Mathematical modeling of metal ion homeostasis and signaling systems

Cui, J.

Citation for published version (APA):
Contents

1 General Introduction 1
1.1 System Biology and Its Grand Challenges 1
 1.1.1 A Bit History of Systems Biology 2
 1.1.2 Biological Complexity 2
 1.1.3 Computational Challenge and Other Challenges 3
 1.1.4 Prize for Efforts: The Golden Fleece 4
1.2 Mathematical Modeling 5
 1.2.1 The Role, Levels and Strategies of Modeling 5
 1.2.2 Approaches of Mathematical Modeling 6
 1.2.3 Multi-Scale Modeling 7
1.3 Metal Ion Homeostasis and Signaling Systems 7
 1.3.1 Functions of Main Essential Metals 8
 1.3.2 Metals-Related Human Diseases 10
 1.3.3 Metal Ion Homeostasis Systems 11
 1.3.3.1 Various Proteins Involved in Metal Ion Homeostasis 11
 1.3.3.2 Regulated Membrane Ion Transport 14
 1.3.3.3 Other Strategies of Maintaining Homeostasis 15
 1.3.4 Metal Ion Signaling Systems 16
 1.3.4.1 Versatility and Universality of Calcium Signaling 16
 1.3.4.2 Intracellular Calcium Signaling 18
 1.3.4.3 Extracellular Calcium Signaling 20
 1.3.4.4 Calcium Signaling Toolkit 20
 1.3.4.5 Spatial and Temporal Aspects of Calcium Signaling 21
 1.3.4.6 Calcium Signature Hypothesis vs. Chemical Switch Hypothesis 21
 1.3.4.7 Zinc Signaling 22
1.4 Feedback Control Theory and Network Motifs 23
 1.4.1 A Bit History of Feedback Control 23
 1.4.2 Basic Feedback Control System 23
 1.4.3 Negative Feedback 24
 1.4.4 Network Motifs 25
1.5 Enzyme Kinetics and Nonlinear ODE Modeling 26
 1.5.1 Michaelis-Menten Kinetics 27
 1.5.2 Reversible Competitive Inhibition 27
 1.5.3 Nonlinear ODE Modeling 29
1.6 Thesis Overview 30
2 The 1st Model for Yeast Calcium Homeostasis

2.1 Introduction

2.2 Methods

2.2.1 Control Block Diagram

2.2.2 Feedback Modeling

2.2.3 Growth Modeling

2.2.4 Protein Modeling

2.2.5 Preliminary Model

2.3 Results

2.3.1 Steady-State Properties

2.3.2 Transients and Mutant Behavior

2.3.3 Parameter Sensitivity

2.4 Discussion

3 Detection of A New Calcium Transporter on Yeast Plasma Membrane

3.1 Introduction

3.2 Methods

3.2.1 Experimental Methods

3.2.2 Mathematical Modeling

3.2.2.1 Control Block Diagram

3.2.2.2 Feedback Modeling

3.2.2.3 Volume Evolution Modeling (under Hypertonic Shock)

3.2.2.4 Protein Modeling

3.2.2.5 A Concise Model

3.2.2.6 Conversion to Aequorin Luminescence Unit (RLUs)

3.2.3 Parameter Estimation Method

3.3 Results

3.3.1 Mg^{2+} Blocks Ca^{2+} Toxicity and Ca^{2+} Influx in Yeast

3.3.2 Computational Modeling of Ca^{2+} Influx and Sequestration

3.3.2.1 Steady-State Properties

3.3.2.2 Transients and Mutant Behavior

3.3.2.3 Flux Analysis and Cell Volume Evolution

3.3.2.4 Extracellular Mg^{2+} Depletion and Ca^{2+} Challenge

3.4 Discussion
4 Simulating Complex Calcium-Calcineurin Signaling Networks in Cardiac Myocytes 72
4.1 Introduction 72
4.2 Method 74
4.2.1 Cellerator Software………………………………………………..74
4.2.2 Representation of Relevant Reactions……………………………..74
4.2.3 The Equations of the Model……………………………………….76
4.3 Results 78
4.3.1 Steady-State Property……………………………………………...78
4.3.2 Transients and Mutant Behavior…………………………………..79
4.4 Discussion 81

5 Simulating In Vitro Transcriptional Response of Zinc Homeostasis System in E. coli 83
5.1 Introduction 83
5.2 Methods 87
5.2.1 Representation of Relevant Reactions……………………………..87
5.2.2 The Equations of the Model and the Numerical Solver…………...89
5.2.2.1 Equations for Zur-DNA Interaction…………………………………...89
5.2.2.2 Equations for Zur Transcription Assay……………………………...90
5.2.2.3 Equations for ZntR Transcription Assay (I)…………………………………91
5.2.2.4 Equations for ZntR Transcription Assay (II)…………………………...…...93
5.2.3 Translating the Model into CellML……………………………….94
5.2.4 The Image Analysis Method………………………………………95
5.3 Results 95
5.3.1 Zur-DNA Interaction………………………………………………95
5.3.2 Zur Transcription Assay…………………………………………...99
5.3.3 ZntR Transcription Assay (I)…………………………………….102
5.3.4 ZntR Transcription Assay (II)…………………………………....106
5.4 Discussion 107

6 Network Motifs and Their Functions 111
6.1 Introduction 111
6.2 Network Motifs in Metal Ion Homeostasis and Signaling Systems 114
6.2.1 Examples of Network Motifs………………………………………………115
6.2.2 Signaling Cycle Motif………………………………………………...117