Mathematical modeling of metal ion homeostasis and signaling systems

Cui, J.

Citation for published version (APA):
Contents

1 General Introduction

1.1 System Biology and Its Grand Challenges
1.1.1 A Bit History of Systems Biology ..2
1.1.2 Biological Complexity ..2
1.1.3 Computational Challenge and Other Challenges3
1.1.4 Prize for Efforts: The Golden Fleece4

1.2 Mathematical Modeling
1.2.1 The Role, Levels and Strategies of Modeling5
1.2.2 Approaches of Mathematical Modeling6
1.2.3 Multi-Scale Modeling ..7

1.3 Metal Ion Homeostasis and Signaling Systems7
1.3.1 Functions of Main Essential Metals8
1.3.2 Metals-Related Human Diseases10
1.3.3 Metal Ion Homeostasis Systems11
1.3.3.1 Various Proteins Involved in Metal Ion Homeostasis11
1.3.3.2 Regulated Membrane Ion Transport14
1.3.3.3 Other Strategies of Maintaining Homeostasis15
1.3.4 Metal Ion Signaling Systems ...16
1.3.4.1 Versatility and Universality of Calcium Signaling16
1.3.4.2 Intracellular Calcium Signaling18
1.3.4.3 Extracellular Calcium Signaling20
1.3.4.4 Calcium Signaling Toolkit ...20
1.3.4.5 Spatial and Temporal Aspects of Calcium Signaling21
1.3.4.6 Calcium Signature Hypothesis vs. Chemical Switch Hypothesis21
1.3.4.7 Zinc Signaling ..22

1.4 Feedback Control Theory and Network Motifs23
1.4.1 A Bit History of Feedback Control23
1.4.2 Basic Feedback Control System23
1.4.3 Negative Feedback ..24
1.4.4 Network Motifs ..25

1.5 Enzyme Kinetics and Nonlinear ODE Modeling26
1.5.1 Michaelis-Menten Kinetics ..27
1.5.2 Reversible Competitive Inhibition27
1.5.3 Nonlinear ODE Modeling ..29

1.6 Thesis Overview ..30
2 The 1st Model for Yeast Calcium Homeostasis 32
 2.1 Introduction 32
 2.2 Methods 35
 2.2.1 Control Block Diagram 35
 2.2.2 Feedback Modeling 35
 2.2.3 Growth Modeling 38
 2.2.4 Protein Modeling 39
 2.2.5 Preliminary Model 40
 2.3 Results 42
 2.3.1 Steady-State Properties 42
 2.3.2 Transients and Mutant Behavior 44
 2.3.3 Parameter Sensitivity 47
 2.4 Discussion 48

3 Detection of A New Calcium Transporter on Yeast Plasma Membrane 52
 3.1 Introduction 52
 3.2 Methods 54
 3.2.1 Experimental Methods 54
 3.2.2 Mathematical Modeling 54
 3.2.2.1 Control Block Diagram 54
 3.2.2.2 Feedback Modeling 55
 3.2.2.3 Volume Evolution Modeling (under Hypertonic Shock) 55
 3.2.2.4 Protein Modeling 56
 3.2.2.5 A Concise Model 57
 3.2.2.6 Conversion to Aequorin Luminescence Unit (RLUs) 59
 3.2.3 Parameter Estimation Method 59
 3.3 Results 61
 3.3.1 Mg$^{2+}$ Blocks Ca$^{2+}$ Toxicity and Ca$^{2+}$ Influx in Yeast 61
 3.3.2 Computational Modeling of Ca$^{2+}$ Influx and Sequestration 63
 3.3.2.1 Steady-State Properties 63
 3.3.2.2 Transients and Mutant Behavior 64
 3.3.2.3 Flux Analysis and Cell Volume Evolution 66
 3.3.2.4 Extracellular Mg$^{2+}$ Depletion and Ca$^{2+}$ Challenge 66
 3.4 Discussion 67
4 Simulating Complex Calcium-Calcineurin Signaling Networks in Cardiac Myocytes

4.1 Introduction

4.2 Method
4.2.1 Cellerator Software
4.2.2 Representation of Relevant Reactions
4.2.3 The Equations of the Model

4.3 Results
4.3.1 Steady-State Property
4.3.2 Transients and Mutant Behavior

4.4 Discussion

5 Simulating In Vitro Transcriptional Response of Zinc Homeostasis System in E. coli

5.1 Introduction

5.2 Methods
5.2.1 Representation of Relevant Reactions
5.2.2 The Equations of the Model and the Numerical Solver
5.2.2.1 Equations for Zur-DNA Interaction
5.2.2.2 Equations for Zur Transcription Assay
5.2.2.3 Equations for ZntR Transcription Assay (I)
5.2.2.4 Equations for ZntR Transcription Assay (II)
5.2.3 Translating the Model into CellML
5.2.4 The Image Analysis Method

5.3 Results
5.3.1 Zur-DNA Interaction
5.3.2 Zur Transcription Assay
5.3.3 ZntR Transcription Assay (I)
5.3.4 ZntR Transcription Assay (II)

5.4 Discussion

6 Network Motifs and Their Functions

6.1 Introduction

6.2 Network Motifs in Metal Ion Homeostasis and Signaling Systems
6.2.1 Examples of Network Motifs
6.2.2 Signaling Cycle Motif
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 Discussion</td>
<td>120</td>
</tr>
<tr>
<td>7 Final Discussion and Future Work</td>
<td>122</td>
</tr>
<tr>
<td>References</td>
<td>126</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>140</td>
</tr>
<tr>
<td>Publication List</td>
<td>142</td>
</tr>
</tbody>
</table>