Quantifiers in TIME and SPACE: computational complexity of generalized quantifiers in natural language
Szymanik, J.K.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ^+_1-thesis</td>
<td>39–41, 91, 125, 138</td>
</tr>
<tr>
<td>3SAT</td>
<td>65</td>
</tr>
<tr>
<td>ARROWING</td>
<td>82</td>
</tr>
<tr>
<td>Aczel, P.</td>
<td>172</td>
</tr>
<tr>
<td>Ajdukiewicz, K.</td>
<td>10</td>
</tr>
<tr>
<td>Al-Khwarizmi,</td>
<td>18</td>
</tr>
<tr>
<td>algorithm</td>
<td>18–25</td>
</tr>
<tr>
<td>Andersson, A.</td>
<td>118</td>
</tr>
<tr>
<td>arithmetic of addition, see Presburger Arithmetic</td>
<td></td>
</tr>
<tr>
<td>Austin, J.L.</td>
<td>7</td>
</tr>
<tr>
<td>Büchi, J.R.</td>
<td>36</td>
</tr>
<tr>
<td>BALANCED COMPLETE BIPARTITE GRAPH</td>
<td>80</td>
</tr>
<tr>
<td>Bartsch, R.</td>
<td>112</td>
</tr>
<tr>
<td>Barwise and Cooper (1981)</td>
<td>50, 54, 141</td>
</tr>
<tr>
<td>Barwise, J.</td>
<td>133, 137, 138</td>
</tr>
<tr>
<td>belief revision</td>
<td>8, 9, 17, 37</td>
</tr>
<tr>
<td>Bennett, M.R.</td>
<td>112</td>
</tr>
<tr>
<td>van Benthem problem</td>
<td>114</td>
</tr>
<tr>
<td>van Benthem, J.</td>
<td>12, 16, 20, 112, 153, 158, 159, 172, 173</td>
</tr>
<tr>
<td>bijection</td>
<td>46</td>
</tr>
<tr>
<td>Blass and Gurevich (1986)</td>
<td>70</td>
</tr>
<tr>
<td>Burschick and Vollmer (1998)</td>
<td>118</td>
</tr>
<tr>
<td>Carnap, R.</td>
<td>8</td>
</tr>
<tr>
<td>categorization</td>
<td>28</td>
</tr>
<tr>
<td>Chalmers, D.</td>
<td>28</td>
</tr>
<tr>
<td>Cherniak, Ch.</td>
<td>28</td>
</tr>
<tr>
<td>Chomsky, N.</td>
<td>34, 35</td>
</tr>
<tr>
<td>Church-Turing Thesis, see Psychological Version</td>
<td>19, 23</td>
</tr>
<tr>
<td>Clark, R.</td>
<td>152</td>
</tr>
<tr>
<td>$\text{CLIQUE}_{\geq q}$</td>
<td>84</td>
</tr>
<tr>
<td>CLIQUE</td>
<td>65, 83, 99</td>
</tr>
<tr>
<td>co-NP</td>
<td>63</td>
</tr>
<tr>
<td>cognitive task</td>
<td>25</td>
</tr>
<tr>
<td>collective lifts</td>
<td></td>
</tr>
<tr>
<td>determinant fitting operator</td>
<td>116</td>
</tr>
<tr>
<td>existential modifier</td>
<td>113</td>
</tr>
<tr>
<td>neutral modifier</td>
<td>115</td>
</tr>
<tr>
<td>collective properties</td>
<td>111</td>
</tr>
<tr>
<td>combined complexity</td>
<td>69</td>
</tr>
<tr>
<td>complexity class</td>
<td>61</td>
</tr>
<tr>
<td>captured by logic</td>
<td>68</td>
</tr>
<tr>
<td>relativized</td>
<td>64</td>
</tr>
<tr>
<td>compositionality</td>
<td>172</td>
</tr>
<tr>
<td>comprehension</td>
<td>6, 15, 18, 31</td>
</tr>
<tr>
<td>computational complexity</td>
<td>20–25, 29</td>
</tr>
<tr>
<td>average-case</td>
<td>31, 171</td>
</tr>
<tr>
<td>circuit</td>
<td>171</td>
</tr>
<tr>
<td>parametrized</td>
<td>31, 171</td>
</tr>
<tr>
<td>worst-case</td>
<td>30</td>
</tr>
<tr>
<td>Concurrent Dynamic Game Logic</td>
<td>172</td>
</tr>
<tr>
<td>context-dependence</td>
<td>8</td>
</tr>
<tr>
<td>context-free language</td>
<td>59, 63</td>
</tr>
<tr>
<td>Cook, S.</td>
<td>22, 65</td>
</tr>
</tbody>
</table>
INDEX

Counting Hierarchy, 64, 124

data complexity, see model-checking
Dependence Logic, 47
descriptive complexity, 66
discourse, 36
 Representation Theory, 9
division of linguistic labor, 17
van der Does, J., 113–115
Dynamic Epistemic Logic, 9

Edmonds, J., 22
 Thesis, 22, 24
Ehrenfeucht sentence, 47
Erdős, P., 81
Euclid, 18
everyday language, 39
expression complexity, 69
EXPTIME, 62

f-large, 86
Fagin’s Theorem, 39, 40, 68
finite automata, 56, 159
 acyclic, 158
deterministic, 56
 nondeterministic, 55
Fixed-Parameter Tractability Thesis, 31
Frege, G., 10, 12, 13, 45, 47, 73, 110
Frixione, M., 25, 27

Gödel, K., 26
 games, 9
 algebra, 172
 and quantifiers, 171
dialogical, 14
 Ehrenfeucht-Fraïssé, 49
 equilibria, 172
 evolutionary, 9
 language, 10
 model constructions, 14
 signalling, 9
Garey and Johnson (1979), 22, 65, 80
generative capacity

strong, 35
 weak, 35
Geurts, B., 54, 141
graph, 67
 bipartite, 80
Grice, P., 7
 conversational principles, 9

Hamm, F., 13, 17
Hella, L., 70
Henkin, L., 47
hierarchy of second-order formulae, 43
Hintikka’s sentence, 82, 130, 132
 conjunctural reading, 132
 strong reading, 131
 weak readings, 131
Hintikka’s Thesis, 131
Hintikka, J., 130
Hofstadter, D., 28
van Humboldt, W., 34

Independence Friendly Logic, 47
intractability, 21, 23
Invariance Thesis, 23, 27
isomorphism, 45

Kamp, H., 9
Kaplan, D., 8, 9
Karp, R., 65
Kolmogorov complexity, 34
Kontinen, and Niemistö, (2006), 68, 124
Kontinen, J., 120
Kripke, S., 10

van Lambalgen, M., 13, 17
Landman, F., 72
learning theory, 26, 54, 168, 174
Levesque, H., 28
Lewis, D., 9
Lindström, P., 45, 47
logic
 equivalent, 49
 extended by quantifier, 48
 first-order, 43
second-order, 43
LOGSPACE, 62
Lorenzen, P., 14
Lucas, J.R., 26
Makowsky and Pnueli (1995), 69
Marr, D., 25	levels of explanation, 25, 173
McMillan et al. (2005), 152
McNaughton and Papert, 36
meaning, 5, 6

as algorithm, 10–15, 17, 20
inferential, 17
referential, 15, 17, 129
synonymy, 14, 20, 22
model, 44
finite, 32, 67
encoding, 67
weak, 33, 172
model-checking, 11, 69
model-theoretic syntax, 35
Montague, R., 7, 13, 50
Moschovakis, Y., 13, 20
Mostowski and Wojtyniak (2004), 70, 78, 83, 138
Mostowski, M., 39, 45, 133, 136, 159
Musken, R., 13
negation normal sentence, 137
neural networks, 23
NEXPTIME, 62
NLOGSPACE, 62
NP, 62
NP-complete, 21
NP-hard, 21
NPSPACE, 62
P-cognition Thesis, 27, 31, 39, 106
P=NP, 21, 63
Partee and Rooth (1983), 112
Penrose, R., 27
Peters and Westerståhl (2006), 72, 173
Piaget, J., 17
Polynomial Hierarchy, 64, 123
polynomial time

computable function, 65
many-one reduction, 65
PP, 64
pragmatics, 7, 9, 37
Pratt-Hartmann, I., 35, 36
Presburger Arithmetic, 159
PSPACE, 62
PTIME, 21, 62
Pumping Lemma
context-free languages, 60
regular languages, 58
push-down automata, 159
deterministic, 59
nondeterministic, 58
q-large, 84
quantifier
additive, see semi-linear
Aristotelian, 156
automata, 156
Boolean combinations, 50, 75
bounded, 87
branching, 47, 70, 77, 82, 88, 130
counting, 79
proportional, 78
cardinal, 157
CE, 52
clique, 83
collective reading, 110
complexity, 69
conservativity, 51, 117
collective, 118
cumulation, 74, 75
definability, 48, 49, 119
distributive reading, 110
divisibility, 157, 159
domain independent, 51
first-order, 153
generalized, 44–46, 69
satisfaction relation, 48
second-order, 118
Henkin, see branching
INDEX

higher-order, 153
iteration, 73, 75, 135
Lindström, 45, 46
measure, 33
mighty, 70
monadic, 45, 154
monotonicity, 52, 141
NP-complete, see mighty
NP-hard, 70
partially ordered, see branching persistence, 53
polyadic, 45, 72
polyadic lift, 72
proportional, 79, 101, 135, 158
Ramsey, 81, 96
counting, 83, 100
proportional, 84, 101
relativization, 51, 101, 103
resumption, 74, 75, 88
second-order definable, 33, 172
semi-linear, 159
topic neutral, 46
vectorization, see resumption

Ramsey Theory, 81
reciprocal expressions, 91, 145, 149
intermediate alternative reading, 93
intermediate reading, 92, 93
strong alternative reading, 93
strong reading, 92, 93
weak alternative reading, 93
weak reading, 92, 93
reciprocal lift, 98
intermediate, 97
strong, 96
weak, 97
regular language, 56, 63
Ristad, S., 36, 38
van Rooij, I., 28, 31
Russell, B., 110

SAT, 21, 65
satisfiability, 21

Savitch, W., 63
Scha, R., 112
Schlenker, P., 149
semantics, 7
collection, 16
dynamic, 14
dynamic turn, 8
game-theoretic, 14, 37, 47, 172
intensional, 13
Sevenster, M., 14, 70, 78, 171
Skolem function, 130
Stalnaker, R., 8, 9
Stockmeyer’s Theorem, 68
Strong Meaning Hypothesis, 94, 105
subset choice, 28
substitution property, 49
Suppes, P., 12, 16, 17
Tarski, A., 7
Tichý, P., 11, 12, 16
tractability, 21, 23
Tsotsos, J., 28
Turing machine, 11, 19, 26, 60
oracle, 63
type-theory, 112
understanding, see comprehension
Väänänen, J., 69, 87, 102
Vardi, M., 69
visual search, 28
Westerståhl, D., 32
Winter, Y., 113, 116
Wittgenstein, L., 10
working memory, 153