Why adolescents with ADHD take risks

Biological, cognitive and social mechanisms

Dekkers, T.J.

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Other

Citation for published version (APA):
Dekkers, T. J. (2020). Why adolescents with ADHD take risks: Biological, cognitive and social mechanisms.
Decision-making deficits in adolescents with and without Attention-Deficit/Hyperactivity Disorder (ADHD): an experimental assessment of associated mechanisms

Abstract

Adolescents with Attention-Deficit/Hyperactivity Disorder (ADHD) demonstrate increased levels of real-life risk-taking behavior like substance abuse and reckless behavior in traffic, which potentially originates in decision-making deficits. Using experimental gambling tasks, the current study investigated three potential underlying mechanisms: (1) risky vs. suboptimal decision making, (2) the complexity of decision-making strategies and (3) the influence of feedback. Participants were 181 male adolescents (81 ADHD, 100 Typically Developing (TD); \(M_{\text{age}} = 15.1 \) years). First, we addressed a common confound in many gambling tasks by disentangling risk seeking from suboptimal decision making, and found that ADHD-related decision-making deficits do not originate in increased risk seeking but in suboptimal decision making. Second, we assessed decision-making strategies with a Bayesian latent mixture analysis and found that ADHD-related decision-making deficits are characterized by the use of less complex strategies. That is, adolescents with ADHD, relative to TD adolescents, less often adopted strategies in which all characteristics relevant to make an optimal decision were integrated. Third, we administered two gambling task conditions with feedback in which adolescents experience the outcomes of their decisions and found that adolescents with ADHD performed worse relative to TD adolescents on both conditions. Altogether, this set of studies demonstrated consistent decision-making deficits in adolescents with ADHD: The use of less complex decision-making strategies may cause suboptimal decision making, both in situations with and without direct feedback on performance.

Keywords Attention-deficit/hyperactivity disorder (ADHD); decision making; adolescence; risk taking; strategies.

1 These adolescents also participated in the studies described in chapters 7 and 8.
DM deficits in ADHD: experimental assessments

Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is a heritable neurodevelopmental disorder characterized by excessive inattention, impulsivity and hyperactivity, causing clinically significant impairment across settings (American Psychiatric Association, 2013). This impairment is reflected by many ADHD-related adverse health outcomes (Nigg, 2013), among which risk-taking behavior (RTB). ADHD is associated with many forms of RTB, such as risky driving, substance abuse, gambling, criminal behavior and sexual RTB (see Pollak, Dekkers, Shoham, & Huizenga, 2019, for a review). Estimated life expectancy is lower in individuals with ADHD relative to individuals without ADHD (Barkley & Fischer, 2018), which can be partly explained by these increased levels of RTB. Additionally, ADHD and related problems put a high financial burden on society (Zhao et al., 2019). For these reasons, it is of pivotal importance to elucidate underlying mechanisms of ADHD-related RTB, to better understand causes of RTB and ultimately improve interventions targeting RTB.

Experimental gambling task paradigms are often used to assess risk taking. The advantage of these tasks, in comparison to real-life risk-taking measures, is the possibility to isolate and assess underlying mechanisms. A recent meta-analysis aggregating all studies that compared individuals with ADHD to controls on gambling tasks revealed that ADHD groups engaged in more risky decision making than control groups (Dekkers, Popma, Agelink van Rentergem, Bexkens, & Huizenga, 2016), which aligns with real-life findings.

Various mechanisms are presumed to explain this risky decision making in ADHD. In the current study we investigate three mechanisms of special interest: (i) risk seeking vs. suboptimal decision making, (2) the complexity of decision-making strategies and (3) the influence of feedback. For each of these mechanisms, we use several new versions of a well-established gambling task (i.e., Gambling Machine Task (GMT); Jansen, van Duijvenvoorde, & Huizenga, 2012; see Figure 1).
Chapter 5

Figure 1. An example of a Gambling Machine Task (GMT) item. Participants choose between two gambling machines. A “loss probability” item is depicted: both gambling machines have a certain gain and probabilistic losses. Participants always receive the certain gain on the gambling machine, and additionally receive a probabilistic loss based upon a random selection by the computer of one of the ten balls in the gambling machine.

1. Risky vs. suboptimal decision making

Risk taking is defined as “engagement in behaviors that are associated with some probability of undesirable results” (Boyer, 2006). In decision making literature, choosing the option with the highest range of outcomes (i.e., the highest standard deviation of expected outcomes) is considered risky. In many gambling tasks, the risky option is also the suboptimal option in terms of mean expected outcomes (i.e., expected value). It is therefore impossible to determine whether a risky decision reflects risk seeking or a suboptimal decision (see Schonberg, Fox, & Poldrack, 2011, for a comprehensive review on different definitions of risk). This distinction is important: Many real-life examples exist in which risk and EV are negatively related (e.g., reckless behavior in traffic may result in a higher range of outcomes than cautious behavior, and is most probably also

2 Expected Value (EV) = (gain probability × gain amount) – (loss probability × loss amount). Risk = √(gain probability × (gain amount - EV)^2 + loss probability × (loss amount - EV)^2). Note: loss amount is an absolute value.
related to a lower EV as for most people the costs of a serious traffic accident outweigh the joy of speeding), but in some cases the risky alternative may be the optimal alternative (e.g., investing money instead of saving; Dekkers et al., 2018). Because of this confound, characterizing individuals with ADHD as risk seeking may be premature, as they may also be suboptimal decision makers. Three previous efforts to, indirectly, test the difference between risky and suboptimal decision making in ADHD are worth mentioning.

First, a meta-analysis showed that groups with ADHD only engaged in more risk taking than controls on tasks where the risky option was also the suboptimal option. On tasks where risk taking was optimal, groups did not differ (Dekkers et al., 2018). Second, in an empirical study, adults with ADHD did not differ from controls when risk taking was suboptimal but, crucially, showed less risk taking than controls in a condition where risk taking was optimal (Dekkers et al., 2018). Third, adolescents with ADHD did not choose the risky option more often than controls if the risky and safe option had equal expected value (Pollak et al., 2016). These three studies, albeit indirectly, suggest that ADHD is related to suboptimal decision making, and not to risk seeking.

However, the most conclusive way to test the hypothesis that adolescents with ADHD are characterized by suboptimal, and not by risky decision making, is by adopting a task paradigm in which (1) risky vs. safe decisions are measured keeping the expected value of the options constant (as was done in earlier studies) and (2) optimal vs. suboptimal decisions are measured keeping risk constant. This second manipulation, which is crucial to disentangle risky from suboptimal decision making, has never been used in ADHD literature before. In the current study, we therefore designed a new version of the GMT. In the GMT, participants repeatedly have to make a decision between two gambling machines. To test potential differences in risk seeking, we constructed items in which two gambling machines were characterized by equal expected values and different levels of risk. To test potential differences in suboptimal decision making, we also constructed items in which the two gambling machines were characterized by equal risk but different expected values. We hypothesize (H1) that decision making in adolescents with ADHD is suboptimal but not risky (cf. Dekkers et al., 2018; Pollak et al., 2016).

3 Throughout this study, “optimal” describes the decision for the option with the highest EV.
2. Decision-making strategies

Disentangling suboptimal from risky decision making in adolescents with ADHD is an important first step in understanding their decision-making deficits. However, to better understand why adolescents with ADHD demonstrate problems in decision-making, it is crucial to identify mechanisms that drive their decision-making deficits. In the second part of this study, we therefore assessed the strategies that adolescents use in their decision making. A decision-making strategy is an information-processing approach to make a decision (Payne, 1976). Decision-making strategies may vary in their complexity. Complete integration of the amounts and probabilities related to both gains and losses (e.g., “I’ll balance the almost certain joy of a beer against the probable costs of not performing optimally in school tomorrow vs. less joy with more optimal school performance”) is considered the optimal and also the most complex decision-making strategy (Von Neumann & Morgenstern, 1944). However, other strategies are often observed (e.g., heuristic lexicographic strategies), in which information is considered sequentially (Kahneman & Tversky, 1972). Attention is directed to the most salient characteristic, and if options differ on this characteristic, a decision is made (e.g., “I’ll take a beer, because that’ll be most fun”). However, if options are similar on this characteristic, individuals consider another characteristic (e.g., “The party is equally fun with or without a beer, so I’ll choose for a soda because then I’ll perform better at school tomorrow”). Sequential decision-making strategies can vary in complexity depending on the number of characteristics considered.

Executive functions (EF) like inhibition and working memory are crucial in decision making (Bexkens et al., 2016; DeStefano & LeFevre, 2004; Stewart, 2009). That is, a lack of inhibition may lead to impulsively choosing an option based on one particular characteristic while ignoring potentially relevant information. Moreover, working memory is required to calculate the option with the highest expected value (Brand et al., 2007). As ADHD is consistently associated with deficits in both inhibition (Barkley, 1997; Lijffijt, Kenemans, Verbaten, & van Engeland, 2005; Willcutt et al., 2005) and working memory (Kasper et al., 2012; Martinussen et al., 2005; Willcutt et al., 2005), the complexity of decision making may be affected.

In the second part of the current study, using another version of the GMT, we compare decision-making strategies of adolescents with and without ADHD. We hypothesize that
(H2) adolescents with ADHD use less complex, less integrative decision-making strategies than TD adolescents.

3. Influence of feedback
The first two parts of this study are focused on situations in which participants do not experience consequences of their decision. However, in real life decisions are often followed by immediate experience of the consequences (henceforth referred to as feedback). Feedback may be processed differentially in adolescents with ADHD relative to TD adolescents. One recent study comparing adolescents with and without ADHD on a gambling task with and without feedback revealed that poorer decision making was observed in adolescents with ADHD as compared to TD controls, but only if feedback was provided (Pollak & Shoham, 2015). This finding resembles literature demonstrating differential feedback processing in ADHD (Crone et al., 2003; Luman, Tripp, et al., 2010; Sonuga-Barke & Fairchild, 2012).

In gambling tasks feedback is often delivered on both gains and losses. However, for a large proportion of real-life risk-taking behaviors (e.g., substance use, unsafe sex), positive and negative feedback are delivered at different moments, with positive feedback often manifesting earlier and negative feedback only being present on the long-term. In this respect, a gambling task with only direct feedback on gains has higher ecological validity. In the current study, we therefore administered a gambling task with full feedback on both gains and on losses and a gambling task with partial feedback, only on gains. Adolescents with ADHD may be particularly sensitive to the latter manipulation, given two lines of evidence. First, ADHD may be characterized by an enhanced focus on gains: individuals with ADHD showed a diminished neural response when anticipating gains (Scheres et al., 2007; Ströhle et al., 2008), which may lead to compensatory gain seeking behavior. Second, ADHD is characterized by delay aversion, meaning that small immediate gains are preferred over larger delayed gains (Jackson & MacKillop, 2016; Solanto et al., 2001). Offering immediate feedback only on gains may therefore guide adolescents with ADHD towards focusing on the immediate gain. For these two reasons, we hypothesize that (H3) the difference in performance between adolescents with ADHD and TD adolescents is larger in the gambling task with partial feedback (i.e., only feedback on gains) than in the gambling task with full feedback. To test this hypothesis, a new version of the GMT is used.
Methods

Participants
Participants were 81 adolescents with ADHD and 100 typically developing (TD) adolescents (all boys4), 12-19 years old (M=15.07, SD=1.57). Participants with ADHD were included when meeting the following criteria: (a) a previous (lifetime) ADHD classification by a licensed psychologist or psychiatrist and (b) an ADHD diagnosis (all presentations) based on the Diagnostic Interview Schedule for Children (DISC; Shaffer, Fisher, Lucas, Dulcan, & Schwab-Stone, 2000), a structured DSM-based interview that was administered to one of the parents. ADHD participants were recruited via mental healthcare institutions (62%), special education (4%), the Dutch parents’ association for ADHD (21%) and regular education (13%); all TD adolescents were recruited via regular education. The majority of the ADHD group (72%) was taking stimulant medication at the time of the investigation. ADHD participants using methylphenidate discontinued medication 24 hours before testing to reach total wash-out (Greenhill & Ford, 1998). For participants using dexamphetamine, the required wash-out period was 48 hours (Wong & Stevens, 2012). Adolescents using atomoxetine, clonidine or antipsychotics were excluded. For the TD group, participants were included when (a) no past ADHD, ODD or CD diagnosis was reported by parents/caretakers and (b) participants had normal range scores on the Inattention, Hyperactivity/Impulsivity, ODD and CD scales of the parent-report DBDRS. In both groups, participants were excluded when their estimated IQ was below 80. Informed consent was provided by the participants and their legal caretakers, and the study was approved by the university’s institutional review board.

Measures
Gambling Machine Task (GMT)
The GMT (Jansen et al., 2012) is a computerized gambling task, in which participants choose the one of two gambling machines they think is more advantageous. The two gambling machines can differ in probabilities and amounts of gains and losses. It is explained to the participant that the amount of gain that is depicted on the gambling machine is certain, and that one of the ten balls inside the machine will be randomly drawn, some of which will result in a loss (see Supplementary Materials 1 for full

4 Adolescents took part in a multi-experiment study. For another, yet unpublished part of this study, we measured salivary hormone levels (among which testosterone), and recruiting girls would have required a substantially larger sample size.
instructions). In this study, several versions of the GMT were used depending on the three main research questions. Differences between these versions are explained below; item characteristics can be found in Table 1, specific instructions and more detailed graphical examples of all GMT versions can be found in the Supplementary Materials 1/2.

1. Risky vs. suboptimal decision making GMT

First, to investigate risky decision making without the confounding influence of EV differences between options, we created 15 items in which both options had identical EV's, but different levels of riskiness (see Table 1, block I for item characteristics). The proportion of risky choices was used as outcome measure. Second, to investigate (sub)optimal decision making without the confounding influence of differences in riskiness, we created 10 items in which both options differed in EV, but had identical levels of riskiness (see Table 1, block II for item characteristics). The proportion of optimal choices was used as outcome measure.

These 25 items were presented both in a loss-probability version and a gain-probability version. In the loss-probability version each gambling machine is associated with a certain gain, and losses are probabilistic (as in Figure 1). The gain-probability version is mirrored to the loss-probability version: loss is certain, gains are probabilistic. Participants were forced to choose one of the two gambling machines and they did not experience outcomes of their decisions. The order of the versions of the GMT was counterbalanced, and the order of the 25 items within each version and the positioning of the response options (i.e., right or left) were randomized over all participants.

2. Decision-strategy GMT

To test whether adolescents with ADHD use less complex decision-making strategies relative to TD adolescents, a decision-strategy GMT was used (Bexkens et al., 2016; Jansen et al., 2012; see Table 1, Block III for all item characteristics). The 40 items were constructed in such a way that 18 potential decision-making strategies (see Table 2) could be derived from the response patterns, as all strategies yielded unique response patterns. The strategies varied in complexity. Simple strategies focus only on one characteristic, more complex strategies focus on several characteristics sequentially (e.g., focus on gain amount first, if equal across machines then focus on loss amount). The most complex strategies involve partial or total integration. Participants showing partial integration use the semi-integrative decision-making strategy: multiplying the amount and frequency
of loss, and only if this is equal across machines consider amount of gains next (for gain-
probability items this is mirrored: multiply amount and frequency of gains, if equal across
machines then consider amount of loss). Total integration is established if participants
choose according to the EV: frequency of gain \times \text{amount of gain} - \text{frequency of loss} \times
\text{amount of loss}. Because of the low frequency of occurrence of the simple strategies in the
data, the three most simple decision-making strategies (i.e., guessing, one-dimensional
and two-dimensional) were merged into one complexity level, resulting in four different
complexity levels (Table 2).

Different to the first part of the study, participants now had three response options
(machine A, machine B and doesn’t matter). The ‘doesn’t matter’ option was required to
assess strategy use, as it would be selected when participants perceived both options in
an item as equally advantageous. Again, both a loss-probability and a gain-probability
version were administered, and adolescents did not experience feedback on their
decisions. The order of the versions of the GMT was counterbalanced and the order in
which the items were administered was identical for all participants.

3. Feedback GMT
To test whether the difference in performance between adolescents with ADHD and
TD adolescents is larger with partial feedback (i.e., only feedback on gains) than with
full feedback, two different GMT conditions were used: one with full feedback, and
one with partial feedback. In the full-feedback condition, the balls were shuffled
after the participant made his decision. One of the ten balls was randomly selected
(i.e., participants could see the shuffling of the balls), and the corresponding outcome
was presented to the participant. In this condition, the full outcome (i.e., the gain and
the potential loss) was presented: gains were presented by golden coins that appeared
on screen, losses by red coins. Second, in the partial-feedback condition, the selected
gambling machine was covered once the balls were shuffled. Then, participants were only
presented with the gains associated with their decision (i.e., the certain gain that was
associated with their selection), indicated by golden coins that appeared on their screen
after making a decision. However, participants were instructed that the computer would
remember their decision, and that it was possible that a red ball had been selected, which
was associated with a loss that was not immediately shown to the participant.
DM deficits in ADHD: experimental assessments

<table>
<thead>
<tr>
<th>FL(a)</th>
<th>FL(b)</th>
<th>CG(a)</th>
<th>CG(b)</th>
<th>AL(a)</th>
<th>AL(b)</th>
<th>EV(a)</th>
<th>EV(b)</th>
<th>FG(a)</th>
<th>FG(b)</th>
<th>CL(a)</th>
<th>CL(b)</th>
<th>AG(a)</th>
<th>AG(b)</th>
<th>EV(a)</th>
<th>EV(b)</th>
<th>Risk(a)</th>
<th>Risk(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.1</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>-10</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.1</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>10</td>
<td>-1</td>
<td>-1</td>
<td>2.35</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.5</td>
<td>2</td>
<td>2</td>
<td>-30</td>
<td>-6</td>
<td>-1</td>
<td>-1</td>
<td>0.1</td>
<td>0.5</td>
<td>-2</td>
<td>-2</td>
<td>30</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>9.65</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.1</td>
<td>2</td>
<td>2</td>
<td>-4</td>
<td>-20</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.1</td>
<td>-2</td>
<td>-2</td>
<td>4</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>3.46</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>0.5</td>
<td>4</td>
<td>2</td>
<td>-6</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>-4</td>
<td>-2</td>
<td>6</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>5.79</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td>2</td>
<td>4</td>
<td>-6</td>
<td>-10</td>
<td>-1</td>
<td>-1</td>
<td>0.5</td>
<td>0.5</td>
<td>-2</td>
<td>-4</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>4.64</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
<td>4</td>
<td>2</td>
<td>-8</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>-4</td>
<td>-2</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>6.93</td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td>0.5</td>
<td>2</td>
<td>6</td>
<td>-10</td>
<td>-10</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>0.5</td>
<td>-2</td>
<td>-6</td>
<td>10</td>
<td>10</td>
<td>-1</td>
<td>-1</td>
<td>3.62</td>
</tr>
<tr>
<td>8</td>
<td>0.5</td>
<td>0.1</td>
<td>9</td>
<td>1</td>
<td>-20</td>
<td>-20</td>
<td>-1</td>
<td>-1</td>
<td>0.5</td>
<td>0.1</td>
<td>-9</td>
<td>-1</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>16.75</td>
</tr>
<tr>
<td>9</td>
<td>0.1</td>
<td>0.5</td>
<td>2</td>
<td>10</td>
<td>-20</td>
<td>-20</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.5</td>
<td>-2</td>
<td>-10</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>6.63</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>0.5</td>
<td>6</td>
<td>3</td>
<td>-35</td>
<td>-15</td>
<td>1.5</td>
<td>1.5</td>
<td>0.1</td>
<td>0.1</td>
<td>-5</td>
<td>-9</td>
<td>35</td>
<td>15</td>
<td>-1.5</td>
<td>-1.5</td>
<td>12.06</td>
</tr>
<tr>
<td>11</td>
<td>0.1</td>
<td>0.5</td>
<td>5</td>
<td>8</td>
<td>-45</td>
<td>-15</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1</td>
<td>0.5</td>
<td>-5</td>
<td>-8</td>
<td>45</td>
<td>15</td>
<td>-0.5</td>
<td>-0.5</td>
<td>15.08</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>0.1</td>
<td>7</td>
<td>4</td>
<td>-15</td>
<td>-45</td>
<td>-0.5</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.1</td>
<td>-7</td>
<td>-4</td>
<td>15</td>
<td>45</td>
<td>0.5</td>
<td>0.5</td>
<td>12.70</td>
</tr>
<tr>
<td>13</td>
<td>0.5</td>
<td>0.2</td>
<td>7</td>
<td>3</td>
<td>-20</td>
<td>-30</td>
<td>-3</td>
<td>-3</td>
<td>0.5</td>
<td>0.2</td>
<td>-7</td>
<td>-3</td>
<td>20</td>
<td>30</td>
<td>3</td>
<td>3</td>
<td>15.84</td>
</tr>
<tr>
<td>14</td>
<td>0.5</td>
<td>0.2</td>
<td>5</td>
<td>1</td>
<td>-20</td>
<td>-30</td>
<td>-5</td>
<td>-5</td>
<td>0.5</td>
<td>0.2</td>
<td>-5</td>
<td>-1</td>
<td>20</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>14.58</td>
</tr>
<tr>
<td>15</td>
<td>0.4</td>
<td>0.1</td>
<td>7</td>
<td>4</td>
<td>-20</td>
<td>-50</td>
<td>-1</td>
<td>-1</td>
<td>0.4</td>
<td>0.1</td>
<td>-7</td>
<td>-4</td>
<td>20</td>
<td>50</td>
<td>1</td>
<td>1</td>
<td>14.44</td>
</tr>
</tbody>
</table>

Block I: Items used to assess risky vs safe decision making (i.e., the EV of both options is always equal)

Block II: Items used to assess optimal vs suboptimal decision making (i.e., the riskiness of both options is always equal)
Table 1.

<table>
<thead>
<tr>
<th>Block I: Items used to assign decision-making strategies</th>
<th>Block IV: Items used in GMT versions with feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.1 0.1 0.1 0.1 4 2 -50 -10 -1 1 0.1 0.1 -4 -2 50 10</td>
<td>1 0.5 0.1 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>2 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>2 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>3 0.1 0.1 0.1 0.1 4 2 -50 -10 -1 1 0.1 0.1 -4 -2 50 10</td>
<td>3 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>4 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>4 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>5 0.1 0.1 0.1 0.1 4 2 -50 -10 -1 1 0.1 0.1 -4 -2 50 10</td>
<td>5 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>6 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>6 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>7 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>7 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>8 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>8 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>9 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>9 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>10 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>10 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>11 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>11 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>12 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>12 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>13 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>13 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>14 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>14 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>15 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>15 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>16 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>16 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>17 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>17 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>18 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>18 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>19 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>19 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
<tr>
<td>20 0.1 0.5 0.5 0.5 4 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
<td>20 0.5 0.5 0.5 0.5 2 2 -10 -10 -10 -2 10 10 10 10 10 10</td>
</tr>
</tbody>
</table>

Abbreviations: AG = Amount of Gain; AL = Amount of Loss; CG = Certain Gain; CL = Certain Loss; EV = Expected Value; FG = Frequency of Gain; FL = Frequency of Loss.

The expected value of each option can be computed by the following formulae: $EV = CG + (FG \times AL)$ for loss-probability items and $EV = CL + (FG \times AG)$ for gain-probability items. Risk is calculated by the following formula: $\sqrt{(gain\ probability \times (gain\ amount – EV) ^2 + loss\ probability \times (loss\ amount – EV) ^2)}$. Note that riskiness of loss- and gain-probability items is identical. The items that were used to assign decision-making strategies were all assessed twice. The items that were used in the feedback conditions of the GMT were all administered 30 times in succession.
Table 2. Possible decision strategies on the Gambling Machine Task (GMT; Jansen et al., 2012). Strategies range from the most basic (i.e., guessing) to simple (i.e., considering one characteristic only), to sequential (i.e., considering several characteristics sequentially), to semi-integrative (i.e., sequentially considering expected loss, then certain gain), to integrative (i.e., considering expected value). Considered characteristics are shown; CG = certain gain, AL = amount loss, FL = frequency loss (i.e., probability of loss). Note that the characteristics are based on the loss-probability version of the GMT, but these apply to the gain-probability items in a similar way (FL becomes FG, CG becomes CL, AL becomes AG). Complexity is indicated in parentheses.

Because the assessment of the influence of feedback on decision making requires a substantial larger number of items than the GMT versions used in the first two parts of this study (Jansen, van Duijvenvoorde, & Huizenga, 2013), these GMT conditions with feedback were only administered using the loss-probability version of the task. In both feedback conditions, participants were forced to choose between the left and right gambling machine. Four different items were all presented 30 times in succession (cf. Jansen et al., 2013), resulting in 120 items in total (see Table 1, Block IV for all item characteristics). The order in which the four blocks of 30 items were presented and the order of the full vs. partial feedback condition was counterbalanced over all participants.
The outcome variable was the number of optimal choices (i.e., choosing the option with the highest EV), potentially ranging from 0 to 120.

Disruptive Behavior Disorder Rating Scale (DBDRS)

The Dutch translation of the parent-report version of the DBDRS (Oosterlaan, Scheres, Antrop, Roeyers, & Sergeant, 2000; Pelham, Gnagy, Greenslade, & Milich, 1992) was used to screen for ADHD, ODD (Oppositional Defiant Disorder) and CD (Conduct Disorder) symptoms. The DBDRS has 42 items which are answered on a 4-point Likert-scale and consists of 4 subscales: inattention, hyperactivity/impulsivity, ODD and CD. The DBDRS scores on these subscales were classified as normal, subclinical (80th – 95th percentile) or clinical (95th – 100th percentile). Psychometric properties are adequate (Oosterlaan et al., 2000).

Diagnostic Interview Schedule for Children (DISC-IV)

For diagnostic assessment of the ADHD group, the Dutch translation of the DISC-IV (Ferdinand & van der Ende, 1998; Shaffer et al., 2000) was administered in one of the parents/caretakers. The DISC-IV is a DSM-IV based structured diagnostic interview, consisting of six sections: disruptive behavioral disorders, anxiety disorders, mood disorders, schizophrenia, substance use disorders, and miscellaneous disorders. Psychometric properties of the DISC-IV are good and parent report was preferred over child-report as it has superior test-retest reliability (Shaffer et al., 2000). Administration of the DISC-IV took approximately 4 hours.

Intelligence

To estimate intelligence in adolescents 12 to 16 years old, a short version of the Dutch Wechsler Intelligence Scale for Children-III (WISC-III-NL; Kort et al., 2002; Wechsler, 1991) was used, consisting of subtests Block Design and Vocabulary. For adolescents older than 16 years, subtests Vocabulary and Matrix Reasoning of the Dutch Wechsler Adult Intelligence Scale-IV (WAIS-IV; Wechsler, 2008) were used. In both cases, these short forms are reliable and correlate highly with total intelligence (Pierson, Kilmer, Rothlisberg, & McIntosh, 2012; Sattler, 2001).

Socio-economic status

Socio-economic status (SES) was based on the educational level of both parents, using Verhage’s seven-point classification schedule (Verhage, 1964). Higher scores indicate higher SES: A score of 1 indicated that a parent received a maximum of 6 years of primary
education, a score of 7 indicated that a parent received scientific education (master or doctoral university degree).

Procedure
Participants were tested during three sessions. Parents filled out the DBDRS and answered questions about SES and ethnicity online before the first session. In the first session, participants performed the intelligence tests and parallel to this session, in the ADHD group, the DISC was administered to one of the parents. In the second and third session, three different GMT’s were administered per session, along with several other cognitive tasks and questionnaires, which were irrelevant for the current study. The order of the GMT’s was counterbalanced. Participants were explicitly instructed that one of their decisions on each GMT would be selected afterwards to determine their reward (also see task instructions in Supplementary Materials 1). On average, participants received 40 euros for their participation in the three test sessions.

Data-analysis
To test the first hypothesis (risky vs. suboptimal decision making), bootstrapped regression analyses were used to assess whether group (ADHD versus TD) predicted risky/suboptimal decision making. Intelligence, age and SES were all included in these models as covariates (main effects only), as these variables have been shown to influence decision making (e.g., Bexkens et al., 2016; Jansen, van Duijvenvoorde, & Huizenga, 2013). Separate analyses were performed for the loss- and gain-probability versions of the GMT.

To test the second hypothesis (decision-making strategies), a model-based latent-mixture analysis using Bayesian inference was used to assign strategies to participants’ response patterns. The number of strategies and the number of adolescents assigned to these strategies were derived simultaneously, and adolescents were assigned to the strategy that predicted their response pattern best (see Steingroever, Jepma, Lee, Jansen, & Huizenga, 2019 for more details on this procedure; R-code on https://osf.io/84uf2/). Next, these strategies were categorized into 4 levels of complexity. Using ordinal logistic regression, we tested whether groups differed in terms of complexity of their decision-making strategy. Again, main effects of intelligence, age and SES were included in the models. Correlation analyses between strategy complexity and reaction times were performed as validity check.
To test the third hypothesis (influence of feedback), a repeated measures ANOVA was performed on the number of optimal decisions, with GMT condition as within-subjects independent variable (full vs. partial feedback), group as independent variable and intelligence, age and SES as covariates.

Scores on outcome variables deviating more than three SD’s from the mean were defined as outliers (Howell, 1998). In case of outliers, both analyses with and without outliers were reported. A power analysis indicated that for regression analyses with 4 predictors, an estimated medium effect size, power of .80 and $\alpha = .05$, a sample size of 85 is sufficient. Power analysis for ordinal regression is complicated: according to guidelines on power for logistic regression (Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996), 160 participants are required for our analysis with 4 predictors and assuming an even distribution of participants over the 4 categories of decision-making complexity. A sample size of 34 is sufficient for the repeated measures ANOVA.

Results

Participant characteristics
Participants were 181 adolescent boys between 12 and 19 years old, 81 with ADHD and 100 TD controls (see Table 3 for sample characteristics). Groups did not differ on age, IQ, SES and ethnicity. Scores on all DBDRS subscales were significantly higher for the ADHD group relative to the TD control group. Comorbidity was frequently observed in the ADHD group: 31% of the adolescents met criteria for either ODD and/or CD, 30% for at least one anxiety disorder, and 16% for a tic disorder (see Table 3 for more details on comorbidity).

Hypothesis I: Risky vs. suboptimal decision making
Figure 2 shows the percentage of risky choices on the items with different riskiness and equal expected values across options, as well as the percentage of optimal choices on the items with equal riskiness but different expected values across options.

As hypothesized, on items in which the risky and the safe option were equally advantageous, there was no difference in risky decision making between adolescents with and without ADHD (see Table 4 for test statistics). There was also no effect of age, IQ and SES on risky
Table 3. Sample characteristics. Note: non-parametric tests were used when assumptions were violated. DISC was only administered in the ADHD group. Abbreviations: TD Typically Developing, SD Standard Deviation, n.s. not significant, SES Socio-Economic Status, DBDRS Disruptive Behavior Disorder Rating Scale, Hyp. Hyperactivity, Imp. Impulsivity, ODD Oppositional Defiant Disorder, CD Conduct Disorder, DISC Diagnostic Interview Schedule for Children, C Combined presentation, I Inattentive presentation, H Hyperactive/impulsive presentation.

<table>
<thead>
<tr>
<th></th>
<th>ADHD (N=81)</th>
<th>TD (N=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (SD)</td>
<td>14.99 (1.79)</td>
<td>15.14 (1.38)</td>
</tr>
<tr>
<td>IQ (SD)</td>
<td>103.38 (13.70)</td>
<td>101.92 (12.92)</td>
</tr>
<tr>
<td>SES (SD)</td>
<td>5.70 (.79)</td>
<td>5.72 (.84)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutch</td>
<td>76.5%</td>
<td>77.0%</td>
</tr>
<tr>
<td>Western</td>
<td>4.9%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Non-western</td>
<td>18.5%</td>
<td>17.0%</td>
</tr>
<tr>
<td>DBDRS Inattention</td>
<td>16.07 (1.41)</td>
<td>10.90 (1.21)</td>
</tr>
<tr>
<td>DBDRS Hyp./Imp.</td>
<td>15.19 (1.85)</td>
<td>10.58 (1.13)</td>
</tr>
<tr>
<td>DBDRS ODD</td>
<td>13.56 (2.24)</td>
<td>10.84 (1.24)</td>
</tr>
<tr>
<td>DBDRS CD</td>
<td>13.65 (2.05)</td>
<td>11.29 (1.23)</td>
</tr>
<tr>
<td>DISC ADHD Presentation (C/I/H)</td>
<td>40/39/2</td>
<td>-</td>
</tr>
<tr>
<td>DISC Disruptive Behavioral Disorders</td>
<td>31%</td>
<td>-</td>
</tr>
<tr>
<td>DISC Substance Use Disorder</td>
<td>3%</td>
<td>-</td>
</tr>
<tr>
<td>DISC Anxiety Disorder</td>
<td>30%</td>
<td>-</td>
</tr>
<tr>
<td>DISC Mood Disorder</td>
<td>6%</td>
<td>-</td>
</tr>
<tr>
<td>DISC Tic Disorder</td>
<td>16%</td>
<td>-</td>
</tr>
<tr>
<td>DISC Enuresis/Encopresis</td>
<td>1%</td>
<td>-</td>
</tr>
<tr>
<td>DISC Eating Disorder</td>
<td>1%</td>
<td>-</td>
</tr>
</tbody>
</table>

decision making. These patterns were similar for both loss- and gain-probability GMT versions. Dividing the ADHD group into subgroups with and without comorbid DBD (i.e., ODD and/or CD) revealed more risky decision making in adolescents with ADHD and comorbid DBD than in adolescents with only ADHD on the loss-probability GMT, but not on the gain-probability GMT, \(t(77) = -2.14, p = .04, d = .57\), and \(t(78) = -.38, p = .70, d = .09\), respectively. Adolescents with the combined ADHD presentation did not perform different from adolescents with the inattentive ADHD presentation on both GMT’s.

No outliers were detected on the loss-probability GMT items, and one outlier was detected on the gain-probability GMT. After excluding this outlier, results were highly similar and none of the effects changed in terms of significance.
In line with our expectations, on the items where options differed in expected value but not in riskiness, adolescents with ADHD gave the optimal response less often. Also, the number of optimal responses increased with age and IQ. There was no effect of SES (see Table 4 for test statistics). Again, these patterns were similar for both loss- and gain-probability GMT items. No differences were observed between ADHD-subgroups with and without comorbid DBD and adolescents with the combined ADHD presentation did not perform different from adolescents with the inattentive ADHD presentation.

One outlier was detected on the loss-probability items, and two outliers were detected on the gain-probability items. On the loss-probability items, the effect of group no longer reached significance after excluding this outlier ($\beta = -.13$, bootstrapped 95% CI [-.08, .00], $p = .061$), other effects were highly similar. On the gain-probability items, results were highly similar after excluding the two outliers, that is, none of the effects changed in terms of significance.
DM deficits in ADHD: experimental assessments

<table>
<thead>
<tr>
<th></th>
<th>Standardized β</th>
<th>Bootstrapped 95% CI</th>
<th>p-value</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss-probability GMT - risky choices</td>
<td></td>
<td></td>
<td></td>
<td>.029</td>
</tr>
<tr>
<td>Group</td>
<td>.01</td>
<td>-.04, .05</td>
<td>.901</td>
<td></td>
</tr>
<tr>
<td>IQ</td>
<td>.03</td>
<td>-.00, .00</td>
<td>.737</td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>.16</td>
<td>.00, .06</td>
<td>.058</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-.05</td>
<td>-.02, .01</td>
<td>.547</td>
<td></td>
</tr>
<tr>
<td>Gain-probability GMT - risky choices</td>
<td></td>
<td></td>
<td>.003</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>-.01</td>
<td>-.04, .03</td>
<td>.894</td>
<td></td>
</tr>
<tr>
<td>IQ</td>
<td>-.05</td>
<td>-.00, .00</td>
<td>.519</td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>.02</td>
<td>-.01, .02</td>
<td>.717</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-.00</td>
<td>-.01, .01</td>
<td>.942</td>
<td></td>
</tr>
<tr>
<td>Loss-probability GMT – optimal choices</td>
<td></td>
<td></td>
<td>.161</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>-.15</td>
<td>-.09, -.01</td>
<td>.038*</td>
<td></td>
</tr>
<tr>
<td>IQ</td>
<td>.23</td>
<td>.00, .00</td>
<td>.003</td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>.12</td>
<td>-.00, .05</td>
<td>.076</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>.19</td>
<td>.00, .03</td>
<td>.013</td>
<td></td>
</tr>
<tr>
<td>Gain-probability GMT – optimal choices</td>
<td></td>
<td></td>
<td>.192</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>-.17</td>
<td>-.09, -.01</td>
<td>.013</td>
<td></td>
</tr>
<tr>
<td>IQ</td>
<td>.34</td>
<td>.00, .01</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>.01</td>
<td>-.02, .03</td>
<td>.865</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>.16</td>
<td>.00, .03</td>
<td>.019</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Bootstrapped regression models for the prediction of the number of risky and number of optimal choices. Note: group was dummy coded: 0 = TD and 1 = ADHD. # indicates that this effect is no longer significant after excluding an outlier.

Hypothesis II: Decision-making strategies

A model-based latent-mixture analysis using Bayesian inference (Steingroever et al., 2019) was used to assign strategies to participants’ response patterns. Strategies were assigned to participants, based on the correspondence between the participants’ specific GMT response pattern and the response pattern predicted by the strategy. Strategies were clustered based on complexity: complexity level 1: simple (guessing, one- and two-dimensional sequential), complexity level 2: three-dimensional sequential, complexity level 3: semi-integrative, and complexity level 4: integrative. Specific assignment per group can be found in the Supplementary Materials 3. Figure 3 illustrates differences in the complexity of decision-making strategies between the ADHD group and the TD group, which were studied using ordinal logistic regression models.
Chapter 5

Figure 3. Use of decision-making strategies by complexity for the groups with and without ADHD, for both the loss-probability GMT (left) and the gain-probability GMT (right). Strategies range from simple to complex.

Loss-probability GMT

The overall fit of the ordinal logistic regression model was acceptable, $\chi^2(521) = 559.13$, $p = .12$, Nagelkerke’s pseudo $R^2 = .18$. Group predicted the complexity of the decision-making strategy, $\beta = .82$, Wald $(i) = 7.69$, $p = .006$: adolescents with ADHD demonstrated less complex decision-making strategies than controls. In the same model, IQ ($\beta = .03$, Wald $(i) = 5.99$, $p = .014$) and age ($\beta = .28$, Wald $(i) = 8.82$, $p = .003$) also predicted decision making complexity: more intelligent and older adolescents showed more complex decision making. Socio-economic status did not significantly predict decision-making complexity, $\beta = .35$, Wald $(i) = 3.50$, $p = .061$.

As a validity check, we found that decision-making complexity and reaction time were correlated, $r = .50$, $p < .001$, indicating that more complex strategies were associated with slower response times. Additional analyses showed no differences between ADHD-subgroups with and without comorbid DBD in decision-making strategy complexity, $\chi^2(3) = .06$, $p = .996$, and no differences between adolescents with the combined and the inattentive ADHD presentation, $\chi^2(3) = 5.20$, $p = .158$.

Gain-probability GMT

On the gain-probability version of the GMT the same ordinal logistic regression model yielded no significant effects, i.e., group, age, IQ and SES did not predict decision making complexity. The overall fit of the ordinal logistic regression model was acceptable, $\chi^2(533) = 548.34$, $p = .31$, Nagelkerke’s pseudo $R^2 = .07$. Again, as a validity check, we found that decision-making complexity and reaction time were correlated, $r = .40$, $p < .001$, indicating that more complex strategies were associated with slower response times.
making complexity and reaction time were correlated, \(r_s = .40, p < .001 \), indicating that more complex strategies were associated with slower response times. Additional analyses showed no differences between ADHD-subgroups with and without comorbid DBD in decision-making strategy complexity, \(\chi^2(3) = 2.97, p = .396 \), and no differences between adolescents with the combined and the inattentive ADHD presentation, \(\chi^2(3) = 1.02, p = .796 \).

Hypothesis III: full vs. partial feedback

GMT conditions with full and partial feedback were administered to establish the influence of feedback (Figure 4).

A repeated measures ANOVA with the number of optimal responses as dependent variable and GMT condition (full vs. partial feedback) as within-subjects variable, group (ADHD vs. TD) as between-subjects variable, the interaction between the two, and intelligence, age and SES as covariates revealed (1) a main effect of GMT condition, \(F(1,174) = 4.01, p = .047, \eta^2_p = .023 \), indicating that participants performed better with full feedback than with partial feedback; (2) a main effect of group, \(F(1,174) = 8.51, p < .01, \eta^2_p = .047 \), indicating that adolescents with ADHD gave less optimal responses than TD adolescents, and (3) no interaction between GMT condition and group, \(F(1,174) = .45, p = .51, \eta^2_p = .003 \), indicating that the difference between the two GMT conditions was similar for both groups. Furthermore, significant effects of intelligence and age were found, indicating that more intelligent and older participants made more optimal decisions. There was no effect of SES.
Additional analyses revealed that no differences were observed between ADHD-subgroups with and without comorbid DBD and between adolescents with the combined and the inattentive ADHD presentation on both feedback conditions. Three outliers were identified on the GMT with full feedback (none on the GMT with partial feedback). After excluding these outliers, results were highly similar and none of the effects changes in terms of significance.

Discussion

This study investigated underlying mechanisms of decision-making problems in adolescents with ADHD. Elucidating these mechanisms is important to better understand why adolescents with ADHD are often involved in real-life risk-taking behavior like substance abuse, reckless behavior in traffic, criminal behavior and risky sexual behavior (Nigg, 2013; Pollak et al., 2019), and to ultimately develop interventions that may guide adolescents towards better decision making.

First, we addressed a confound observed in most gambling task paradigms in ADHD literature: the risky option (i.e., the option that is associated with the widest range of possible outcomes) is often also the suboptimal option in terms of expected value (see Dekkers et al., 2018 for an overview on the correlation between risk and expected value in the most commonly used gambling tasks). This makes it impossible to establish which specific mechanism (i.e., risk seeking or suboptimal decision making) drives decision-making deficits. In the current study, risk seeking and suboptimal decision making were disentangled using an innovative version of the Gambling Machine Task (GMT). As expected, adolescents with ADHD demonstrated more suboptimal (i.e., more often favoring the option with the lowest expected value), but not more risky decision making relative to TD adolescents. This result aligns earlier studies that partly disentangled risky from suboptimal decision making (Dekkers et al., 2018; Pollak et al., 2016). However, the current study was the first to fully disentangle risk and expected value, as our task not only contained items with equal expected values and different risks (as was done in earlier studies), but, crucially, also contained items with different expected values and equal riskiness. The results reinforce the conclusion that risk seeking is not the mechanism behind ADHD-related decision-making problems. Accordingly, real-life risk-taking behavior observed in adolescents with ADHD may be caused by the inability to
make the most optimal decision, instead of having an intrinsic preference for behavior with a wide range of potential outcomes.

Although the finding that adolescents with ADHD are characterized by suboptimal decision making instead of risk seeking is relevant in itself, it does not indicate what factors may contribute to this. Therefore, in the second part, we investigated strategies that adolescents with and without ADHD used on the GMT. Adolescents with ADHD used less complex decision-making strategies than TD adolescents, although only in the loss-probability GMT. More specifically, relative to TD adolescents, adolescents with ADHD showed less integration of the characteristics of the decision but instead approached characteristics separately. In real life, not paying attention to all characteristics may lead to more risky decision making, especially if information about potential losses (e.g., negative consequences of substance abuse, unsafe sex, gambling addiction) is ignored. Considering parts of information regarding a decision separately, instead of integrating them, may potentially originate in executive functioning deficits (Martinussen et al., 2005; Willcutt et al., 2005). For example, inhibition problems may guide adolescents with ADHD towards suboptimal decision making, failing to inhibit a response based on one particular characteristic of an option. This is in line with the current findings that reaction times were faster for those adolescents using less complex strategies. Working memory deficits in ADHD (Kasper et al., 2012) may cause difficulties in calculating the expected value of the gambling machines, which may explain why adolescents with ADHD utilize strategies of lower complexity more often.

However, we only observed group differences in strategies on the loss-probability GMT version. On the gain-probability GMT version, with a certain loss and probabilistic gains, no differences were found. Inspection of the strategies used by the participants (see Table S1 in Supplementary Materials 3) reveals that a relatively large proportion of the TD adolescents used the less complex semi-integrative strategy in the gain-probability version of the GMT, whereas they used the more complex integrative strategy more often in the loss-probability version. Potentially, the design of the gain-probability version of the GMT guides all adolescents towards a slightly less complex, and possibly more impulsive decision-making style. The probabilistic gains in this version may attract disproportionate attention from the adolescents, thereby ignoring the constant loss. This explanation is congruent with our observation that many adolescents use the semi-integrative strategy on the gain-probability GMT version in particular, a strategy that mainly focuses on integration of amount and probability of gain.
The paradigms that are employed in the first two parts were so-called cool decision-making tasks, without feedback on decisions (Castellanos, Sonuga-Barke, Milham, & Tannock, 2006; Skogli, Andersen, et al., 2014). This enables a precise examination of different cognitive processes, but also limits ecological validity, as almost all decisions in daily life involve some form of feedback. Pollak and Shoham (2015) suggested that experiencing feedback harms decision making in adolescents with ADHD. To investigate whether adolescents with ADHD also demonstrated decision-making deficits on hot decision-making paradigms, and more specifically whether these deficits differ in conditions of full vs. partial feedback, we administered two conditions of the GMT with feedback (i.e., full feedback, and partial feedback on gains only). Adolescents with ADHD made less optimal decisions relative to controls on the GMT condition with full feedback (i.e., feedback on both gains and losses), as well as on the GMT condition with partial feedback (i.e., only feedback on gains). This adds to the evidence from the first two parts of this study, claiming that adolescents with ADHD demonstrate decision-making deficits. Against expectation, all adolescents, irrespective of their diagnostic status, made less optimal responses when they only received partial feedback on gains than when they received feedback on gains and losses. The partial feedback potentially guided all adolescents towards paying more attention to gains, and therefore caused them to make less optimal decisions. This mechanism may be of importance in several manifestations of real-life risk-taking behavior. For example, many forms of substance abuse and sexual risk-taking behavior are characterized by instantly experiencing gains, and involve losses that only become manifest later in time (Boyer, 2006).

Taken together, we conclude that ADHD is characterized by suboptimal decision making, and not by risk seeking. Potentially, this could be explained by the use of faster, less complex decision-making strategies. Furthermore, we found that adolescents with ADHD also perform worse relative to TD adolescents on gambling tasks with feedback, although not disproportionally so in a task with partial feedback.

The decision-making deficits in adolescents with ADHD observed throughout all parts of the current study are unlikely to be explained by comorbid behavioral disorders. A substantial proportion of the ADHD group (31%) met criteria for a comorbid Disruptive Behavior Disorder (DBD; i.e., ODD and/or CD), and this subgroup did not differ from the subgroup with ADHD without DBD on any of the domains where ADHD-related decision-making deficits were found (i.e., suboptimal decision making, lower complexity of decision-making strategies, poor decision making while experiencing feedback). The
only significant difference between these subgroups was found on the gambling task where options differed in riskiness while keeping EV constant: Adolescents with ADHD and DBD were more risk seeking than adolescents with ADHD without DBD. This may imply that DBD’s are particularly associated with risk seeking, which aligns several studies demonstrating increased levels of risky decision making in both gambling tasks and real life in ADHD samples with comorbid DBD’s (Dekkers et al., 2016; Pollak et al., 2019; Ramos Olazagasti et al., 2013; Sarver et al., 2014).

The current set of studies has several strengths and limitations. A major strength is that we administered different gambling task paradigms, ranging from cognitive (i.e., “cool”) tasks towards affective (i.e., “hot”) tasks. On all tasks we found ADHD related decision-making deficits. These findings are robust, as no differences were found between adolescents with and without comorbid DBD, and between adolescents with the combined and the inattentive ADHD presentation. The large sample size and the similarity of the groups on all demographic characteristics add to the confidence in the findings. Despite these strengths, several caveats warrant consideration. First, our sample consisted of only boys, which limits the generalizability of the findings. Previous studies found that females are more sensitive to feedback (Jansen et al., 2013; Moeller & Robinson, 2010), have a higher punishment sensitivity (Cross, Copping, & Campbell, 2011) and are less risk seeking (Powell & Ansic, 1997) than men, and future studies should investigate these sex-related decision-making differences in ADHD samples. Second, although we used both cool and hot decision-making tasks, the ecological validity may be limited as testing adolescents in controlled scientific settings is not particularly reflective of real life (Pollak et al., 2018). As risk-taking behavior in adolescence often occurs in a peer context (Steinberg & Morris, 2001) and peer presence generally increases risk-taking behavior (Chein et al., 2011; van Hoorn, Crone, & Van Leijenhorst, 2017), the addition of social feedback to hot decision-making paradigms may be a potential solution to increase the ecological validity of decision-making paradigms (cf. Albert, Chein, & Steinberg, 2013).

Altogether, the three studies demonstrate a consistent pattern of decision-making deficits in adolescents with ADHD relative to their typically developing peers. Clinicians working with adolescents with ADHD should be aware that suboptimal decision-making strategies potentially cause the real-life risk-taking behavior that these adolescents often present when seeking help. Assisting adolescents in making optimal decisions could follow the lines of normative decision-making models (Furby & Beyth-Marom, 1992):
identification of options, establishment of consequences of all options, weighting of different consequences in terms of likelihood and desirability, and finally integration of all information to make the optimal decision (similar to the integrative strategy on the gambling task). For example, visual aids increased integration of information (Bailey, Willner, & Dymond, 2011). However, full integration may not be a feasible aim for all adolescents with ADHD, and may also not be the most handy strategy when executive resources are limited. In these cases, faster and efficient heuristics (Payne, Bettman, & Johnson, 1988) may be a better treatment aim.

Conflict of interest
All authors declare no conflicts of interest.

Funding
TJD is supported by a Prins Bernhard Cultuurfonds grant (no. 40021352) and TJD, JNZ, and HMH are supported by a VICI grant (453-12-005) from the Netherlands Organization for Scientific Research (NWO). The funding sources had no role in the study design, collection, analysis or interpretation of the data, writing the manuscript, nor the decision to submit the paper for publication.

Acknowledgements
We would like to thank all adolescents, parents, schools and mental healthcare institutions that participated. Furthermore, we are very grateful to Alec Schouten, Anna Kastelein, Annel Koomen, Anouk Fieten, Carlijn Vrijhoef, Carlotta Vroon, Charlotte Meire, Charlotte Smink, Claudia Meijer, Esther Baars, Hanne van der Veen, Iza Leeuwin, Jesse Schouw, Joukje Poelmann, Julia Vink, Laura Stol, Lily Menco, Lisa Nokkert, Liza Klouwers, Maartje Wierda, Marene Hardonk, Margarita Arabadzhieva, Mathilde Looman, Mees Jongema, Meike van den Bongaardt, Minke Bosma, Nina Admiraal, Noor Galesloot, Odette van Rongen, Priscilla Veen, Puk Visser, Risa Witschge, Robin van der Reep, Roxanne Bongers, Sabine Hollmann, Sam Stuijver, Sanne Schouten, Scarlett Slagter, Serena Brandenburg, Seyda Günay, Shanna Fransen, Viktor Hortmann and Wikke van der Putten for assistance in the collection of the data. We thank Jasper Wijnen for programming the tasks.
Supplementary Materials 1: task instructions

All instructions as outlined below appeared on the screen. The experimenter read these instructions to the participant aloud. The experimenter continued to the next screen in case the participant confirmed understanding the instructions.

Instructions GMT Part I: Risk vs EV

Loss-probability version:

Screen 1
Welcome to the gambling machine game!
Before we start, we’ll briefly explain the game.
Please read the instructions carefully.
This is a gambling machine:
[picture of one gambling machine]
If you select this gambling machine, the balls will be shuffled and one random ball will be selected.

Screen 2
Every gambling machine contains 10 balls. Some of them are green and some of them are red. On the gambling machine is a number. This is the number of points you always win if you select this gambling machine (next to the arrow).
[picture of gambling machine, with an arrow next to the constant gain]
If the gambling machine selects a green ball, you will win the number of points on the gambling machine and you will lose nothing.
But if the gambling machine selects a red ball, you will still win the number of points on the gambling machine, but you will also lose the number of points on the red ball.

Screen 3
[4 pictures of a single gambling machine on screen]
To select a gambling machine you can press the button below the machine.
This will shuffle the balls, so the position of the balls before shuffling is not important [shuffling balls on second picture].
Then, 1 random ball is selected from the machine [selected green ball on third picture, emphasized by an arrow].
For your next decision, this ball is thrown back into the machine [ball falling back into the machine on the fourth picture].
Screen 4
So that will look like this:

[picture gambling machine]
Now, a green ball is selected [picture shows a green ball, emphasized by an arrow].
This means you win the number of points that is indicated on the gambling machine
[also emphasized by an arrow].
Therefore, you'll win these 4 [this was the number of points that were gained in the example shown] points [indicated by four golden coins below the gambling machine].

Screen 5

[picture gambling machine]
In case of a red ball it will look like this.
If a red ball appears, this means you will lose the number of points that is depicted on the red ball [indicated by an arrow], but you will still win the number of points on the gambling machine [indicated by an arrow].
So in this case, you win 4 [example number] points, but you also lose 10 [example number] points [indicated on screen by 4 golden coins and 10 red coins].

Screen 6
In the game we'll play, you will constantly see two gambling machines, like here below.
[picture of two gambling machines].
In this game you have to select the gambling machine that you think is best if you would play with it very often.
Every time we ask you to select which one is best: left or right.

Screen 7
Every time you have to make the best decision between the gambling machine on the left, on the right and the doesn't matter option.

Try to make the best decision every time.

Mind: in this game you will not actually see the shuffling of the balls, we just ask you to select what you think what would be the best gambling machine if you'd have to play with it very often.

Screen 8
You'll now see an example.
In all cases you'll see the gambling machines before the balls are shuffled. Keep in mind that the gambling machine will shuffle the balls after you make your decision. So, the position of the balls in the machine is not important.
Screen 9
What is the best gambling machine to play with very often (after the balls are shuffled): left or right?
[picture of two gambling machines, the right one is clearly more advantageous, as all three characteristics are in favor of the left machine]
[participant makes selection]
You have now finished the example.

Screen 10
Now we start with the real questions.
Carefully select the gambling machine you think is the best, so which machine you’d like to play with.

Screen 11
The computer remembers all your responses, and in the reward-game at the end of the last sessions, one of the machines that’s chosen by you will be played for real.
This determines how much money you will win: The better you perform now, the more money you will make in the end.
Good luck!

Gain-probability version:
Screen 1
[identical to above, but with gain-probability instead of loss-probability gambling machine on picture]

Screen 2
Every gambling machine contains 10 balls. Some of them are red and some of them are green. On the gambling machine is a number. This is the number of points you always lose if you select this gambling machine (next to the arrow).
[picture of gambling machine, with an arrow next to the constant loss]
If the gambling machine selects a red ball, you will lose the number of points on the gambling machine and you will gain nothing.
But if the gambling machine selects a green ball, you will still lose the number of points on the gambling machine, but you will also gain the number of points on the green ball.

Screen 3
[4 pictures of a single gambling machine on screen]
To select a gambling machine you can press the button below the machine.
This will shuffle the balls, so the position of the balls before shuffling is not important [shuffling balls on second picture].

Then, 1 random ball is selected from the machine [selected red ball on third picture, emphasized by an arrow].

For your next decision, this ball is thrown back into the machine [ball falling back into the machine on the fourth picture].

Screen 4

So that will look like this:

[picture gambling machine]

Now, a red ball is selected [picture shows a red ball, emphasized by an arrow].

This means you lose the number of points that is indicated on the gambling machine [also emphasized by an arrow].

Therefore, you’ll lose these 4 [this was the number of points that were lost in the example shown] points [indicated by four red coins below the gambling machine].

Screen 5

[picture gambling machine]

In case of a green ball it will look like this.

If a green ball appears, this means you will gain the number of points that is depicted on the green ball [indicated by an arrow], but you will still lose the number of points on the gambling machine [indicated by an arrow].

So in this case, you lose 4 [example number] points, but you also win 10 [example number] points [indicated on screen by 4 red coins and 10 golden coins].

Screen 6-11

[identical to above, but with gain-probability instead of loss-probability gambling machines on pictures]

Instructions GMT Part II: Strategy assessment

Loss-probability version:

Screen 1-5

[identical to loss-probability GMT part I]

Screen 6

In the game we’ll play, you will constantly see two gambling machines, like here below. [picture of two gambling machines, including doesn’t matter option].

In this game you have to select the gambling machine that you think is best if you would play with it very often.
Every time we ask you to select which one is best: left, right, or doesn’t matter.

Screen 7

Every time you have to make the best decision between the gambling machine on the left, on the right and the doesn’t matter option.

You choose the **doesn’t matter option** if you think both gambling machines are equal, so that it doesn’t matter if you would shuffle the balls from the left or the right machine.

Try to make the best decision every time.

Hint: sometimes the doesn’t matter option is the best option.

Mind: in this game you will not actually see the shuffling of the balls, we just ask you to select what you think what would be the best gambling machine if you’d have to play with it very often.

Screen 8

You’ll now see a few examples.

In all cases you’ll see the gambling machines **before** the balls are shuffled. Keep in mind that the gambling machine will shuffle the balls after you make your decision. So, the position of the balls in the machine is not important.

Screen 9

Example 1: What is the best gambling machine to play with very often (after the balls are shuffled): left, right or doesn’t matter?

[picture of two gambling machines, the left one is clearly more advantageous, as all three characteristics are in favor of the left machine]

[participant makes selection]

The left machine was correct

[if incorrect experimenter checks general understanding of the tasks and goes back to earlier screens if deemed necessary, without explaining anything that could possibly guide participants towards certain strategies]

Screen 10

Example 2: What is the best gambling machine to play with very often (after the balls are shuffled): left, right or doesn’t matter?

[picture of two identical gambling machines]

[participant makes selection]

The doesn’t matter option was the correct answer here

[if incorrect, experimenter checks understanding]

Screen 11

Now we start with the real questions.
Carefully select the gambling machine you think is the best, so which machine you'd like to play with.
There is only one correct answer every time: left, right or doesn't matter.

Screen 12
The computer remembers all you responses, and in the reward-game at the end of the last sessions, one of the machines that's chosen by you will be played for real.
This determines how much money you will win: *The better you perform now, the more money you will make in the end.*
Good luck!

Gain-probability version:

Screen 1-5
[identical to gain-probability GMT Part I]

Screen 6-12
[identical to loss-probability GMT Part II, but with gain-probability instead of loss-probability gambling machines on pictures]

Instructions GMT Part III: Feedback

Full feedback condition:

Screen 1,2,3,4,5
[identical to loss-probability versions part I and II]

Screen 6
In the game we'll play, you will constantly see two gambling machines, like here below.
[picture of two gambling machines].
In this game you have to select the gambling machine that you think is best.
Every time we ask you to select which one is best: left or right.

Screen 7
In this game, you'll play the same gambling machines several consecutive times, and every time you'll see which ball is selected by the machine.
You have to make the best decision between the left and right gambling machine every time.
We'll practice twice to show you how it works.

Screen 8
[two gambling machines are presented, participant choses one]
DM deficits in ADHD: experimental assessments

[feedback is presented: golden coins in case of a green ball; golden and red coins in case of a red ball]

Screen 9
We’ll practice another one

Screen 10
[identical to screen 8]

Screen 11
Now we start with the real questions.
Choose the gambling machine you think is best every time.

Screen 12
The computer remembers all you responses, and in the reward-game at the end of the last sessions, one of the machines that’s chosen by you will be played for real.
This determines how much money you will win: The better you perform now, the more money you will make in the end.

Good luck!

Partial feedback condition

Screen 1-4
[identical to full feedback version]

Screen 5
In this version of the gambling machine game, the shuffling and selection of the balls is hidden.
The only thing you will see is the number of points that is depicted on the gambling machine, that’s the number of points you’ll always win. So you won’t see which ball will be selected.

Screen 6
So you won’t see the selection of a ball, but beware: the computer will remember which ball was selected.
This determines how much money you’ll win in the reward-game at the end. So the better you’ll perform, the more money you can earn!

Screen 7
In this game, you’ll play the same gambling machines several consecutive times.
You have to make the best decision between the left and right gambling machine every time. Remember that although you don’t see which ball is selected by the gambling machine, the computer will remember your decision and this will influence your reward at the end.
We’ll practice twice to show you how it works.

Screen 8
Choose the gambling machine you think is best.
[two gambling machines are presented, participant choses one]
[selected gambling machine gradually fades while balls are shuffling]
[certain gain that is depicted on the machine is presented by showing golden coins underneath the selected machine]

Screen 9
So you see the number that’s on the gambling machine, **but what you don’t know is whether the machine selected a green or a red ball**.

The computer remembers the ball that was selected, and this influences your reward at the end.
We’ll practice another one.

Screen 10
[identical to screen 8]

Screen 11
Now we start with the real questions.
Choose the gambling machine you think is best every time.
Remember that although you don’t see which ball is selected by the gambling machine, the computer will remember your decision and this will **influence your reward at the end**.

Screen 12
[identical to full feedback version]
Supplementary Materials 2: graphical examples of all GMT versions

![Gambling Machine Task (GMT) characteristics](image)

Figure S1. Gambling Machine Task (GMT) characteristics. In the GMT, participants have to choose between two gambling machines with different characteristics. Gambling machines were either oriented towards loss- or gain probability. In the loss-probability versions (panels A, C, E, G, H), the gambling machines were characterized by three different characteristics: constant gain, probability of loss and amount of loss. In the gain-probability versions of the GMT (panels B, D, F), this was opposite: constant loss, probability of gain and amount of gain. This figure contains examples of items for all different GMT versions that were used. Full item characteristics can be found in Table 1. (A) In this version of the GMT, both machines had equal EV (EV_{left}=2+(2*0.5)=1, EV_{right}=2+(10*0.1)=1) but differed in the amount of risk (Risk_{left}=√((2-1)^2+(0.5(-2-1)^2))=2.35, Risk_{right}=√((2-1)^2+(0.1(-10-1)^2))=3.62). (B) Similar to A, but oriented towards gain-probability instead of loss-probability. (C) In this version of the GMT, both machines differed in EV's (EV_{left}=9+(0.5*-10)=4, EV_{right}=2+(0.1*-35)=-1.5) but were equally risky (Risk_{left}=√((9-4)^2+0.5(-10-4)^2)=11.09, Risk_{right}=√((2-1.5)^2+0.1(-35-1.5)^2)=11.16). (D) Similar to C, but oriented towards gain-probability instead of loss-probability. (E) This version of the GMT was used to assess underlying strategies. Note that in this version, participants could also indicate that they thought both machines are equally advantageous (i.e., “doesn’t matter” option). (F) Similar to E, but oriented towards gain-probability instead of loss-probability. (G) Depiction of GMT after making a decision on the full-feedback condition of the GMT. After choosing one of the two gambling machines (there is no “doesn’t matter” option here), participants see that the balls are shuffled, and one of the balls is selected by the machine. Feedback is delivered by means of gold (in case of gains) and/or red (in case of losses) coins. (H) Depiction of the partial-feedback GMT condition. The shuffling of the balls is hidden by a screen. Participants always experience the positive feedback that is associated with their choice (in this case the certain gain is 4). However, the potential negative feedback is hidden. Participants are told that the absence of negative feedback does not necessarily indicate that their decision was correct, and that the computer remembers their answers and that this influences their final net gain (see above for specific task instructions).
Supplementary Materials 3: Strategy Assignment

<table>
<thead>
<tr>
<th>Loss-probability GMT</th>
<th>Gain-probability GMT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADHD (n=80)</td>
</tr>
<tr>
<td>Guessing</td>
<td>3</td>
</tr>
<tr>
<td>AL</td>
<td>0</td>
</tr>
<tr>
<td>FL</td>
<td>1</td>
</tr>
<tr>
<td>CG</td>
<td>1</td>
</tr>
<tr>
<td>AL,FL</td>
<td>6</td>
</tr>
<tr>
<td>FL,AL</td>
<td>2</td>
</tr>
<tr>
<td>AL,CG</td>
<td>0</td>
</tr>
<tr>
<td>CG,AL</td>
<td>0</td>
</tr>
<tr>
<td>FL,CG</td>
<td>0</td>
</tr>
<tr>
<td>CG,FL</td>
<td>0</td>
</tr>
<tr>
<td>AL,FL,CG</td>
<td>15</td>
</tr>
<tr>
<td>AL,CG,FL</td>
<td>1</td>
</tr>
<tr>
<td>FL,AL,CG</td>
<td>17</td>
</tr>
<tr>
<td>FL,CG,AL</td>
<td>8</td>
</tr>
<tr>
<td>CG,FL,AL</td>
<td>0</td>
</tr>
<tr>
<td>CG,AL,FL</td>
<td>0</td>
</tr>
<tr>
<td>Semi-integrative</td>
<td>20</td>
</tr>
<tr>
<td>Integrative</td>
<td>6</td>
</tr>
</tbody>
</table>

Table S1. Number of participants per group assigned to each particular decision making strategy, according to model-based Bayesian latent-mixture analysis. Strategies range from simple (guessing) to complex (integrative). AG = Amount of Gain; AL = Amount of Loss; CG = Constant Gain; CL = Constant Loss; FG = Frequency of Gain; FL = Frequency of Loss.