Mathematical modeling of metal ion homeostasis and signaling systems

Cui, J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Contents

1 General Introduction 1
1.1 System Biology and Its Grand Challenges 1
 1.1.1 A Bit History of Systems Biology 2
 1.1.2 Biological Complexity 2
 1.1.3 Computational Challenge and Other Challenges 3
 1.1.4 Prize for Efforts: The Golden Fleece 4
1.2 Mathematical Modeling 5
 1.2.1 The Role, Levels and Strategies of Modeling 5
 1.2.2 Approaches of Mathematical Modeling 6
 1.2.3 Multi-Scale Modeling 7
1.3 Metal Ion Homeostasis and Signaling Systems 7
 1.3.1 Functions of Main Essential Metals 8
 1.3.2 Metals-Related Human Diseases 10
 1.3.3 Metal Ion Homeostasis Systems 11
 1.3.3.1 Various Proteins Involved in Metal Ion Homeostasis 11
 1.3.3.2 Regulated Membrane Ion Transport 14
 1.3.3.3 Other Strategies of Maintaining Homeostasis 15
 1.3.4 Metal Ion Signaling Systems 16
 1.3.4.1 Versatility and Universality of Calcium Signaling 16
 1.3.4.2 Intracellular Calcium Signaling 18
 1.3.4.3 Extracellular Calcium Signaling 20
 1.3.4.4 Calcium Signaling Toolkit 20
 1.3.4.5 Spatial and Temporal Aspects of Calcium Signaling 21
 1.3.4.6 Calcium Signature Hypothesis vs. Chemical Switch Hypothesis 21
 1.3.4.7 Zinc Signaling 22
1.4 Feedback Control Theory and Network Motifs 23
 1.4.1 A Bit History of Feedback Control 23
 1.4.2 Basic Feedback Control System 23
 1.4.3 Negative Feedback 24
 1.4.4 Network Motifs 25
1.5 Enzyme Kinetics and Nonlinear ODE Modeling 26
 1.5.1 Michaelis-Menten Kinetics 27
 1.5.2 Reversible Competitive Inhibition 27
 1.5.3 Nonlinear ODE Modeling 29
1.6 Thesis Overview 30
2 The 1st Model for Yeast Calcium Homeostasis 32
2.1 Introduction 32
2.2 Methods 35
2.2.1 Control Block Diagram………………………………………………...35
2.2.2 Feedback Modeling…………………………………………………..35
2.2.3 Growth Modeling…………………………………………………..38
2.2.4 Protein Modeling……………………………………………………39
2.2.5 Preliminary Model…………………………………………………..40
2.3 Results 42
2.3.1 Steady-State Properties……………………………………………….42
2.3.2 Transients and Mutant Behavior………………………………………44
2.3.3 Parameter Sensitivity………………………………………………….47
2.4 Discussion 48

3 Detection of A New Calcium Transporter on Yeast Plasma Membrane 52
3.1 Introduction 52
3.2 Methods 54
3.2.1 Experimental Methods………………………………………………..54
3.2.2 Mathematical Modeling………………………………………………54
3.2.2.1 Control Block Diagram………………………………………………….54
3.2.2.2 Feedback Modeling………………………………………………….55
3.2.2.3 Volume Evolution Modeling (under Hypertonic Shock)……………55
3.2.2.4 Protein Modeling……………………………………………………56
3.2.2.5 A Concise Model………………………………………………….57
3.2.2.6 Conversion to Aequorin Luminescence Unit (RLUs)……………….59
3.2.3 Parameter Estimation Method………………………………………..59
3.3 Results 61
3.3.1 Mg$^{2+}$ Blocks Ca$^{2+}$ Toxicity and Ca$^{2+}$ Influx in Yeast……………61
3.3.2 Computational Modeling of Ca$^{2+}$ Influx and Sequestration………..63
3.3.2.1 Steady-State Properties………………………………………………….63
3.3.2.2 Transients and Mutant Behavior……………………………………..64
3.3.2.3 Flux Analysis and Cell Volume Evolution………………………….66
3.3.2.4 Extracellular Mg$^{2+}$ Depletion and Ca$^{2+}$ Challenge………………66
3.4 Discussion 67
6.3 Discussion

7 Final Discussion and Future Work

References
Acknowledgements
Publication List