Extended dust shells around Carbon stars resolved by HIRAS

Published in:
Astrophysics and Space Science

DOI:
10.1007/BF00667922

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Download date: 04 Apr 2019
EXTENDED DUST SHELLS AROUND CARBON STARS
RESOLVED BY “HIRAS”

H. IZUMIURA *, D. J. M. KESTER and T. DE JONG
SRON Laboratory for Space Research Groningen
Landleven 12, P.O.Box 800, 9700 AV Groningen, The Netherlands

C. LOUP
Institut d’Astrophysique de Paris, France

L. B. F. M. WATERS
Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands

and

TJ. R. BONTEKOE
Bontekoe Data Consultancy, J.Bergmanstraat 3, 2221 BM Katwijk, The Netherlands

Abstract. We have examined forty-two carbon stars which show excess emission at 60
and/or 100 μm by applying maximum-entropy image reconstruction techniques to the
IRAS 60 μm survey data. Thirteen stars are found to be extended in the reconstructed
images. Four of them show a detached ring centered on the stellar position. In particular,
U Ant may have a double detached dust shell. The implications of our results are discussed
concerning the variation of mass loss on the AGB evolution.

Key words: HIRAS — carbon stars — dust shells — thermal pulses

There is growing evidence that some carbon stars possess detached dust
shells that produce excess 60 and/or 100 μm emission observed with IRAS
(Waters et al. 1994). The geometry of these dust shells allow us to investigate
the history of mass loss on relatively long time scales.

We examined forty-two carbon stars with 60 and/or 100 μm excess and
a 60 μm flux greater than 5 Jy by applying maximum-entropy image recon-
struction techniques (HIRAS, Bontekoe et al. 1994) to the IRAS 60 μm
survey data to examine the spatial distribution of the excess emission. Thir-
teen stars were found to be extended in the reconstructed images. In Fig.
1, U Hya, Y CVn and X Tra show detached rings centered on the stellar
position and U Ant a well resolved central plateau. This probably corre-
sponds to the detached shell seen in CO emission in this star (Olofsson et
al. 1990). Furthermore, U Ant possibly possesses an outer faint shell. The
shell parameters are given in Table 1. These results suggest that mass loss
rates on the AGB vary considerably on time scales compatible with those of
thermal pulses, and that the higher mass loss phase may be repeated several
times among a certain kind of carbon stars (e.g. Vassiliadis & Wood 1993).
Moreover, U Ant may imply a possibility of an interpulse period less than
104 years.

* On leave from Dept. of Astronomy and Earth Sciences, Tokyo Gakugei University
Fig. 1. Reconstructed images of U Ant, U Hya, Y CVn, and X Tra. Each map shows a square area of 16' x 16'. The resolution is about 1'. Contours are in steps of powers of 2 MJy sr⁻¹ from 2 MJy sr⁻¹.

TABLE 1
Dust shell parameters.

<table>
<thead>
<tr>
<th>Star</th>
<th>IRAS PSC F60 (Jy)</th>
<th>Structure</th>
<th>Radius (')</th>
<th>Age (×10⁴ yrs)</th>
<th>V_e (km s⁻¹)</th>
<th>Distance (kpc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U Ant</td>
<td>27.1</td>
<td>semi-detached</td>
<td><1.4</td>
<td><0.6</td>
<td>20</td>
<td>0.32</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>detached</td>
<td>2.8</td>
<td>1.3</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>U Hya</td>
<td>17.2</td>
<td>detached</td>
<td>1.8</td>
<td>1.0</td>
<td>15</td>
<td>0.29</td>
</tr>
<tr>
<td>X Tra</td>
<td>14.8</td>
<td>detached</td>
<td>2.3</td>
<td>1.3</td>
<td>15</td>
<td>0.30</td>
</tr>
</tbody>
</table>

1) Values assumed for the fifth column.

References