Experimental Cylinders
Experiments in Music Psychology around 1900
Kursell, J.

Publication date
2017

Document Version
Final published version

Published in
Journal of Sonic Studies

License
CC BY-SA

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Experimental Cylinders – Experiments in Music Psychology around 1900 by Julia Kursell

3. Nonmusical listeners in the laboratory

This investigation of the nonmusical individual had a prehistory in the work of Carl Stumpf. In the two volumes of his Tonpsychologie (Stumpf 1902, 1908), he published the results of an experiment that he conducted in the early 1890s. Stumpf was interested in the way that musical elements are perceived by the ear, and he wanted to understand how the ear combines different tones into a single perception. He created a series of experiments where he played two tones simultaneously and asked listeners to identify the separate notes.

For example, Stumpf played two notes at once and asked listeners to say if they heard two separate notes or if they heard one note. He found that listeners could distinguish the separate notes when the notes were close together in pitch and when they were of different durations. When the notes were far apart in pitch and of the same duration, listeners tended to hear a single note.

Stumpf's experiments were significant because they showed that the perception of musical elements is not an inherent property of the musical tones themselves, but rather a product of the listener's experience and cognitive processes. He concluded that the ability to distinguish separate notes is a cognitive skill that can be learned and that it is not an automatic process.

Stumpf's investigations into the perception of musical elements were conducted in the context of his broader research in music psychology. He was interested in the way that music is received by the ear and how it is perceived by the mind. His experiments were part of a larger project to understand the cognitive processes involved in musical perception.

Stumpf's research was influential in the development of music psychology as a discipline. It helped to establish the importance of the listener's experience and cognitive processes in musical perception, and it laid the groundwork for later research in this area.

Audible what one might hear when listening to contours. If the phonograph was considered to be radically nonmusical, melodic contour rather than the conventions of musical notation) to handle this new relation between listening and listening through the phonograph. Abraham uses measurement and a new visualization of melody (as a curve, guided by for reiterated processes of analysis. In Abraham’s experiment, the “nonmusical” subject conveys his subjective way of early comparative musicologists – sees it as making the pre-analyzed state of musical artifact available to the researcher upon which cognition operates and uses music for this purpose, Abraham discovers the recognition of melodic contour a

...