Routes of formation and decomposition of the m/z 59 ions with elemental composition C3H7O generated upon electron impact ionization of methyl propanoate
Sekiguchi, O.; Aoyagi, K.; Tajima, S.; Nibbering, N.M.M.

Published in:
Journal of Mass Spectrometry

DOI:
10.1002/(SICI)1096-9888(199707)32:7<755::AID-JMS528>3.0.CO;2-G

Citation for published version (APA):
It is shown that the peaks at \(m/z \) 31, 29 and 15 in the mass-analyzed ion kinetic energy spectrum of the \(m/z \) 59 ions generated from methyl propanoate upon electron impact ionization originate from decompositions of \(m/z \) 59, i.e. \(\text{C}_3\text{H}_7\text{O}^+ \) ions having the \(\text{O}==\text{C}==\text{O} \) structure, and of \(m/z \) 59, i.e. \(\text{C}_3\text{H}_5\text{O}^+ \) ions having the \(\text{CH}_2\text{CH}==\text{O} \) structure. The latter ions contribute \(<1\% \) to the total abundance of the \(m/z \) 59 ions in the standard mass spectrum. However, these \(m/z \) 59 \(\text{C}_3\text{H}_5\text{O}^+ \) ions are responsible for the relatively significant amounts of the \(m/z \) 31 and 29 ions generated in the microsecond time frame. Based upon deuterium labelling and supported by calculations at the ROHF/6-31G* level of theory, the \(m/z \) 59 \(\text{C}_3\text{H}_5\text{O}^+ \) ions are suggested to be formed via a complex skeletal rearrangement of the molecular ions of methyl propanoate and subsequent loss of a formyl radical. © 1997 by John Wiley & Sons, Ltd.

EXPERIMENTAL

The mass-analyzed ion kinetic energy (MIKE) spectra were obtained with a modified Hitachi RMU-7M reversed-geometry double-focusing mass spectrometer. A Hitachi M-80B double-focusing mass spectrometer was used to obtain the 70 eV EI mass spectra.

RESULTS AND DISCUSSION

Notwithstanding the many mass spectrometric studies of \(1,3-10 \) an interesting, surprising and not previously

KEYWORDS: isotopic labelling; methyl propanoate; metastable ions; thermochemistry; rearrangement
reported observation was made here with regard to the MIKE spectrum of its m/z 59 fragment ion. This MIKE spectrum, shown in Fig. 1(a), exhibits peaks at m/z 31, 29 and 15, whereas the MIKE spectrum of the m/z 59 fragment ion from 2, shown in Fig. 2(a), only contains a peak at m/z 15. The latter is expected for the m/z 59 ion COOCH$_3^+$, which can decompose by expulsion of carbon dioxide to give the methyl cation CH$_3^+$.

In the MIKE spectrum of the m/z 62 ions from 1-d_1 (CH$_3$CH$_2$COOCD$_3$), the peaks due to the ions at m/z 31, 29 and 15 from the m/z 59 ions of 1 [see Fig. 1(a)] are shifted to m/z 34 and 33, 30 and 18, respectively, as shown in Fig. 1(b). The shift from m/z 15 to 18 is expected for the m/z 62 ion COOCD$_3^+$, which upon loss of carbon dioxide should give the trideuteromethyl cation CD$_3^+$.

The dominant shift from m/z 31 [Fig. 1(a)] to m/z 33 [Fig. 1(b)], however, means that most of the m/z 31 ions contain only two hydrogen atoms from the original methoxy group and that their third hydrogen atom must originate from the ethyl group, that is, the m/z 33 ions generated from the m/z 62 ions of 1-d_1 have the composition CHD$_3$O$^+$. Consequently, the ions at m/z 31 and also m/z 29 must originate from m/z 59 ions of 1 which do not have the elemental composition of C$_2$H$_3$O$_2$ due to loss of C$_3$H$_4$O but instead C$_3$H$_2$O due to loss of HCO from 1$^{1+}$. The corresponding m/z 62 C$_3$H$_4$D$_3$O$^+$ ions due to loss of HCO from 1-d_1 can then account easily for the peaks due to the ions at m/z 34, 33 and 30 in the MIKE spectrum given in Fig. 1(b), as will be shown below.

Accurate mass measurements under high-resolution conditions confirmed that the m/z 59 ions generated from 1 consist of two species with different elemental compositions, i.e. C$_2$H$_3$O$_2$ (99.2%) and C$_2$H$_2$O (0.8%), in full agreement with the tabulated high-resolution data of the mass spectrum of 1 reported more than three decades ago.11

It should be noted that within the limits of detection, no peak is observed at m/z 59 in the MIKE spectrum of the molecular ion of 1. Instead, peaks are observed at m/z 57 and 56 in a ratio of ~14:1 due to loss of CH$_3$O and CH$_2$OH, respectively [see Fig. 3(a)]. The MIKE spectra of the molecular ions of 1-d_2, 1-d_3, and 1-d_5 show that an extensive hydrogen–deuterium exchange occurs prior to expulsion of the methoxy radical in which all hydrogen atoms in metastably decomposing 1$^{1+}$ participate (see Fig. 3; for complete hydrogen–deuterium exchange the expected peak intensities for methoxy radical loss would be m/z 59: 58: 57 = 20: 30: 6 for 1-d_2, m/z 60: 59: 58: 57 = 10: 30: 15: 1 for 1-d_3, and m/z 62: 61: 60: 59 = 1: 15: 30: 10 for 1-d_5). For the first steps in this exchange the recently reported10 initial 1,4-H shifts in 1$^{1+}$ can be invoked.

A mechanism for the formation of m/z 59 ions with the elemental composition C$_3$H$_2$O from 1$^{1+}$ is proposed in Scheme 1. It involves reaction steps which are common in the field of gas-phase ion chemistry and which lead in a straightforward way to the loss of a formyl radical from 1$^{1+}$ to give the CH$_3$CH=O+CH$_3$ species. To confirm the proposed structure of the latter ion, the MIKE spectrum of the m/z 59 ions generated from ionized 3 by the loss of a methoxy radical and known to give the CH$_3$CH=O$^+$CH$_3$ species12 was measured. It is shown in Fig. 2(b) and exhibits peaks at m/z 31 and 29 in an abundance ratio nearly equal to that in Fig. 1(a). Comparison of the MIKE spectrum in Fig. 1(a) with those in Fig. 2 nicely illustrates that the spectrum of the m/z 59 ions generated from 1$^{1+}$ is a superposition of the spectra of the m/z 59 ions generated from 2$^{2+}$ and 3$^{3+}$.

© 1997 by John Wiley & Sons, Ltd.

FORMATION AND DECOMPOSITION OF $C_3H_7O^-$ FROM $CH_3CH_2COOCH_3$,

With reference to the mechanism for C_2H_5 loss from $C_3H_7O^-$ ions proposed by Tsang and Harrison12 and Holmes et al.,13 fragmentation pathways for the m/z 62 ions with the elemental composition $C_2H_3D_2O$, generated from $1-d_3$, are given in Scheme 2 to account for the peaks observed at m/z 34, 33 and 30 in Fig. 1(b).

Finally, we would like to comment on the observations made with reference to the available14,15 or calculated (ROHF/6–31G*)16 heats of formation of the species involved in the reaction pathways which are summarized in Table 1 and given in Scheme 1, respectively.

Table 1 shows that the thermochemical threshold for the formation of the m/z 59 ion with elemental composition $C_2H_3O_2$ is 63 kJ mol$^{-1}$ higher than that for formation of the m/z 57 propanoyl cation $C_2H_5CO^+$ from 1^+. Both reactions are simple cleavage reactions, corresponding to loss of an ethyl and a methoxy radical from

Table 1. Sums of the heats of formation of possible product ions and neutral fragments generated upon unimolecular decomposition of ionized methyl propanoate (1) in kJ mol$^{-1}$ (taken from Ref. 14 unless stated otherwise)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>m/z 59</th>
<th>m/z 57</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $CH_3CH_2 + COOCH_3^+$</td>
<td>118 + 522 = 640</td>
<td></td>
</tr>
<tr>
<td>(2) $CH_3O + CH_3CH_2CO^+$</td>
<td>16 + 561 = 677</td>
<td></td>
</tr>
<tr>
<td>(3) $HCO + CH_3CH=O^+CH_3$</td>
<td>45 + 556 = 601</td>
<td></td>
</tr>
<tr>
<td>(4) $CH_2CH_2 + HOCCH_3^+$</td>
<td>52 + 703 = 755</td>
<td></td>
</tr>
<tr>
<td>(5) $CH_3O + CH_2CH_3^+$</td>
<td>$-109 + 902 = 793$</td>
<td></td>
</tr>
<tr>
<td>(6) $CH_2CH_3 + CHO^+$</td>
<td>$-84 + 826 = 741$</td>
<td></td>
</tr>
<tr>
<td>(7) $CO_2 + CH_3^+$</td>
<td>$-393 + 1083 = 700$</td>
<td></td>
</tr>
</tbody>
</table>

*See Ref. 7.

b See Ref. 15.

Scheme 1. Mechanism proposed for the loss of HCO from the molecular ion of methyl propanoate (1). The values given under the structures are the heats of formation calculated at the ROHF/6–31G* level of theory16 with reference to the heat of formation of 1^+ (547 kJ mol$^{-1}$).14 For the top-right structure no stable energy minimum has been obtained. The value of 556 kJ mol$^{-1}$ for the bottom-left structure was taken from Ref. 15.
The molecular ion of trideuteromethyl propanoate \((1997 \text{ by John Wiley & Sons, Ltd. JOURNAL OF MASS SPECTROMETRY, VOL. 32, 755--758 O. SEKIGUCHI ET AL.})\)

Scheme 2. Mechanisms proposed for the formation of the ions at \(m/z\) 30, 33 and 34 from the [M – HCO]⁺ ion \((m/z \ 62)\) generated from the molecular ion of trideuteromethyl propanoate \((1-d_3)\).

\(1^+\), respectively, for which the barriers of the reverse reaction are known to be generally small.\(^{17}\) Consequently, the 63 \(\text{kJ mol}^{-1}\) higher energy required to form the COOCH\(3^+\) ion than to generate the \(\text{C}_3\text{H}_7\text{CO}^+\) ion from \(1^+\) is too large for competition\(^{16,19}\) between these two reaction channels in the metastable time frame. This explains the absence of a peak at \(m/z\) 59 due to COOCH\(3^+\) in the MIKE spectrum of the molecular ion of \(1\). Similarly, the formation of \(m/z\) 59 ions with the elemental composition \(\text{C}_2\text{H}_5\text{O}\) from \(1^+\) cannot compete in the metastable time frame with that of the \(m/z\) 57 propanoyl cations, notwithstanding the similar endothermicity for both reaction channels (see Table 1). This is due to the relatively high barriers en route from \(1^+\) to the final products of the \(\text{CH}\text{CH} = \text{O}^+\) and formyl radical species (see Scheme 1).

The observation that a significant fraction of the much less abundant \(m/z\) 59 ions with the elemental composition \(\text{C}_2\text{H}_5\text{O}\) decomposes in the metastable time frame compared with that of the \(m/z\) 59 ions with the elemental composition \(\text{C}_2\text{H}_3\text{O}\) can be explained in the following way.

The thermochemical threshold for decomposition of the COOCH\(3^+\) ion into carbon dioxide and the methyl cation is 700 \(\text{kJ mol}^{-1}\), as shown in Table 1. This simple cleavage reaction will have a small barrier for the reverse reaction\(^{17}\) and therefore is significantly less endothermic than decomposition of the \(\text{C}_3\text{H}_7\text{O}^+\) ion into either ethene and protonated methanal or methanal and the ethyl cation or ethane and the formyl cation, even ignoring energy barriers (see Table 1). Consequently, the more energetic COOCH\(3^+\) ions will have decomposed relatively more than the \(\text{C}_3\text{H}_7\text{O}^+\) ions\(^{19,20}\) before arriving in the second field-free region of the mass spectrometer used (see Experimental). This will increase the \(\text{C}_3\text{H}_7\text{O}^+\)/COOCH\(3^+\) abundance ratio as reflected in the abundances of the corresponding product ions at \(m/z\) 31 and 29 with respect to \(m/z\) 15, respectively, in the MIKE spectrum of the \(m/z\) 59 ions from \(1^+\) (see Fig. 1(a)).

CONCLUSIONS

The \(m/z\) 59 ions generated from the molecular ions of methyl propanoate (I) consist of species with two different elemental compositions, that is, \(\text{C}_2\text{H}_5\text{O}_3\) and \(\text{C}_3\text{H}_7\text{O}\). The \(\text{C}_3\text{H}_7\text{O}^+\) ion is generated via a complex skeletal rearrangement and its decomposition is pronounced in the microsecond time frame.

REFERENCES

FORMATION AND DECOMPOSITION OF $C_3H_7O^+$ FROM $CH_3CH_2COOCH_3$