Mathematical modeling of metal ion homeostasis and signaling systems

Cui, J.

Publication date
2009

Citation for published version (APA):
Contents

1 General Introduction

1.1 System Biology and Its Grand Challenges
1.1.1 A Bit History of Systems Biology
1.1.2 Biological Complexity
1.1.3 Computational Challenge and Other Challenges
1.1.4 Prize for Efforts: The Golden Fleece

1.2 Mathematical Modeling
1.2.1 The Role, Levels and Strategies of Modeling
1.2.2 Approaches of Mathematical Modeling
1.2.3 Multi-Scale Modeling

1.3 Metal Ion Homeostasis and Signaling Systems
1.3.1 Functions of Main Essential Metals
1.3.2 Metals-Related Human Diseases
1.3.3 Metal Ion Homeostasis Systems
1.3.3.1 Various Proteins Involved in Metal Ion Homeostasis
1.3.3.2 Regulated Membrane Ion Transport
1.3.3.3 Other Strategies of Maintaining Homeostasis
1.3.4 Metal Ion Signaling Systems
1.3.4.1 Versatility and Universality of Calcium Signaling
1.3.4.2 Intracellular Calcium Signaling
1.3.4.3 Extracellular Calcium Signaling
1.3.4.4 Calcium Signaling Toolkit
1.3.4.5 Spatial and Temporal Aspects of Calcium Signaling
1.3.4.6 Calcium Signature Hypothesis vs. Chemical Switch Hypothesis
1.3.4.7 Zinc Signaling

1.4 Feedback Control Theory and Network Motifs
1.4.1 A Bit History of Feedback Control
1.4.2 Basic Feedback Control System
1.4.3 Negative Feedback
1.4.4 Network Motifs

1.5 Enzyme Kinetics and Nonlinear ODE Modeling
1.5.1 Michaelis-Menten Kinetics
1.5.2 Reversible Competitive Inhibition
1.5.3 Nonlinear ODE Modeling

1.6 Thesis Overview
The 1st Model for Yeast Calcium Homeostasis

Introduction

Methods

Control Block Diagram

Feedback Modeling

Growth Modeling

Protein Modeling

Preliminary Model

Results

Steady-State Properties

Transients and Mutant Behavior

Parameter Sensitivity

Discussion

Detection of A New Calcium Transporter on Yeast Plasma Membrane

Introduction

Methods

Experimental Methods

Mathematical Modeling

Control Block Diagram

Feedback Modeling

Volume Evolution Modeling (under Hypertonic Shock)

Protein Modeling

A Concise Model

Conversion to Aequorin Luminescence Unit (RLUs)

Parameter Estimation Method

Results

Mg$^{2+}$ Blocks Ca$^{2+}$ Toxicity and Ca$^{2+}$ Influx in Yeast

Computational Modeling of Ca$^{2+}$ Influx and Sequestration

Steady-State Properties

Transients and Mutant Behavior

Flux Analysis and Cell Volume Evolution

Extracellular Mg$^{2+}$ Depletion and Ca$^{2+}$ Challenge

Discussion
4 Simulating Complex Calcium-Calcineurin Signaling Networks in Cardiac Myocytes

4.1 Introduction

4.2 Method
4.2.1 Cellerator Software
4.2.2 Representation of Relevant Reactions
4.2.3 The Equations of the Model

4.3 Results
4.3.1 Steady-State Property
4.3.2 Transients and Mutant Behavior

4.4 Discussion

5 Simulating In Vitro Transcriptional Response of Zinc Homeostasis System in E. coli

5.1 Introduction

5.2 Methods
5.2.1 Representation of Relevant Reactions
5.2.2 The Equations of the Model and the Numerical Solver
5.2.2.1 Equations for Zur-DNA Interaction
5.2.2.2 Equations for Zur Transcription Assay
5.2.2.3 Equations for ZntR Transcription Assay (I)
5.2.2.4 Equations for ZntR Transcription Assay (II)
5.2.3 Translating the Model into CellML
5.2.4 The Image Analysis Method

5.3 Results
5.3.1 Zur-DNA Interaction
5.3.2 Zur Transcription Assay
5.3.3 ZntR Transcription Assay (I)
5.3.4 ZntR Transcription Assay (II)

5.4 Discussion

6 Network Motifs and Their Functions

6.1 Introduction

6.2 Network Motifs in Metal Ion Homeostasis and Signaling Systems
6.2.1 Examples of Network Motifs
6.2.2 Signaling Cycle Motif
6.3 Discussion

7 Final Discussion and Future Work

References
Acknowledgements
Publication List