The spectra of supersymmetric states in string theory

Cheng, M.C.N.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Introduction v

I Superstring Theory 1

1 Type IIA and Type IIB Superstring Theory 5
 1.1 The World-Sheet Action 5
 1.1.1 Canonical Quantisation 6
 1.1.2 Massless Spectrum 8
 1.1.3 T-Duality 12
 1.2 Low Energy Effective Action 15
 1.2.1 Supergravity Theory in Eleven and Ten Dimensions 15
 1.2.2 Couplings of String Theory 17
 1.3 Non-Perturbative Aspects 20
 1.3.1 M-theory 20
 1.3.2 Branes 21
 1.3.3 D-brane World-Volume Action 29
 1.3.4 Gauge/Gravity Correspondence 32
 1.3.5 S-duality 34

II String Compactification 41

2 Calabi-Yau Compactifications 45
 2.1 (2,2) Superconformal Field Theory 45
 2.1.1 \(\mathcal{N} = 2 \) Superconformal Algebra 46
 2.1.2 Chiral Ring 47
 2.1.3 Spectral Flow 51
2.1.4 Topological String Theory ... 52
2.1.5 Elliptic Genus and Vector-Valued Modular Forms 56
2.1.6 Mirror Symmetry and Non-perturbative Effects 60

2.2 Spacetime Physics ... 61
2.2.1 Moduli Space and Special Geometry 61
2.2.2 Four- and Five-Dimensional Low Energy Supergravity Theory 68
2.2.3 Range of Validity and Higher Order Corrections 76

3 K3 Compactification ... 79
3.1 (4,4) Superconformal Field Theory .. 79
3.2 Moduli Space of K3 ... 81
3.3 Four-Dimensional Theories and Heterotic String Dualities 83
 3.3.1 $\mathcal{N} = 4, d = 4$ Supergravity 84
 3.3.2 Heterotic String Dualities ... 86

III Multi-Holes and Bubbling Solutions .. 89

4 Black Holes and Multi-Holes .. 93
4.1 General Stationary Solutions ... 93
4.2 Extremal Black Holes and Attractor Mechanism 96
4.3 Properties of Multi-holes ... 98
 4.3.1 Walls of Marginal Stability .. 99
 4.3.2 Angular Momentum of the Spacetime 101
 4.3.3 Split Attractor Flow ... 102
4.4 In Coordinates ... 102

5 More Bubbling Solutions ... 107
5.1 Introduction ... 107
5.2 The Lift of Multi-Center Solutions 110
5.3 Construct the Bubbling Solutions .. 111
 5.3.1 M-theory Limit .. 111
 5.3.2 Rescale the Solution .. 112
 5.3.3 Specify the 4D Charges .. 115
5.4 The Properties of the Solution ... 116