Black Holes and Attractor Mechanism 96
4.3 Properties of Multi-holes 98
 4.3.1 Walls of Marginal Stability 99
 4.3.2 Angular Momentum of the Spacetime 101
 4.3.3 Split Attractor Flow 102
4.4 In Coordinates 102

5 More Bubbling Solutions 107
5.1 Introduction 107
5.2 The Lift of Multi-Center Solutions 110
5.3 Construct the Bubbling Solutions 111
 5.3.1 M-theory Limit 111
 5.3.2 Rescale the Solution 112
 5.3.3 Specify the 4D Charges 115
5.4 The Properties of the Solution 116
5.4.1 The Conserved Charges 116
5.4.2 The Shape of the Solution 121
5.4.3 Large gauge Transformation 128
5.5 Conclusions and Discussion 129
5.6 Appendix 1: Reproduce the old Bubbling Solutions 131
5.7 Appendix 2: Constant Terms for General Charges and Background 133

IV A Farey Tail for Attractor Black Holes 135

6 A Farey Tail for Attractor Black Holes 139
6.1 Introduction .. 139
6.2 Wrapped M-branes and the Near Horizon Limit 141
6.2.1 Wrapped Branes on Calabi-Yau and the Spectral Flow ... 141
6.2.2 The Near-Horizon Geometry and Reduction to Three Dimensions ... 146
6.3 The (0,4) Superconformal Field Theory 149
6.3.1 Counting the Degrees of Freedom 150
6.3.2 The Universal Sigma Model 152
6.4 A Generalised Elliptic Genus 156
6.4.1 The Modified Fermion Number 156
6.4.2 The Modular Properties 157
6.4.3 The Theta-Function Decomposition 158
6.4.4 The (Modern) Farey Tail Expansion 161
6.5 Spacetime Interpretation of the Attractor Farey Tail 162
6.5.1 Gravitational Interpretation of the Generalised Rademacher formula ... 163
6.5.2 Wrapped M2-branes 166
6.6 Summary and Conclusion 168

V $\mathcal{N} = 4$ Dyons .. 169

7 Microscopic Degeneracies and a Counting Formula 173
7.1 Microscopic Degeneracies 173
7.1.1 $1/2$- and $1/4$-BPS Solutions 173
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.2 Microscopic Degeneracies of 1/2-BPS States</td>
<td>174</td>
</tr>
<tr>
<td>7.1.3 Microscopic Degeneracies of 1/4-BPS States</td>
<td>176</td>
</tr>
<tr>
<td>7.2 The Counting Formula and a Borcherds-Kac-Moody Algebra</td>
<td>178</td>
</tr>
<tr>
<td>7.2.1 Dyons and the Weyl Group</td>
<td>179</td>
</tr>
<tr>
<td>7.2.2 K3 Elliptic Genus and the Siegel Modular Form</td>
<td>184</td>
</tr>
<tr>
<td>7.2.3 The Borcherds-Kac-Moody Superalgebra and the Denominator Formula</td>
<td>187</td>
</tr>
<tr>
<td>8 Counting the Dying Dyons</td>
<td>191</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>191</td>
</tr>
<tr>
<td>8.2 Dying Dyons and Walls of Marginal Stability</td>
<td>193</td>
</tr>
<tr>
<td>8.2.1 Determining the Walls</td>
<td>193</td>
</tr>
<tr>
<td>8.2.2 Stability Conditions from Supergravity Solutions</td>
<td>198</td>
</tr>
<tr>
<td>8.3 Contour Dependence of the Counting Formula</td>
<td>200</td>
</tr>
<tr>
<td>8.4 The Contour Prescription and its Interpretation</td>
<td>206</td>
</tr>
<tr>
<td>8.4.1 A Contour Prescription</td>
<td>206</td>
</tr>
<tr>
<td>8.4.2 The Attractor Contour for Large Charges</td>
<td>208</td>
</tr>
<tr>
<td>8.5 Wall-Crossing and Representations of the Algebra</td>
<td>209</td>
</tr>
<tr>
<td>8.6 Weyl Chambers and Discrete Attractor Flow Group</td>
<td>213</td>
</tr>
<tr>
<td>8.6.1 Weyl Chamber and Moduli Space</td>
<td>213</td>
</tr>
<tr>
<td>8.6.2 A Hierarchy of Decay</td>
<td>216</td>
</tr>
<tr>
<td>8.7 Arithmetic Attractor Flows</td>
<td>222</td>
</tr>
<tr>
<td>8.8 Summary and Conclusion</td>
<td>224</td>
</tr>
<tr>
<td>8.9 Appendix: Properties of Coxeter Groups</td>
<td>225</td>
</tr>
</tbody>
</table>

A Mathematical Preliminaries 229

Bibliography 239

Samenvatting (In Dutch) 247

Acknowledgements 251

Index 253