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Abstract

We consider the problem of aggregating dependent risks in the presence of par-
tial dependence information. More concretely, we assume that the risks involved
belong to independent subgroups and the dependence structure within each group is
unknown. We show that a sharp convex upper bound exists in this setting and that
the constrained upper bound improves the existing, unconstrained, comonotonic up-
per bound in convex order. Moreover, we characterize the constrained upper bound
in terms of the distribution of its sum. Numerical illustrations are provided to show
the improvement of the new upper bound.

1 Introduction

In various actuarial and �nancial applications, one has to deal with sums of dependent
random variables. For example, calculating the level of solvency capital requires the
aggregation of the di¤erent risks that an insurance or �nancial company is facing. Another
example involving aggregating dependent risks is the pricing of basket options and other
multivariate derivative products. Determining basket option prices, solvency capital, etc.
requires a model that jointly describes the risks involved. In this paper we assume that
the marginal risks are known, but the dependence structure is unknown.

A simplifying approach to tackle the problems arising when aggregating risks, is to
assume independence between the various risks. In this setting, e¢ cient numerical pro-
cedures exist to determine the distribution of the aggregated risk. For example, one can
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use the algorithm proposed in Panjer (1981) or use Fourier methods, as was proposed
in Heckman & Meyers (1983). A discussion of these methods is given in Embrechts &
Frei (2009). Although the independence assumption is tractable from a computational
point of view, it is not a realistic choice; in most actuarial and �nancial problems there
are dependencies between the risks involved which have to be accounted for. A popular
approach to build in the dependencies between the risks is to use an appropriate copula
function; see e.g. Nelsen (2006). The use (and abuse) of copulas for �nance and actuar-
ial science is very well and extensively discussed in Frees & Valdez (1998) and Mikosch
(2006). Alternatively, one can directly model the dependence by a parametric model such
as the multivariate Erlang distribution (Lee & Lin (2012)), multivariate Variance Gamma
(Luciano & Schoutens (2006)), etc.

Reliable and e¢ cient estimation procedures for one-dimensional risks are available,
but the extension to the multivariate case is less straightforward, which leads to a high
degree of model risk. In many �nancial and actuarial situation, special attention has
to be paid to the risk of underestimating the extend to which the risks involved move
together; see e.g. Denuit et al. (2008). Therefore, one can opt for a prudent approach and
search for the worst case dependence structure in the set of multivariate risks with given
marginal distributions. A measure for the degree of model risk can then be developed by
quantifying the distance between the model and the worst case dependence scenario; see
e.g. Dhaene et al. (2009), Dhaene, Linders, Schoutens & Vyncke (2012), Cont & Deguest
(2012) and Linders et al. (2015).

The notion of comonotonicity is closely connected to the search for worst case de-
pendence scenarios; see e.g. Hoe¤ding (1940) and Dhaene et al. (2002a). A given set of
risks is comonotonic if they are all moving in unison. Assuming a comonotonic depen-
dence structure among the marginal risks leads to a worst case scenario, i.e. and upper
bound, in convex order; see Meilijson & Nádas (1979), Kaas et al. (2002) and Dhaene
et al. (2006). Whereas convex upper bounds are studied already for a long time, the
literature on convex lower bounds is less extensive. It turns out that �nding lower bounds
for convex risk measures is closely linked to de�ning extreme negative dependence struc-
tures. A possible notion of extreme negative dependence is complete/joint mixability.
This extreme negative dependence structure was studied in Wang & Wang (2011) and
Wang et al. (2013) for �nding convex lower bounds; see also Embrechts et al. (2013) and
Bernard et al. (2014). Another approach for �nding convex lower bounds is to employ
the theory of mutual exclusivity; see e.g. Dhaene & Denuit (1999), Cheung & Lo (2013)
and Cheung & Lo (2014). The notion of tail-mutual exclusivity and the search for lower
bounds for Tail Value-at-Risk was considered in Cheung, Denuit & Dhaene (2015).

Employing a worst case dependence scenario to determine solvency requirements or
other actuarial quantities is a prudent strategy, but often leads to unacceptable high risk
levels. Indeed, in the worst case scenario, the di¤erent risks are non-compensating (or
comonotonic) and no diversi�cation is taken into account. However, one can think of
situations where information about pairwise correlations is available. For example, when
historical data of the marginal risks is available, statistical tools can be employed to
back out the marginal distributions and the correlation between the risks. Adding this
information does not allow to unambiguously determine the joint distribution function (i.e.
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the copula), but it may be used to �nd an improved (i.e. sharper), and more acceptable,
bound for the aggregated risk. Determining bounds with partial dependence information
was already considered in Bernard et al. (2015), where worst case bounds for the Value-at-
Risk are derived in the constrained case , where partial dependence information is available
through the variance of the sum. In Bignozzi et al. (2015), the authors show how the worst
case bound can be improved by assuming positive dependence information, whereas the
best case bound can be improved when assuming negative dependence information.

In this paper we search for an improved convex upper bound for a sum of dependent
random variables, by adding information about the dependence between �xed group of
random variables. In a �rst step, we use the results of Cheung & Vandu¤el (2012) to prove
that no convex maximal element exists in the class of distributions with given marginals
and given correlation matrix. We then restate our problem by relaxing the assumption
that the full correlation matrix is given. More precisely, we assume that the di¤erent risks
can be grouped in di¤erent subgroups. We assume independence between the di¤erent
subgroups, but the dependence within each group is unknown. Such a situation can
occur when aggregating risks over di¤erent lines of businesses. Assuming independence
between the di¤erent lines of businesses may be justi�ed because they operate in di¤erent
segments or di¤erent geographical areas. The risks within the di¤erent lines of business
are, of course, dependent. We show that in this setting, a convex maximal element exists
if there is at least one group containing more than one element. Moreover, if there are
at least 2 groups, this new convex bound improves the comonotonic bound. A numerical
illustration showing the improvement of the upper bound one can obtain by including the
dependence information is provided.

2 Stochastic orders, comonotonicity and risk mea-
sures

Consider the random vector X = (X1; X2; : : : ; Xn) and denote the sum of its components
by SX ; so we have that SX = X1 + X2 + : : : + Xn: The cdf of Xi is denoted by FXi :
Throughout this paper we assume that all random variables have �nite mean and are
de�ned on a common probability space (
;F ;P) : We assume that all expectations we
encounter in this paper are well-de�ned and �nite.

2.1 Convex and supermodular orders

We �rst introduce the convex order.

De�nition 1 (Convex order) Consider two r.v.�s X and Y . Then X is said to precede
Y in the convex order sense, notation X �cx Y , if

X �cx Y ,
�
E[X] = E[Y ],
E [(X �K)+] � E [(Y �K)+] , for all K 2 R: (1)

3



The convex order can equivalently be characterized as follows:

X �cx Y , E [f (X)] � E [f (Y )] ; for any convex function f:

We immediately �nd that X �cx Y ) Var[X] � Var[Y ] ; which shows that the random
variable Y is �more variable� than the random variable X: Moreover, one has that if
X �cx Y; the following equivalence relation holds

Var [X] = Var [Y ], X
d
= Y:

A proof of this relation is given in Cheung & Vandu¤el (2012) and Dhaene, Linders,
Schoutens & Vyncke (2012). A generalization of this result can be found in Cheung,
Dhaene, Kukush & Linders (2015). For more details on convex order, we refer to Shaked
& Shanthikumar (1997) and Denuit et al. (2005).

Before introducing the supermodular order, we have to de�ne supemodular functions.
For any arbitrary function f : Rn �! R, real-valued n - vector x = (x1; x2 : : : ; xn), integer
i 2 f1; 2; : : : ; ng and positive real number ", the notation �"

if (x) is de�ned by

�"
if (x) = f (x1; x2 : : : ; xi + "; xi+1; : : : ; xn)� f (x1; x2; : : : ; xn) :

De�nition 2 (Supermodular function) A function f : Rn �! R is said to be super-
modular if

��
j�

"
if (x) � 0

holds for every x 2 Rn; 1 � i < j � n and all �; " > 0:

We are now ready to de�ne the supermodular order.

De�nition 3 (Supermodular order) Consider two random vectors X and Y : Then X
is said to be smaller in the supermodular order than Y ; notation X �sm Y ; if

E [f (X)] � E [f (Y )]

holds for all supermodular functions f : Rn �! R for which the expectations exist.

If X �sm Y then the random vectors X and Y have the same marginal distributions,
i.e. Xi = Yi; for i = 1; 2; : : : ; n; but the components of Y exhibit of stronger positive
dependence than the components in X: Indeed, we have that

X �sm Y )
�
P [X > x] � P [Y > x] ; for all x 2 Rn;
P [X � x] � P [Y � x] ; for all x 2 Rn:

Supermodular order also implies convex order of the sums of the respective components:

X �sm Y ) SX �cx SY ; (2)

see e.g. Proposition 6.3.9 in Denuit et al. (2005).

We consider the following lemma which shows that supermodular order is closed under
conjunction; see also Theorem 9.A.9 in Shaked & Shanthikumar (1997).
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Lemma 1 Consider the n�dimensional vectorsX = (X1; X2; : : : ; Xk) and Y = (Y 1; Y 2; : : : ; Y k) ;
where the subvectors X l and Y l are kl dimensional. Moreover,

X i ? Xj and Y i ? Y j for i 6= j; (3)

and
X i �sm Y i for i = 1; 2; : : : ; k:

Then we have that
X �sm Y :

2.2 A convex maximal element in the Fréchet class

The random vector (X1; : : : ; Xn) is said to be comonotonic if

(X1; : : : ; Xn)
d
=
�
F�1X1 (U) ; : : : ; F

�1
Xn
(U)
�
; (4)

where U is a uniform (0; 1) r.v. The cdf of a comonotonic random vector (X1; : : : ; Xn) is
given in terms of its marginal cdf�s:

F(X1;:::;Xn) (x1; x2; : : : ; xn) = min fFX1 (x1) ; FX2 (x2) ; : : : ; FXn (xn)g :

Consider a random vector X; not necessarily comonotonic: We introduce the notation
Xc =

�
F�1X1 (U) ; : : : ; F

�1
Xn
(U)
�
. We call Xc the comonotonic modi�cation of the vector

X: The sum of the components of Xc is denoted by Sc: For an extensive overview of
the theory of comonotonicity we refer to Dhaene et al. (2002a). An updated overview of
applications of comonotonicity can be found in Deelstra et al. (2011).

Fix the random vector X = (X1; X2; : : : ; Xn) and the sum SX : In order to determine
actuarial and �nancial quantities for SX ; one has to model the marginalsXi; i = 1; 2; : : : ; n
and the dependence structure between the components. We assume that the marginal
cdf FXi of Xi is known for each i = 1; 2; : : : ; n; but the dependence structure is unknown.
The set R (X) of all random vectors which are consistent with the available marginal
information is called the Fréchet class and is de�ned as

R (X) = f(Y1; Y2; : : : ; Yn) j FYi � FXi ; i = 1; 2; : : : ; ng : (5)

The convex maximal element in the set R (X) is the comonotonic vector; see e.g. Kaas
et al. (2000). Indeed, we have that

�
F�1X1 (U) ; : : : ; F

�1
Xn
(U)
�
2 R (X) and the following

implication holds:

Y 2 R (X) =) Y1 + Y2 + : : :+ Yn �cx F�1X1 (U) + F
�1
X2
(U) + : : :+ F�1Xn (U) : (6)

The converse relation was �rst proven in Cheung (2008) and generalized in Cheung (2010)
and Cheung, Dhaene, Kukush & Linders (2015). We can thus state the following theorem.

Theorem 4 Fix a random vector Y � 2 R (X) : Then, the following statements are equiv-
alent
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1. For any Y 2 R (X) ; it holds that Y �sm Y �:

2. For any Y 2 R (X) ; it holds that Y1 + Y2 + : : :+ Yn �cx Y �1 + Y �2 + : : :+ Y �n :

3. Y � is comonotonic.

4. Var[Y �1 + Y
�
2 + : : :+ Y

�
n ] = Var

�
F�1X1 (U) + F

�1
X2
(U) + : : :+ F�1Xn (U)

�
; provided the

variances are well-de�ned and �nite.

The previous theorem shows that a comonotonic random vector can be characterized
by the distribution of its sum. Moreover, this comonotonic vector can be captured by a
single real number, representing the variance of the sum.

2.3 Distortion risk measures and comonotonicity

Consider the set � containing real-valued random variables. We assume that X1; X2 2 �
implies that X1 + X2 2 �: Moreover, it is assumed that the set � satis�es the following
conditions: if X 2 � and a > 0 and b 2 R, then aX + b 2 �: The function � : � ! R
attaches the real-number � [X] to any random variableX in � and is called a risk measure.
In the sequel we will always assume that the set � is taken �as broad as possible�and all
random variables we encounter belong to this set �.

Two random variables X and Y are said to be ordered in the stop-loss order, X �sl Y;
if E [(X �K)+] � E [(Y �K)+], for all K 2 R: A risk measure � is said to preserve
stop-loss order if it satis�es the following condition:

X �sl Y ) � [X] � � [Y ] :

For a risk measure � which preserves stop-loss order, we �nd that for any Y 2 R (X) :

�

"
nX
i=1

Xi

#
� �

"
nX
i=1

F�1Xi (U)

#
:

This inequality indicates that choosing the comonotonic distribution is a prudent ap-
proach, in the sense that it will lead to a maximal risk level when employing the risk
measure � for quantifying the risk.

A distortion function is de�ned as a non-decreasing function g : [0; 1] ! [0; 1] such
that g(0) = 0 and g(1) = 1. For any r.v. X, the distorted expectation associated with
the distortion function g, notation �g [X], is de�ned by

�g [X] = �
Z 0

�1

�
1� g

�
FX(x)

��
dx+

Z +1

0

g
�
FX(x)

�
dx; (7)

provided at least one of the two integrals in (7) is �nite. The functional �g is called the
distortion risk measure. We always assume that �g [X] is �nite. For a detailed description
of distorted expectations and distortion risk measures we refer to: Wang (1996), Gzyland
& Mayoral (2006), Goovaerts et al. (2012).
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It was proven in Wirch & Hardy (2000) that the risk measure �g with a concave
distortion function g is subadditive. Moreover, a distortion risk measure is always additive
for comonotonic risks. A proof of this property for concave distortion functions is provided
in Wang (1996), whereas a proof for the general situation is given in Dhaene, Kukush,
Linders & Tang (2012). Finally, a concave distortion function leads to a distortion risk
measure �g which preserves stop-loss order. Hence, we can write the following for a
concave distortion risk measure �g :

�g

"
nX
i=1

Xi

#
� �g [Sc] =

nX
i=1

�g [X
c
i ] : (8)

A review on risk measures and comonotonicity can be found in Dhaene et al. (2006).

The class of distortion risk measures contains many important and widely used risk
measures. The Value-at-Risk (VaR) of a r.v. X at level p 2 (0; 1) is de�ned as

VaRp(X) = inffx : F (x) � 1� pg:

It is easy to verify that VaR is a distortion risk measure by choosing the distortion function
to be

g1(x) = 1fx>1�pg; x 2 [0; 1] :
Apparently, g1 is not concave and hence, VaR is not subadditive; see e.g. Dowd & Blake
(2006). Another important distortion risk measure is the Tail Value-at-Risk (TVaR). The
TVaR of a r.v. X at level p 2 (0; 1) is de�ned as

TVaRp(X) =
1

1� p

Z 1

p

VaRq(X)dq:

It corresponds to a distortion risk measure with distortion function

g2 (x) = min

�
q

1� p; 1
�
; x 2 [0; 1] :

Since g2 is concave, TVaR is a subadditive distortion risk measure. Lastly, the Wang
transform (WT) risk measure is de�ned as

WT [X] = �g3 [X] ;

where the distortion function is

g3 (x) = �
�
��1 (x) + ��1 (p)

�
; x 2 [0; 1] :

Since g3 is a strictly concave distortion function, WT is also subadditive. Readers inter-
ested in more details about these risk measures are referred to Dhaene et al. (2006).
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3 Convex upper bounds with dependence informa-
tion

3.1 A useful lemma

We �rst consider the following lemma, which was already proven in Denuit et al. (2005)
(Proposition 3.4.25). This lemma can be considered as the one-dimensional version of
Lemma 1.

Lemma 2 Consider the independent random vectors (X1; X2; : : : ; Xn) and (Y1; Y2; : : : ; Yn) :
If we have that Xi �cx Yi; for i = 1; 2; : : : ; n; then

X1 +X2 + : : :+Xn �cx Y1 + Y2 + : : :+ Yn:

The previous lemma shows that under the appropriate conditions, aggregating inde-
pendent risks Xi leads to a sum which is bounded from above in the convex order. The
following lemma shows that if this upper bound is reached, the two vectors have to be
equal in distribution. In this situation, the random vector can be characterized using
the distribution of the sum. The proof is mainly based on the proof of Lemma 2. The
following lemma plays an important role when proving our main result.

Lemma 3 Consider the n�dimensional independent random vectors X and Y . If we
have that

Xi �cx Yi for i = 1; 2; : : : ; n; (9)

then:
SX

d
= SY , X

d
= Y : (10)

Proof. The proof of the ( statement is trivial.

We prove the ) statement by induction. If n = 1; the proof is direct. Assume that
n = 2; then we have that

X1?X2 and Y1?Y2;
and (10) can be written as

X1 +X2
d
= Y1 + Y2 , (X1; X2)

d
= (Y1; Y2) :

Because it is given that the copula of both X and Y is the independent copula, it su¢ ces
to prove that

Xi
d
= Yi; for i = 1; 2: (11)

The conditions Xi �cx Yi can be written as

E
�
(Xi �K)+

�
� E

�
(Yi �K)+

�
; for all K 2 R: (12)
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Proving (11) is equivalent with proving that (12) can only hold with equality. We prove
(11) by contradiction. Denote the set fK : E[(Xi � K)+] < E[(Yi � K)+]g by Ai for
i = 1; 2. Since the function fi(K) = E[(Yi �K)+] � E[(Xi �K)+] is a right continuous
function, we have either �(Ai) > 0 or Ai = ;, where � is the Lebesgue measure on R.
By using the tower property together with the independence between X1 and X2, the
stop-loss premium E

�
(X1 +X2 �K)+

�
can be written as follows

E
�
(X1 +X2 �K)+

�
= E

��
E (X1 +X2 �K)+ j X1

��
=

Z
R
E
�
(X2 � (K � x))+

�
dFX1 (x)

=

Z
R�A2

E
�
(X2 � (K � x))+

�
dFX1 (x) +

Z
A2

E
�
(X2 � (K � x))+

�
dFX1 (x)

<

Z
R
E
�
(Y2 � (K � x))+

�
dFX1 (x)

= E
�
(X1 + Y2 �K)+

�
:

The stop-loss premium E
�
(X1 + Y2 �K)+

�
can be rewritten by employing the indepen-

dence between X1 and Y2 :

E
�
(X1 + Y2 �K)+

�
=

Z
R
E
�
(X1 � (K � y))+

�
dFY2 (y)

<

Z
R
E
�
(Y1 � (K � y))+

�
dFY2 (y)

= E
�
(Y1 + Y2 �K)+

�
:

We conclude that

E
�
(X1 +X2 �K)+

�
< E

�
(X1 + Y2 �K)+

�
< E

�
(Y1 + Y2 �K)+

�
;

which contradictsX1+X2
d
= Y1+Y2. We then �nd E[(X1+X2�K)+] = E[(Y1+Y2�K)+]

holds if and only if Ai = ; for i = 1; 2, whereas Ai = ; is equivalent to that E[(Yi�K)+] =
E[(Xi �K)+] for i = 1; 2.
Assume now that the statement holds for n� 1: Note that

n�1X
i=1

Xi?Xn and
n�1X
i=1

Yi?Yn:

Furthermore, because (9) holds, it follows from Lemma 2 that
n�1X
i=1

Xi �cx
n�1X
i=1

Yi and Xn �cx Yn:

We can then use the 2-dimensional version of the theorem to show that:

X1 +X2 + : : :+Xn�1 +Xn
d
= Y1 + Y2 + : : :+ Yn�1 + Yn

m 
n�1X
i=1

Xi; Xn

!
d
=

 
n�1X
i=1

Yi; Yn

!
:
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Hence we �nd that
Pn�1

i=1 Xi
d
=
Pn�1

i=1 Yi; which is equivalent with (X1; X2; : : : ; Xn�1)
d
=

(Y1; Y2; : : : ; Yn�1). This then ends the proof.

Lemma 3 extends Lemma 2. Whereas Lemma 2 provides a convex upper bound for
the sum SX ; Lemma 3 shows that there is only one possible choice for the marginals Xi

of the vector X in order for SX to reach its convex upper bound SY : Indeed, in order to
reach the upper bound, each marginal distribution Xi should be set equal to its respective
convex upper bound Yi:

3.2 Convex upper bounds with known correlation matrix

Assume that all the pairwise correlations are given. We use the following notation:

Corr [Xi; Xj] = �i;j; for i; j = 1; 2; : : : ; n;

where �i;i = 1: The Fréchet space R (X) ; de�ned in (5), consists of all random vectors
having the same marginals, but di¤erent dependence structures. If we have also informa-
tion about the pairwise correlations, the new class C (X) of admissible random vectors is
given by

C (X) = f(Y1; Y2; : : : ; Yn) 2 R (X) j Corr [Yi; Yj] = �i;j i; j = 1; 2; : : : ; ng :
Note that C (X) � R (X) ; which shows that adding dependence information reduces the
set of feasible random vectors:We assume that the correlation matrix is chosen such that
the cardinality of the set C (X) is at least 1. However, the set C (X) may contain more
than one element, indicating that the pairwise correlations do not unambiguously specify
the copula. One may then hope that a convex maximal element can be found in the class
C (X). It was already proven in Cheung & Vandu¤el (2012) that no convex maximal
element exists in the class of random vectors with �xed marginals and �nite variance. In
a similar way, we can then prove the following result.

Theorem 5 There does not exist a convex maximal element in the class C (X) :

Proof. If all pairwise correlation are known, also the variance Var[
Pn

i=1Xi] ; which we
also denote by c; is known. De�ne the set A as

A =
(
(Y1; Y2; : : : ; Yn) 2 R (X) j Var

"
nX
i=1

Yi

#
= c; i = 1; 2; : : : ; n

)
: (13)

It was proven in Theorem 7 in Cheung &Vandu¤el (2012) that no convex maximal element
can exist in the set A. Noting that C (X) � A then ends the proof.
Note that in a similar way, we can also show that a convex minimal element in C (X)

will not exist. It turns out that imposing constraints on all the pairwise correlations
makes the class C (X) to narrow, in the sense that no convex order between the elements
in this class can exist. Therefore, we will consider the following, related problem. We
assume that the risksX1; X2; : : : ; Xn can be divided in di¤erent groups. Random variables
belonging to di¤erent groups are assumed to be independent. However, the dependence
structure between the r.v.�s composing a group is unknown. We will search for a convex
maximal element in this setting.
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3.3 A convex maximal element when the marginals and some
correlations are �xed

Assume that the risks X1; X2; : : : ; Xn can be grouped in k disjoint sets. De�ne the indices
i1; i2; : : : ; ik such that 0 < i1 < i2 < : : : < ik = n: Without loss of generality, we can
assume that the r.v.�s X1; X2; : : : ; Xi1 belong to group 1, the r.v.�s Xi1+1; Xi1+2; : : : ; Xi2

are in group 2: Continuing like this, we �nd that the k�th group contains the r.v.�s
Xik�1+1; Xik�1+2; : : : ; Xik . Denote the set containing the indices of group l; l = 1; 2; : : : ; k
by Il; so

Il = fil�1 + 1; il�1 + 2 : : : ; ilg ;
with the convention that i0 = 0: So for any i 2 Il; the r.v. Xi belongs to group l: We
assume that the di¤erent groups are independent, i.e.

Xi?Xj; for i 2 Il; j 2 Im and l 6= m:

This also means that

Corr [Xi; Xj] = 0; for i 2 Il; j 2 Im and l 6= m:

Note, however, that the converse implication does not hold in general. Indeed, one can
construct dependent random variables with pairwise correlations equal to zero.

The correlation Corr[Xi; Xj] between two r.v.�sXi andXj belonging to the same group
is not speci�ed. We are looking for a convex maximal element in the set Ik (X) :

Ik (X) =
�
(Y1; Y2; : : : ; Yn) 2 R (X)

���� Yi?Yj; for l;m = 1; 2; : : : k;
l 6= m and i 2 Il; j 2 Im

�
:

Note that in case k = 1; all marginals belong to the same group and no independence
information is used. In this case, Ik (X) corresponds with the Fréchet class de�ned in
(5), i.e. Ik (X) = R (X) : In this case, a convex maximal element exists and it is given
by the comonotonic vector; see Theorem 4. If k = n; each group consists of a single
element. The independence assumption leads to full knowledge about the copula. In this
particular case, the only random vector satisfying the available marginal and dependence
information is the independent copy of the vector X:

Lemma 4 Consider the independent uniform r.v.�s U1; U2; : : : ; Uk: De�ne the subvectors
Zj as follows

Zj =
�
F�1Xij�1+1

(Uj) ; F
�1
Xij�1+2

(Uj) ; : : : ; F
�1
Xij
(Uj)

�
; j = 1; 2; : : : ; k: (14)

Then, the vector Z = (Z1; Z2; : : : ; Zk) belongs to the class Ik (X) :

Proof. Remark that in case k = n; we �nd that X? d
= Z: In order to exclude this trivial

case, we assume from now on that k < n: It is straightforward to see that Zi
d
= Xi:

11



Furthermore, independence between Ul and Um; for l 6= m implies also that for i 2 Il;
j 2 I; F�1Xi (Ul) and F

�1
Xj
(Um) are independent.

The random vector Z de�ned in the previous lemma is a particular element of the set
Ik (X) : In the sequel of the paper, we denote the independent modi�cation of (X1; X2; : : : ; Xn)
by X? whereas its comonotonic modi�cation is denoted by Xc:

Lemma 5 Consider the random vector Z de�ned by (14). We have that

X? �sm Z �sm Xc:

Proof. The independent modi�cation X? of X can be expressed as follows:

X? =
�
X?
1 ; X

?
2 ; : : : ; X

?
k

�
;

where X?
l =

�
X?
il�1+1

; X?
il�1+2

; : : : ; X?
il

�
; for l = 1; 2; : : : ; k: Similarly, the comonotonic

modi�cation Xc of X can be expressed as

Xc = (Xc
1; X

c
2; : : : ; X

c
k) ;

where Xc
l =

�
Xc
il�1+1

; Xc
il�1+2

; : : : ; Xc
il

�
for l = 1; 2; : : : ; k: Because Z 2 Ik (X) ; we di-

rectly �nd that
Z �sm Xc:

Note that from (14) , we �nd that the components of Z l are comonotonic and hence:

Z l
d
= Xc

l ; for l = 1; 2; : : : k:

Then we �nd that both Z l and X
?
l have the same marginals but di¤erent dependence

structures. More precisely:

X?
l �sm Z l for l = 1; 2; : : : k: (15)

Moreover, the subvectors X?
l and Z l of the vector X

? and Z; respectively, are indepen-
dent:

X?
i ? X?

j and Zi ? Zj for i 6= j: (16)

Combining (15) and (16) with Lemma 1 results in X? �sm Z; which proves the result.
A direct consequence of Lemma 5 is the following ordering of the correlation parame-

ters:

0 � Corr [Zi; Zj] � Corr
h
F�1Xi (U) ; F

�1
Xj
(U)
i
; for i; j = 1; 2; : : : ; n:

Furthermore, if we denote the sum of the components of X?; Z and Xc by SX? ; SZ and
SXc ; respectively, we have the following convex order relation:

SX? �cx SZ �cx SXc :

In the following theorem we show that Z is the convex maximal element of the set
Ik (X).
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Theorem 6 Consider the random vector X: Fix a random vector Y � 2 Ik (X) and
denote the corresponding sum by SY � : The following statements are equivalent

1. For any Y 2 Ik (X) ; we have that Y �sm Y �:

2. For any Y 2 Ik (X) ; we have that SY �cx SY � :

3. Y � d
= Z; where Z is de�ned by (14).

Proof. We start with a proof for (3) )(1). The random vector Z consists of k inde-
pendent subvectors Zj where each of these subvectors is comonotonic: Using the notation
Y j =

�
Yij�1+1; Yij�1+2; : : : ; Yij

�
; it follows that

Y j �sm Zj; for j = 1; 2; : : : ; k:

Using independence of the subvectors Y 1; Y 2; : : : ; Y k and Z1; Z2; : : : ; Zk together with
Lemma 1 proves the result.

The implication (1))(2) is a direct consequence of the implication (2).
Finally, we prove (2))(3): As Z 2 Ik (X) ; we have that SZ �cx SY � : In the previous

part of the proof, we showed that the vector Z is maximal in convex order. Because
Y � 2 Ik (X) ; we �nd that also SY � �cx SZ must hold. Combining these two convex order
inequalities yields:

SZ
d
= SY � :

Because both Y � and Z belong to the set Ik (X) ; the random sums SY � and SZ can be
decomposed in k independent subgroups:

i1X
j=1

Y �j +

i2X
j=i1+1

Y �j +: : :+

ikX
j=ik�1+1

Y �j
d
=

i1X
j=1

F�1Xj (U1)+

i2X
j=i1+1

F�1Xj (U2)+: : :+

ikX
j=ik�1+1

F�1Xj (Uk) :

(17)
Take Y 2 Ik (X) : For l = 1; 2; : : : ; k; we have that the random sums

Pil
j=il�1+1

F�1Xj (Ul)

and
Pil

j=il�1+1
Yl are independent and convex ordered, i.e.

ilX
j=il�1+1

Y �j �cx
ilX

j=il�1+1

F�1Xj (Ul) ; l = 1; 2; : : : ; k: (18)

Combining (17) and (18) together with Lemma 3 leads to:

ilX
j=il�1+1

Y �j
d
=

ilX
j=il�1+1

F�1Xj (Ul) ; l = 1; 2; : : : ; k: (19)

Using Theorem 4, we then �nd that (19) implies�
Y �il�1+1; Y

�
il�1+2

; : : : ; Y �il

�
d
=
�
F�1Xil�1+1

(Ul) ; F
�1
Xil�1+2

(Ul) ; : : : ; F
�1
Xil
(Ul)

�
; l = 1; 2; : : : ; k:

13



By de�nition, the subvectors
�
Y �il�1+1; Y

�
il�1+2

; : : : ; Y �il

�
; l = 1; 2; : : : ; k are all independent.

We can now conclude that Y � d
= Z:

Note that the information about the independence between groups of r.v.�s allows us
to improve the comonotonic upper bound. Indeed, one has that

nX
j=1

Xj �cx
i1X
j=1

F�1Xj (U1) +

i2X
j=i1+1

F�1Xj (U2) + : : :+

ikX
j=ik�1+1

F�1Xj (Uk)

�cx
nX
j=1

F�1Xj (U) ;

where U; U1; U2; : : : ; Uk are independent uniform r.v.�s.

3.4 A simple proof for Theorem 6

In order to prove Theorem 6, it is only required that the marginal distributions of the
vector X have �nite mean. However, if we additionally assume that also the marginal
variances are �nite, we can give a more direct proof of this theorem. To be more precise,
the most di¢ cult step in the proof is the following:

SY �
d
= SZ =) Y �

d
= Z, (20)

where Z is de�ned by (14). We now provide an alternative proof for implication (20).

From SY �
d
= SZ , we �nd that

Var [SY � ] = Var [SZ ] ;

which can be rewritten as

kX
l=1

0@Var
24 ilX
j=il�1+1

F�1Xj (Ul)

35�Var
24 ilX
j=il�1+1

Y �j

351A = 0: (21)

From the convex order relation (18), we �nd

Var

24 ilX
j=il�1+1

F�1Xj (Ul)

35�Var" ilX
j=il+1

Y �j

#
� 0; for l = 1; 2; : : : ; k: (22)

From inequality (22) we �nd that (21) can only hold if

Var

24 ilX
j=il�1+1

F�1Xj (Ul)

35 = Var

"
ilX

j=il+1

Y �j

#
; l = 1; 2; : : : ; k; : (23)
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Note that
�
F�1Xil�1+1

(Ul) ; F
�1
Xil�1+2

(Ul) ; : : : ; F
�1
Xil
(Ul)

�
is the comonotonic modi�cation of�

Y �il�1+1; Y
�
il�1+2

; : : : ; Y �il

�
. Using Theorem 4, we then �nd that (23) implies�

Y �il�1+1; Y
�
il�1+2

; : : : ; Y �il

�
d
=
�
F�1Xil�1+1

(Ul) ; F
�1
Xil�1+2

(Ul) ; : : : ; F
�1
Xil
(Ul)

�
; l = 1; 2; : : : ; k:

By de�nition, the subvectors
�
Y �il�1+1; Y

�
il�1+2

; : : : ; Y �il

�
; l = 1; 2; : : : ; k are all independent.

We can now conclude that Y � d
= Z:

4 Distortion risk measures for sums of lognormals

In this section we make a particular distributional choice for the marginals. we consider
the situation where the random variables X1; X2; : : : ; Xn are lognormal distributed, i.e.:

Xi = eYi ; i = 1; 2; : : : ; n: (24)

The random vector (Y1; Y2; : : : ; Yn) is multivariate normal with marginals given by

Yi
d
= N

�
�i; �

2
i

�
; i = 1; 2; : : : ; n

and correlation given by
�i;j = Corr [Yi; Yj] ; i 6= j:

The sum S is de�ned as

SX = X1 +X2 + : : :+Xn;

and is a sum of lognormal random variables. In this section we drop the subscript X if
no confusion is possible and write S instead of SX :

Although no explicit expression for the cdf FS of S exists, the �rst three moments of
S are given in closed form. Indeed, introduce the following notation

mi = E
�
Si
�
; for i = 1; 2; 3:

Then we have that

m1 =

nX
i=1

E [Xi] ; (25)

m2 =
nX
i=1

nX
j=1

E [Xi]E [Xj] e�i;j�i�j ; (26)

m3 =

nX
i=1

nX
j=1

nX
k=1

E [Xi]E [Xj]E [Xk] e�i;j�i�je�i;k�i�ke�j;k�j�k ; (27)
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and

E [Xi] = e�i+
��ei
2 ; for i = 1; 2; : : : ; n:

This Gaussian copula model with lognormal marginals is popular in practice because
of its mathematical tractability.

Together with the subadditivity property we �nd that the following inequalities hold
for a distortion risk measure �g with concave distortion function g :

�g [S] � �g

"
nX
i=1

Zi

#
� �g [Sc] ;

where S is the aggregated risk, Sc is the comonotonic sum and
nX
i=1

Zi is the reduced convex

bound de�ned in Theorem 6 . The quantity �g [S] can be interpreted as the aggregated
risk, measured through the distortion risk measure �g: If no information about the copula
of (X1; X2; : : : ; Xn) is available, �g [S] cannot be de�ned and the worst-case situation is
characterized by the comonotonic sum Sc. The corresponding risk number is captured
in the quantity �g [Sc] : Adding information about the independent groups allows for a

reduction of the worst-case situation, which is now given by �g

"
nX
i=1

Zi

#
:

In this section, we consider two possible choices for the distortion risk measures, TVaR
and WT. For the lognormal marginals Xi; the TVaR and the Wang transform are given
in closed form

TVaRp [Xi] = e�i+
�2i
2
� (�i � ��1 (p))

1� p ;

WTp [Xi] = e�i+
�2i
2
+�i�

�1(p):

In case no dependence information is provided, the comonotonic upper bound Sc is
the best convex bound we can use. Using the comonotonic additivity property (8), we
�nd that

TVaRp [Sc] =
nX
i=1

e�i+
�2i
2
� (�i � ��1 (p))

1� p ; (28)

WTp [Sc] =
nX
i=1

e�i+
�2i
2
+�i�

�1(p); (29)

and
TVaRp [S] � TVaRp [Sc] and WTp [S] �WTp [Sc] :
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4.1 The convex upper bound with dependence information

Consider the setup of Section 3, i.e., the random variablesX1; X2; : : : ; Xn are now assumed
to be divided into k independent groups. The maximal convex upper bound including
this additional dependence information is now given by:

S
(k)
Z = Z1 + Z2 + : : :+ Zn;

where the random vector Z is de�ned in (14). Because Xi is lognormal distributed, also
Zi is lognormal distributed with the same parameters:

logZi = N
�
�i; �

2
i

�
; i = 1; 2; : : : ; n:

However, the correlation matrix of the log-returns is di¤erent for Z than for X: Indeed,
we now have that

Corr [logZi; logZj] =
�
1 There is a group l such that i; j 2 l;
0 else.

If we denote this correlation matrix by R; we �nd

R =

0BBBBBBBBBBBBBBBBBBBBBBBB@

1:::i1z }| {
1 � � � 1
...
. . .

...
1 � � � 1

0 0 � � � 0

0

i1+1:::i2z }| {
1 � � � 1
...
. . .

...
1 � � � 1

0 � � � 0

...
...

. . .
...

0 0 0 � � �

ik�1+1:::nz }| {
1 � � � 1
...
. . .

...
1 � � � 1

1CCCCCCCCCCCCCCCCCCCCCCCCA
We determine the distortion risk measure �g with concave g for the improved upper bound
S
(k)
Z giving an improvement of the worst-case aggregated risk:

�g [S] � �g [SZ ] < �g [Sc] :
If we can determine �g [Xi] ; the comonotonic upper bound �g [Sc] can be determined using

the decomposition formula (8). In order to determine �g
h
S
(k)
Z

i
, we have to determine a

risk measure for a sum of lognormal random variables with known correlation matrix.
This can be done using Monte-Carlo simulation or by using a numerical approximation.
A possible approximation methodology yielding closed form expressions for �g [SZ ] is
using a moment-matching method to approximate the sum SZ by a shifted lognormal
random variable having the same �rst three moments; see Brigo et al. (2004) and Linders
& Schoutens (2015). Another methodology for deriving closed form approximations for
�g [SZ ] is by employing the theory of comonotonicity; see Kaas et al. (2000) and Valdez
et al. (2009).
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4.2 Numerical illustration

Consider the situation where n = 100 and each Xi is lognormal distributed with �i = 0
and �i = 1: In case we have k independent groups, we can determine the improved convex
bound �g

h
S
(k)
Z

i
: We consider the situations where k = 2; 5; 10 and 50: The improvement

"
(k)
p is de�ned as

"(k)p =
�g [S

c]� �g
h
S
(k)
Z

i
�g [Sc]

:

The improvement "(k)p indicates how much (expressed in percentages) the worst-case sce-
nario improves when we add the information about the k independent groups.

The comonotonic and the improved upper bound are determined for TVaR and the
Wang Transform. The comonotonic upper bounds TVaRp [Sc] and WTp [Sc] follows di-

rectly from expressions (28) and (29), respectively. The improved bounds TVaRp
h
S
(k)
Z

i
and WTp

h
S
(k)
Z

i
are determined using the moment-matching procedure. The results for

the TVaR and the Wang transform are shown in Figures 1 and 2, respectively. The
comonotonic bound (circles) corresponds with the worst-case risk measure if no depen-
dence information is available. The bigger k; the more dependence information is revealed
and hence, we observe that the worst-case risk measure with dependence information is
decreasing in k: A similar conclusion can be drawn when we look at the improvements.
The improvement is larger for larger values of k: From the results we can conclude that
dividing the risks in only two independent groups already leads to an improvement of
more than 10%.
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