Homogeneous continua that are not separated by arcs

van Mill, J.; Valov, V.

DOI
10.1007/s10474-018-0881-0

Publication date
2019

Document Version
Submitted manuscript

Published in
Acta mathematica Hungarica

Citation for published version (APA):
HOMOGENEOUS CONTINUA THAT ARE NOT SEPARATED BY ARCS

J. VAN MILL AND V. VALOV

Abstract. We prove that if X is a strongly locally homogeneous and locally compact separable metric space and G is a region in X with dim $G = 2$, then G is not separated by any arc in G.

1. Introduction

By a space we mean a separable metric space. Kallipoliti and Papasoglu [4] proved that any locally connected, simply connected, homogeneous metric continuum can not be separated by arcs, and asked if this is true without the assumption of simply connectedness. A partial answer of this question was provided in [8] for homogeneous metric continua of dimension two having a non-trivial second integral Čech cohomology group. In the present paper we prove the following partial answer to Kallipoliti and Papasoglu’s question.

Theorem 1.1. Let X be a locally compact strongly locally homogeneous space and G be a region in X with dim $G = n \geq 2$. Then G is not separated by any arc $J \subset G$.

Recall that a space is strongly locally homogeneous if every point $x \in X$ has a local basis of open sets U such that for every $y, z \in U$ there is a homeomorphism h on X with $h(y) = z$ and h is identity on $X \setminus U$. Obviously, every open subset of a strongly locally homogeneous space is also strongly locally homogeneous. Since strongly locally homogeneous connected spaces are homogeneous, any region G satisfying the hypotheses of Theorem 1.1 should be homogeneous. We claim that it is locally connected as well. Indeed, since any strongly homogeneous Polish space is countable dense homogeneous [1] and a locally compact countable dense homogeneous connected space is locally connected [3],

2010 Mathematics Subject Classification. Primary 54F15; Secondary 54F45.
Key words and phrases. connected space, homogeneous continuum, locally compact separable metric space, locally connected space.

The first author is pleased to thank the Nipissing University for generous hospitality and support. The second author was partially supported by NSERC Grant 261914-13.
we have that any region G from Theorem 1.1 is locally connected. (There is also a simple direct proof of this fact.) According to [6], every region of homogeneous locally compact space of dimension $n \geq 1$ can not be separated by a closed set of dimension $\leq n - 2$. So, Theorem 1.1 is interesting only for regions G of dimension two.

2. SOME PRELIMINARY RESULTS

Lemma 2.1. Let A be a closed nowhere dense subset of X such that $\dim X \setminus A = 0$. Then there is a retraction $r: X \to A$ such that $r(X \setminus A)$ is countable.

Proof. The technique is similar to that in [5]. In brief, one constructs a cover $\mathcal{V} = \{V_n : n \in \mathbb{N}\}$ by disjoint nonempty clopen subsets of X such that

1. $\text{diam } V_n < d(V_n, A)$ for each n,
2. there is a sequence $\{a_n : n \in \mathbb{N}\}$ in A such that $\lim_{n \to \infty} d(a_n, V_n) = 0$.

Then define $r: X \to A$ as follows: $r(a) = a$ for every a and $r(V_n) = \{a_n\}$ for every n. It is easy to check that r is as required. □

If J is an arc and $p, q \in J$, then (p, q) and $[p, q]$ denote, respectively, the open and closed subintervals in J with endpoints p, q.

Proposition 2.2. Let $J = [a, b]$ be an arc in a space X which is everywhere 2-dimensional. Then b has arbitrarily small open neighborhoods U such that $\text{bd}(U)$ is at most 1-dimensional and intersects J in exactly one point.

Proof. Fix $\varepsilon > 0$ and let U be an open neighborhood of b in X such that $\text{diam } \overline{U} < \varepsilon$ and $\text{dim bd } U \leq 1$. We may assume without loss of generality that $J \setminus U \neq \emptyset$ and $J \cap U$ is uncountable. Put $Y = J \cup \overline{U}$. Moreover, put $A = J \cup \text{bd } U$, $B = (J \setminus U) \cup \text{bd } U$ and $C = (J \cap \overline{U}) \cup \text{bd } U$, respectively.

Let D be a zero-dimensional dense subset of U such that $\dim U \setminus D = 1$. Since $\dim J = 1$, we may clearly assume that $D \cap J = \emptyset$.

Because C is a closed nowhere dense subset of $C \cup D$, there is a retraction $r_1: C \cup D \to C$ such that $r_1(D)$ is countable (Lemma 2.1). Let $r: A \cup D \to A$ be defined by $r(x) = r_1(x)$ if $x \in C \cup D$ and $r(x) = x$ if $x \notin C \cup D$. Obviously r is a retraction such that $r(D)$ is countable.

Choose also two points $s_1, s_2 \in J \cap U$ different from s and b such that $s \in (s_1, s_2)$, and let $V_1 = A \setminus [s_1, b]$ and $V_2 = (s_2, b]$. Obviously V_1 and
V_2 are open subsets of A containing B and $\{b\}$, respectively. Moreover, $\overline{V}_1 = A \setminus (s_1, b]$ and $\overline{V}_2 = [s_2, b]$.

Claim 1. \{s\} is a partition in A between \overline{V}_1 and \overline{V}_2.

Indeed, put $P = [s, b]$ and $Q = [a, s] \cup \mathrm{bd}U$. Then P and Q are closed subsets of A such that $P \cup Q = A$, $\overline{V}_2 \subset P$, $\overline{V}_1 \subset Q$ and $P \cap Q = \{s\}$.

Claim 2. \{s\} is a partition in $A \cup D$ between $r^{-1}(\overline{V}_1)$ and $r^{-1}(\overline{V}_2)$.

Since $r^{-1}(s) = \{s\}$, this is a direct consequence of Claim 1.

By [7, Lemma 3.1.4], there is a partition S between $\{b\}$ and B in Y such that $S \cap (A \cup D) \subset \{s\}$. If $s \notin S$, then $S \cup \{s\}$ is also a partition between $\{b\}$ and B in Y, hence we may assume without loss of generality that $s \in S$. But then $S \cap J = \{s\}$. Write $Y \setminus S$ as $E \cup F$, where E and F are disjoint relatively open subsets of Y such that $b \in E$ and $B \subset F$.

Claim 3. $E \subset U$.

Indeed, since $E \cap B = E \cap ((J \setminus U) \cup \mathrm{bd}U) = \emptyset$, this is clear.

Since E is open in U and U is open in X we have that E is open in X. Moreover, $\mathrm{diam} E < \varepsilon$. Also, $E \cup S$ is closed in Y and hence in X. As a consequence $\mathrm{bd}E \subset S$. Since $S \subset U \setminus D$, we have $\dim S \leq 1$, as required.

It will be convenient to use additive notation for the topological group S^1.

The following result can be proved by tools from algebraic topology. For the convenience of the reader, we include a simple direct proof.

Proposition 2.3. Let X be a space and let A be a closed subspace of it. Moreover, let $\gamma: A \to S^1$ be continuous. Suppose that there are closed subsets P_i, P_2 of X satisfying the following conditions:

- $P_1 \cup P_2 = X$ and if $C = P_1 \cap P_2$ then $C \cap A$ is a singleton, say c;
- $\gamma|P_1 \cap A$ is extendable over P_i for each $i = 1, 2$, but γ is not extendable over X.

Then there is a continuous function $\beta: C \to S^1$ such that $\beta(c) = 0$ and β is not nullhomotopic.

Proof. Let $\alpha_i: P_i \to S^1$ for $i = 1, 2$ be a continuous extension of $\gamma|P_i \cap A$. Define $\beta: C \to S^1$ by $\beta(x) = \alpha_1(x) - \alpha_2(x)$ ($x \in C$). Then, clearly, $\beta(c) = 0$. We claim that β is as required, and argue by contradiction. Assume that β is nullhomotopic. Let $H: C \times I \to S^1$ be a homotopy
such that $H_0 \equiv 0$ and $H_1 = \beta$. Define $S : C \times I \to \mathbb{S}^1$ by $S(x, t) = H(x, t) - H(c, t)$. Then $S_0 \equiv 0$, $S_1 = \beta$ and $S(c, t) = 0$ for every t. Define a homotopy $T : (C \cup (P_2 \cap A)) \times I \to \mathbb{S}^1$ by

$$T(x, t) = \begin{cases} S(x, t) & (x \in C, t \in I), \\ 0 & (x \in P_2 \cap A, t \in I). \end{cases}$$

Then $T_0 \equiv 0$ and hence can be extended to the constant function with value 0 on P_2. By the Borsuk Homotopy Extension Theorem [7, 1.4.2], the function T_1 can be extended to a continuous function $\delta : P_2 \to \mathbb{S}^1$.

Now define $\varepsilon : X \to \mathbb{S}^1$ as follows:

$$\varepsilon|_{P_1} = \alpha_1, \quad \varepsilon|_{P_2} = \delta + \alpha_2.$$

If $x \in C$, then $\varepsilon|_{P_1}(x) = \alpha_1(x)$ and $\varepsilon|_{P_2}(x) = \delta(x) + \alpha_2(x) = S_1(x) + \alpha_2(x) = \beta(x) + \alpha_2(x) = \alpha_1(x)$. Hence ε is well defined and continuous. Also observe that if $x \in P_2 \cap A$, then

$$\varepsilon(x) = 0 + \alpha_2(x) = \alpha_2(x).$$

Hence ε extends γ, which is a contradiction. \qed

3. Proof of Theorem 1.1

Throughout, let X be a locally compact and strongly locally homogeneous space, and G be a region in X of dimension 2. Suppose G is separated by an arc $J = [a, b] \subset G$. Recall that G is homogeneous and locally connected (see §1). Write $G \setminus J$ as $G_1 \cup G_2$, where G_1 and G_2 are disjoint nonempty open subsets of G. Everywhere below \overline{K} denotes the closure of K in G for any set $K \subset G$.

We say that a space Y has no local cut points if no connected open subset $U \subset Y$ has a cut point.

Lemma 3.1. G has no local cutpoints.

Proof. By Kruspki [6, Theorem 2.1] it follows that every nonempty open connected subset U of G is a Cantor manifold of dimension 2. Hence U cannot be separated by a zero-dimensional closed set. \qed

A space X is *crowded* if it has no isolated points.

Lemma 3.2. The set $S = \overline{G_1} \cap \overline{G_2}$ is a 1-dimensional closed and crowded subspace of J which separates G.

Proof. Assume first that $J \setminus (\overline{G_1} \cup \overline{G_2}) \neq \emptyset$. Then G is somewhere at most 1-dimensional. Hence G is at most 1-dimensional at every point by homogeneity. But this contradicts G being 2-dimensional.
Hence $J \subset \overline{G_1} \cup \overline{G_2}$ and so $G = \overline{G_1} \cup \overline{G_2}$. If S is empty, then G is covered by the disjoint nonempty closed sets $\overline{G_1}$ and $\overline{G_2}$ which contradicts the connectivity of G.

Now assume that x is an isolated point of S. Let U be an open connected neighborhood of x in G such that $U \cap S = \{x\}$. Then x is a cutpoint of U. But this contradicts Lemma 3.1.

We conclude that S separates G and consequently has to be 1-dimensional by Krupski [6].

Let s be the maximum of S (as a subset of $[a, b]$). Then $J_s = [a, s]$ also separates G and $G \setminus J_s$ is the union of the disjoint open sets G'_1 and G'_2, where $G'_1 = \overline{G_1} \setminus J_s$. Moreover, $s \in \overline{G_1} \cap \overline{G_2}$. Hence, we can assume without loss of generality that $b \in \overline{G_1} \cap \overline{G_2}$.

Lemma 3.3. There is an open neighborhood $U \subset G$ of b having compact closure and a compact set $F \subset G$ such that for every open neighborhood V of b with $\overline{V} \subset U$ there exist a compact set $M_U \subset \overline{U}$ and a continuous function $f : \partial_F (U \cap F) \rightarrow S^1$ such that:

1. $b \in U \cap F$;
2. M_U is everywhere 2-dimensional and $M_U \cap V \neq \varnothing$;
3. $\dim \partial U \leq 1$ and $J \cap \partial U$ is a point;
4. f is not extendable over $\partial_F (U \cap F) \cup M_U$, but it is extendable over $\partial_F (U \cap F) \cup P$ for every proper closed set P of M_U.

Proof. Choose a compact neighborhood O_b of b in G. Since every neighborhood of b is of dimension 2, there is a compact subset $Y \subset O_b$, a closed set $A \subset Y$ and a continuous function $g : A \rightarrow S^1$ not extendable over Y. Let F be a minimal closed subset of Y containing A such that g is not extendable over F. Then for every open subset W of $F \setminus A$ with $\overline{W} \cap A = \varnothing$ there is a function $f_W : F \setminus W \rightarrow S^1$ extending g such that f_W can not be extended to a continuous function $\tilde{f}_W : F \rightarrow S^1$. This means that $f_W|_{\partial F} W$ is not extendable over \overline{W}. Consequently, $F \setminus A$ is everywhere two-dimensional. We can assume by homogeneity that $b \in F \setminus A$. Indeed, by Effros’ theorem [2], we take O_b so small that for every point $x \in O_b$ there is a homeomorphism h on G with $h(b) = x$ and $O_b \subset h(G)$. Then, consider the set $h(G)$ instead of G.

By Proposition 2.2, there are an open neighborhood U of b whose closure in G is a compact and a point $c \in (a, b)$ such that $\partial U \cap J = \{c\}$, $\dim \partial U \leq 1$ and $\overline{U} \cap A = \varnothing$. Suppose V is an open neighborhood of b such that $\overline{V} \subset U$, and consider a continuous function $f_V : F \setminus V \rightarrow S^1$ extending g which is not extendable over F. Let $f = f_V|_{\partial_F (U \cap F)}$. Clearly, f cannot be extended to a continuous function $\tilde{f} : \overline{U \cap F} \rightarrow S^1$, but f can be extended to a continuous function from $(\overline{U \cap F}) \setminus V$ into...
\mathbb{S}^1. Let M_U be a minimal closed subset of $\overline{U \cap F}$ with the property that f cannot be extended to a continuous function $\tilde{f} : \text{bd}_F(U \cap F) \cup M_U \to \mathbb{S}^1$. The minimality of M_U implies that f is extendable over $\text{bd}_F(U \cap F) \cup P$ for any any closed set $P \not\subseteq M_U$. Because f is extendable over $\{U \cap F\} \setminus V$, $M_U \cap V \neq \emptyset$. It is clear that M_U is a continuum.

Assume that O is a nonempty open subset of M_U such that $\dim O \leq 1$. Taking a smaller open subset of O, we may assume that $\dim \overline{O} \leq 1$. There are two possibilities, either $O \subset \text{bd}_F(U \cap F)$ or $O \setminus \text{bd}_F(U \cap F) \neq \emptyset$. If $O \subset \text{bd}_F(U \cap F)$, $M_U \setminus O$ is a proper closed subset of M_U having the same properties as M_U, which contradicts minimality. If $O' = O \setminus \text{bd}_F(U \cap F) \neq \emptyset$, then $P = M_U \setminus O'$ is a proper closed subset of M_U. So, there is an extension $f_1 : \text{bd}_F(U \cap F) \cup P \to \mathbb{S}^1$ of f. Since $\dim \overline{O} \leq 1$, we can extend f_1 over $\text{bd}_F(U \cap F) \cup M_U$, a contradiction. Therefore, M_U is everywhere 2-dimensional.

Now, we can complete the proof of Theorem 1.1. Choose open neighborhoods U and V of b, closed sets $F \subset G$ and $M_U \subset \overline{U \cap F}$ and a continuous function $f : \text{bd}_F(U \cap F) \to \mathbb{S}^1$ satisfying the conditions (1) – (4) from Lemma [3.3]. Let also $J \cap \text{bd}U = \{c\}$ and $C = [c, b]$. We can also assume that V satisfies the additional property that for every two points $p, q \in V$ there is a homeomorphism φ of G supported on V with $\varphi(p) = q$. We may consequently assume without loss of generality that $b \in M_U$. Indeed, if $b \notin M_U$ we take a point $x \in M_U \cap V$ and a homeomorphism φ of G supported on V such that $\varphi(x) = b$. Then the set $\varphi(M_U)$ satisfies all condition from Lemma [3.3] and contains b. Since M_U is everywhere 2-dimensional, $\dim(M_U \cap V) = 2$. Hence, $M_U \cap V$ meets at least one of the sets G_i, $i = 1, 2$.

Assume first that $M_U \cap V \cap G_1 \neq \emptyset$ but $M_U \cap V \cap G_2 = \emptyset$.

Then $M_U \cap W$ meets G_1 for every neighborhood W of b with $W \subset V$. Indeed, because $\dim M_U \cap W = 2$ and $M_U \cap W \cap G_2 = \emptyset$ it follows that $M_U \cap G_1 \cap W \neq \emptyset$. There consequently is a neighborhood W of b in G such that

(5) $\overline{W} \subset V$, $(M_U \cap V) \cap (G_1 \setminus \overline{W}) \neq \emptyset$ and $M_U \cap G_1 \cap W \neq \emptyset$;

(6) For every $x, y \in W$ there is a homeomorphism h of G supported on W with $h(x) = y$.

Finally, choose points $x \in M_U \cap G_1 \cap W$ and $y \in W \cap G_2$ and a homeomorphism $h : G \to G$ supported on W with $h(x) = y$. Since $h(z) = z$ for all points $z \in (M_U \cap V) \cap (G_1 \setminus \overline{W})$, the set $\tilde{K} = h(M_U)$ meets both G_1 and G_2. Moreover, the function f is not extendable over $\text{bd}_F(U \cap F) \cup \tilde{K}$ (otherwise f would be extendable over $\text{bd}_F(U \cap F) \cup M_U$). On the other hand, since each of the sets $Q_i = h^{-1}(\tilde{K} \cap \overline{G_i})$, ...
Homogeneous continua

i = 1, 2, is a proper closed subset of M_U, f is extendable over each of the sets $\text{bd}_F(U \cap F) \cup (\bar{K} \cap G_i)$. Let $\gamma : \text{bd} U \to S^1$ be an extension of f (recall that $\dim \text{bd} U \leq 1$ and $\text{bd}_F(U \cap F)$ is a closed subset of $\text{bd} U$, so such γ exists). Because f is not extendable over $\text{bd}_F(U \cap F) \cup \bar{K}$, γ is not extendable over the set $K = \text{bd} U \cup \bar{K} \cup C$. Denote $P_i = C \cup (K \cap G_i)$, $i = 1, 2$. Obviously, $P_1 \cup P_2 = K$ and $P_1 \cap P_2 = C$. Then for each i we have $P_i \cap \text{bd} U = \{c\} \cup (\text{bd} U \cap G_i)$. So, the function $\gamma \mid (P_i \cap \text{bd} U)$ is extendable over the set P_i because $\dim C \cup \text{bd} U = 1$. Hence, we can apply Proposition 2.3 (with $A = \text{bd} U$) to conclude that there is a continuous function $\beta : C \to S^1$ such that β is not nullhomotopic, a contradiction.

Assume next that $M_U \cap V$ meets both G_1 and G_2. We can now proceed as above (considering M_U instead of \bar{K}) to obtain the desired contradiction.

References

KdV Institute for Mathematics, University of Amsterdam, Science Park 105-107, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
E-mail address: j.vanMill@uva.nl

Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada
E-mail address: veskov@nipissingu.ca