Mathematical modeling of metal ion homeostasis and signaling systems

Cui, J.

Publication date
2009

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 General Introduction

1.1 System Biology and Its Grand Challenges 1
 1.1.1 A Bit History of Systems Biology 2
 1.1.2 Biological Complexity 2
 1.1.3 Computational Challenge and Other Challenges 3
 1.1.4 Prize for Efforts: The Golden Fleece 4

1.2 Mathematical Modeling 5
 1.2.1 The Role, Levels and Strategies of Modeling 5
 1.2.2 Approaches of Mathematical Modeling 6
 1.2.3 Multi-Scale Modeling 7

1.3 Metal Ion Homeostasis and Signaling Systems 7
 1.3.1 Functions of Main Essential Metals 8
 1.3.2 Metals-Related Human Diseases 10
 1.3.3 Metal Ion Homeostasis Systems 11
 1.3.3.1 Various Proteins Involved in Metal Ion Homeostasis 11
 1.3.3.2 Regulated Membrane Ion Transport 14
 1.3.3.3 Other Strategies of Maintaining Homeostasis 15
 1.3.4 Metal Ion Signaling Systems 16
 1.3.4.1 Versatility and Universality of Calcium Signaling 16
 1.3.4.2 Intracellular Calcium Signaling 18
 1.3.4.3 Extracellular Calcium Signaling 20
 1.3.4.4 Calcium Signaling Toolkit 20
 1.3.4.5 Spatial and Temporal Aspects of Calcium Signaling 21
 1.3.4.6 Calcium Signature Hypothesis vs. Chemical Switch Hypothesis 21
 1.3.4.7 Zinc Signaling 22

1.4 Feedback Control Theory and Network Motifs 23
 1.4.1 A Bit History of Feedback Control 23
 1.4.2 Basic Feedback Control System 23
 1.4.3 Negative Feedback 24
 1.4.4 Network Motifs 25

1.5 Enzyme Kinetics and Nonlinear ODE Modeling 26
 1.5.1 Michaelis-Menten Kinetics 27
 1.5.2 Reversible Competitive Inhibition 27
 1.5.3 Nonlinear ODE Modeling 29

1.6 Thesis Overview 30
2 The 1st Model for Yeast Calcium Homeostasis

2.1 Introduction

2.2 Methods
2.2.1 Control Block Diagram
2.2.2 Feedback Modeling
2.2.3 Growth Modeling
2.2.4 Protein Modeling
2.2.5 Preliminary Model

2.3 Results
2.3.1 Steady-State Properties
2.3.2 Transients and Mutant Behavior
2.3.3 Parameter Sensitivity

2.4 Discussion

3 Detection of A New Calcium Transporter on Yeast Plasma Membrane

3.1 Introduction

3.2 Methods
3.2.1 Experimental Methods
3.2.2 Mathematical Modeling
3.2.2.1 Control Block Diagram
3.2.2.2 Feedback Modeling
3.2.2.3 Volume Evolution Modeling (under Hypertonic Shock)
3.2.2.4 Protein Modeling
3.2.2.5 A Concise Model
3.2.2.6 Conversion to Aequorin Luminescence Unit (RLUs)
3.2.3 Parameter Estimation Method

3.3 Results
3.3.1 Mg\(^{2+}\) Blocks Ca\(^{2+}\) Toxicity and Ca\(^{2+}\) Influx in Yeast
3.3.2 Computational Modeling of Ca\(^{2+}\) Influx and Sequestration
3.3.2.1 Steady-State Properties
3.3.2.2 Transients and Mutant Behavior
3.3.2.3 Flux Analysis and Cell Volume Evolution
3.3.2.4 Extracellular Mg\(^{2+}\) Depletion and Ca\(^{2+}\) Challenge

3.4 Discussion
4 Simulating Complex Calcium-Calcineurin Signaling Networks in Cardiac Myocytes

4.1 Introduction

4.2 Method

4.2.1 Cellerator Software

4.2.2 Representation of Relevant Reactions

4.2.3 The Equations of the Model

4.3 Results

4.3.1 Steady-State Property

4.3.2 Transients and Mutant Behavior

4.4 Discussion

5 Simulating In Vitro Transcriptional Response of Zinc Homeostasis System in E. coli

5.1 Introduction

5.2 Methods

5.2.1 Representation of Relevant Reactions

5.2.2 The Equations of the Model and the Numerical Solver

5.2.2.1 Equations for Zur-DNA Interaction

5.2.2.2 Equations for Zur Transcription Assay

5.2.2.3 Equations for ZntR Transcription Assay (I)

5.2.2.4 Equations for ZntR Transcription Assay (II)

5.2.3 Translating the Model into CellML

5.2.4 The Image Analysis Method

5.3 Results

5.3.1 Zur-DNA Interaction

5.3.2 Zur Transcription Assay

5.3.3 ZntR Transcription Assay (I)

5.3.4 ZntR Transcription Assay (II)

5.4 Discussion

6 Network Motifs and Their Functions

6.1 Introduction

6.2 Network Motifs in Metal Ion Homeostasis and Signaling Systems

6.2.1 Examples of Network Motifs

6.2.2 Signaling Cycle Motif
6.3 Discussion 120

7 Final Discussion and Future Work 122

References 126
Acknowledgements 140
Publication List 142