Efficient oxygen reduction to H_2O_2 in highly porous manganese and nitrogen co-doped carbon nanorods enabling electro-degradation of bulk organics

Biemolt, J.; van der Veen, K.; Geels, N.J.; Rothenberg, G.; Yan, N.

DOI
10.1016/j.carbon.2019.09.034

Publication date
2019

Document Version
Final published version

Published in
Carbon

License
CC BY

Citation for published version (APA):
Efficient oxygen reduction to H2O2 in highly porous manganese and nitrogen co-doped carbon nanorods enabling electro-degradation of bulk organics

Jasper Biemolt a, Koen van der Veen a, Norbert J. Geels a, Gadi Rothenberg a, Ning Yan a, b, *

a Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
b School of Physics and Technology, Wuhan University, 430072, Wuhan, China

A R T I C L E I N F O

Article history:
Received 28 July 2019
Received in revised form 9 September 2019
Accepted 10 September 2019
Available online 10 September 2019

Keywords:
Electrocatalysis
Hydrogen peroxide synthesis
Oxygen reduction
Mesoporous carbon
Wastewater treatment

A B S T R A C T

The direct synthesis of hydrogen peroxide using sustainable energy and molecular oxygen is a promising alternative approach to the conventional batch synthesis. Here we present a manganese and nitrogen co-doped carbon material which catalyzes the selective reduction of dioxygen in an acidic environment to hydrogen peroxide. The onset potential is close to 0.7 V, with >98% H2O2 selectivity in the range of 0.7–0.5 V vs RHE. This is the highest reported to date, outperforming many bimetallic noble metal catalysts. Besides, this doped carbon material is hierarchically porous, featuring both a large mesopore volume (4.54 ml g−1) and a high specific surface area (1333 m2 g−1). This enables the effective adsorption of bulky organics such as methylene blue (385 mg g−1). Combined with the formation of hydroxyl radicals during electrochemical H2O2 generation, this material also enables the efficient electrochemical degradation of methylene blue, as evidenced by in situ UV–vis spectrometry.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Industrial wastewater often contains toxic organic pollutants. Traditional water treatment traps these contaminants in the sludge, incurring a large environmental footprint [1–4]. Recently, electrochemical methods using electrons as “clean reagents” have attracted much attention [5–10]. In particular, the oxygen reduction reaction (ORR) takes advantage of the readily-available oxygen dissolved in the water to produce hydrogen peroxide. This reaction is often associated with the formation of hydroxyl and peroxyl radicals at the electrode [11–13]. These radicals can break up even the most resistant organic compounds. Yet converting O2 electrocatalytically into H2O2 is no easy task. The state-of-the-art platinum catalysts often facilitate the 4-electron transfer reaction, producing mainly water with little H2O2 [14–16]. Alloying Pt with suitable transition metals such as Au and Hg can catalyze the 2-electron transfer reduction and boost the H2O2 selectivity to >90% [17], but these catalysts are expensive and their working potential at the benchmark 1 mA cm−2 is often below 0.4 V vs RHE. As we and others recently showed carbon catalysts have excellent ORR activity in alkaline media [18–25]. But most of these are not H2O2-selective and show poor activity under acidic conditions [26]. There are exceptions: a carbon-based catalyst tailored to produce H2O2 selectively in an acidic electrolyte was reported by Liu et al. [27]. Their material, made from MOF-5, showed a 0.42 V vs RHE onset potential and a H2O2 selectivity of 90%. Elsewhere, Fellinger et al. used acetic acid media for their mesoporous nitrogen-doped carbon, reporting an onset potential of 0.55 V vs RHE and 95% H2O2 selectivity (other high-performance H2O2 catalysts are listed in Table S1 in the supporting information).

Because the reactive hydroxyl radicals are short-lived, the organic contaminants must be adsorbed and held at the electrode in close proximity to the radical-generating sites. This means that the H2O2-formation catalyst should be a porous material, allowing the capture of the organic pollutants. Pollutants come in all sizes, and the pore structure of the electrode must be designed appropriately. For instance, simple aromatics such as benzene, toluene and xylene have kinetic diameters < 8 Å, fitting easily in micropores. But many dyes [28–31], surfactants [32,33] and pharmaceutical compounds [34,35] can be > 2 nm in size, requiring larger pores for effective adsorption and mass transfer. Ideally, we want hierarchically porous electrodes with a high micropore volume and

* Corresponding author. Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands.
E-mail address: nyan@uva.nl (N. Yan).
a high mesopore volume. Carbon materials are suitable electrode materials, due to their high conductivity, low cost and tunable pore structure. Many groups are working on this topic (see also Table S2 in the supporting information for details); Schuster et al. prepared a spherical mesoporous carbon with 2.32 cm3 g$^{-1}$ pore volume and SSA of 2445 m2 g$^{-1}$ via a complex double ‘hard’ templating method [36]. Elsewhere, Xu et al. reported the synthesis of hollow N–C nanospheres with a surface area of 3022 m2 g$^{-1}$ and pore volume of 2.43 cm3 g$^{-1}$ using a ‘soft’ templating technique [37]. Using MOF-5 as the precursor, a hierarchically mesoporous carbon with a SSA of 2734 m2 g$^{-1}$ and pore volume of 5.52 cm3 g$^{-1}$ was reported by Srinivas et al. [32] We also reported a series of N–Cs with hierarchical porosity showing excellent catalytic activities using the same approach [18]. Yet making hierarchically porous carbons with a high surface area and a large mesopore volume remains a challenge [38,39].

Based on our recent research into nitrogen-doped carbon (N–C) catalysts, we hypothesized that an active and selective catalyst for reducing O$_2$ to H$_2$O$_2$ with a high pore volume would both capture catalysts, we hypothesized that an active and selective catalyst for reducing O$_2$ to H$_2$O$_2$ with a high pore volume would both capture bulky organic pollutants from water and catalyze their degradation. Here we report a facile synthesis of hierarchically Mn and N co-doped carbon nanorods (Mn–N–C) starting from nitriilotriacetic acid. This material, with its large pore volume of 4.54 cm3 g$^{-1}$ and a high specific surface area of 1333 m2 g$^{-1}$, can adsorb 385 mg g$^{-1}$ of methylene blue (MB, a dye with many industrial applications) [33–37]. Importantly, our catalyst converts O$_2$ selectively into H$_2$O$_2$, exhibiting a high onset potential of ca. 0.7 V vs RHE in 0.1 M HClO$_4$. The hydroxyl radicals degrade the adsorbed MB in the adjacent area within the porous electrode (see schematic in Fig. 1). This combined adsorption and electrocatalytic activity opens new opportunities for wastewater treatment as well as for electrocatalysis applications.

2. Results and discussion

2.1. Synthesis and physical properties of Mn–N–C nanorods

The Mn–N–C nanorods were prepared by adapting our previously published method (detailed experimental procedures are included in the supporting information) [21]. Briefly, nanorods of the manganese nitriilotriacetate precursor were synthesized hydrothermally. Subsequent pyrolysis and acid-washing removed the MnO particles, yielding the Mn and N co-doped carbon (see Fig. 2a). Scanning transmission electron microscopy (STEM) measurements confirmed that all of the MnO particles were removed (Fig. 2b). The nanorods have abundant mesopores (D < 20 nm) which are visible in the magnified SEM image in Fig. 2c. These mesopores vary in size, enabling the adsorption of different contaminants. By comparing the high-resolution transmission electron microscopy (HRTEM) images in Fig. 2e and f, we confirmed that these mesopores were templated by the MnO nanoparticles. The pore walls are made of graphitic carbon shells. They are typically less than 20 layers in thickness, containing many worm-like micropores. This connectivity creates a hierarchical pore structure (vide infra).

Fig. 3a compares the powder XRD patterns of MnO/Mn–N–C and the Mn–N–C nanorods. Three strong peaks in MnO/Mn–N–C at 2θ = 35.0°, 40.7° and 58.8° correspond to the (111), (200) and (220) planes of MnO, respectively. The Mn–N–C nanorods had no residual MnO. The broad peak at 2θ = 25° was assigned to the graphite (002) plane. From the Raman spectrum in Fig. 3b we infer that the Mn–N–C nanorods contain both ordered and disordered carbon domains, (cf. the D- and G-band at 1351 and 1588 cm$^{-1}$, respectively) [40]. Again, no MnO signal (typically below 800 cm$^{-1}$) was observed. The presence of Mn and N moieties in the carbon was verified by X-ray photoelectron spectroscopy (XPS, Fig. 3c). It revealed a 1.5% nitrogen content including graphitic, pyridinic and oxidized N, of which ca. 20% was pyridinic nitrogen [21].

We then studied the pore structure using both nitrogen adsorption and mercury intrusion porosimetry. The nitrogen adsorption isotherm (Fig. 4a), shows a combination of a H3 and H4 hysteresis loops, implying the presence of micro-, meso- and macropores [41]. A BET analysis gave a high specific surface area of 1333 m2 g$^{-1}$. We used the Saito and Foley model to examine the micropore volume and micropore size distribution (see Fig. 4b). This model indicated a micropore volume of 0.76 mL g$^{-1}$, with most pores > 0.6 nm. As CO$_2$ is produced during the pyrolysis, these pores might be created by the typical CO$_2$ activation process [42]. For comparison, we measured under the same conditions a control sample of commercial activated carbon. This had a similar specific surface area of 1301 m2 g$^{-1}$, and a micropore volume of 0.64 mL g$^{-1}$.

In the middle region of the isotherm, our Mn–N–C differs from the commercial carbon sample. The adsorption-desorption hysteresis of Mn–N–C nanorod suggests the existence of mesopores. Analysis of the isotherm using Gurvich model revealed a pore volume of 4.54 mL g$^{-1}$ at 0.99 p/p0 [43]. This value surpasses most of the porous carbon materials reported to date (for a detailed comparison see Table S2 in the supporting information). Most of the mesopores in our material are < 10 nm in diameter (see Fig. 4c). This well matches the observations from the TEM micrographs. The mesopore volume calculated from the mercury intrusion porosimetry (Fig. 4d) reached 3.45 mL g$^{-1}$, derived from the intruded volume between pore sizes 3.6–50 nm (p = 29.6 MPa for 50 nm, θ = 140°, γ = 0.48 N m$^{-1}$). This is slightly lower than that obtained from N$_2$ adsorption. Most likely, the difference is caused by inkbottle shaped pores where the pore opening is too small for mercury to enter. The pore size distribution shows that most of the

![Fig. 1](image-url) The manganese and nitrogen co-doped carbon nanorods have macropores, mesopores and micropores, enabling the adsorption of large contaminant molecules such as methylene blue and their subsequent decomposition through the generation of hydroxyl radicals via simultaneous electrochemical oxygen reduction. (A colour version of this figure can be viewed online.)
pores are < 15 nm in diameter (inset of Fig. 4d, a high-resolution image is shown in Fig. S3).

2.2. Methylene blue adsorption

To evaluate the performance of our porous nanorods in the adsorption and electrocatalytic degradation of methylene blue (MB) illustrated in Fig. 1, we initially studied their capability of removing 50 ppm MB from an aqueous solution. This was compared to a commercial activated carbon which is essentially microporous with similar surface area (see Table 1 for the N₂ adsorption comparisons). After adding 5 mg of either Mn–N–C or activated carbon to 25 mL 50 ppm MB solution (pH was adjusted to 4 using HCl) and shaking gently, the blue color in the Mn–N–C suspension disappeared almost instantly. The complete removal of MB was confirmed by UV–visible spectroscopy (Fig. 5b). In contrast, the activated carbon suspension still displayed a light blue color even after 12 h agitation (see Fig. 5a). This implies that the carbon was already saturated by MB and could not remove the residual MB from the suspension.

To quantify the MB uptake, we measured its adsorption from solutions with varied concentrations, from 25 ppm up to 300 ppm. In each case, the amounts of adsorbed MB on the material and remaining MB in solution at equilibrium were measured and denoted as \(q_e \) (mg g\(^{-1}\)) and \(C_e \) (mg L\(^{-1}\)), respectively. Fitting the \(q_e - C_e \) plot using established adsorption models can reveal the adsorption mechanism and maximum uptake of MB for each
adsorbent [44]. Here we used the Langmuir, Freundlich and Redlich-Peterson adsorption models (see Supporting Information for details) [45–48]. The adsorption model parameters acquired from the linear fit of the models are summarized in Table S2. Fig. 5c and d compares the MB adsorption isotherms of the Mn–N–C nanorods and the commercial activated carbon. The commercial activated carbon clearly follows the Langmuir and Redlich-Peterson isotherm models, suggesting a monolayer adsorption of MB. The Mn–N–C results fit both the Langmuir and Redlich-Peterson model well, but show a maximum in the MB adsorption. When the Langmuir model is considered, we used the monolayer saturation capacity \(Q_l \) equaling to \(k_l a_0 \), to quantify the maximum MB uptake in the adsorbent. Albeit that both samples showed a similar specific surface area, their \(Q_l \) values differ significantly: 385 mg g\(^{-1}\) for the Mn–N–C sample compared to only 263 mg g\(^{-1}\) for the commercial activated carbon.

In fact, when the molecular dimension of the adsorbate is sufficiently small, such as that of \(\text{N}_2 \), \(\text{CO}_2 \), and \(\text{K}^+ / \text{OH}^- \), the adsorption capability of the adsorbent can, in many cases, be simply maximized by increasing its specific surface area that is mainly attributed by the micropore. This principle has been applied in developing high-performance materials for supercapacitors and \(\text{CO}_2 \) adsorption [45–53]. However, when the molecular dimension of the adsorbate is large, such as that of dyes and surfactants, the adsorbate will transfer slowly in the adsorbent and can easily block the small micropores during the adsorption process (see the schematic comparison in Fig. S4). In this case, the material with more mesopores is much advantageous in capturing and accommodating these bulky molecules [31,54,55]. The large MB molecules (1.3–1.8 nm diameter [29,56,57]) may block the micropores of the commercial activated carbon [31,54,55]. In addition, the commercial activated carbon would also suffer from a lower mass transport. Consequently, our hierarchically porous Mn–N–C nanorods with high specific surface area and mesopore volume showed a superior capability in adsorbing MB.

2.3. Electrochemical production of \(\text{H}_2\text{O}_2 \)

We studied the catalytic activity of Mn–N–C nanorods in producing \(\text{H}_2\text{O}_2 \) from the dissolved \(\text{O}_2 \) through the electrocatalytic oxygen reduction reaction. The ORR activity and selectivity of both the Mn–N–C nanorods and commercial activated carbon were tested in a 0.1 M \(\text{HClO}_4 \) electrolyte. Cyclic voltammetry using a rotating disc electrode in the \(\text{N}_2 \)-saturated electrolyte only showed capacitive behaviors for both materials (Fig. S5). In the \(\text{O}_2 \)-saturated electrolyte, reduction peaks at ca. 0.6 and 0.3 V vs RHE were observed for the Mn–N–C nanorods and commercial activated carbon, respectively, which confirmed that ORR has occurred at these potentials.

We then used a rotating ring disk electrode (RRDE) for evaluating the ORR activity and \(\text{H}_2\text{O}_2 \) selectivity. Fig. 6a compares the linear sweep voltammograms (LSVs) of the disk for three different samples: commercial activated carbon (red), Mn–N–C nanorods (black) and 20 wt% Pt/C (blue). The Mn–N–C nanorods have an onset potential of ca. 0.7 V vs RHE. This agrees with the observed potential from the ring when \(\text{H}_2\text{O}_2 \) oxidation starts (see Fig. 6b). This value is close to the standard reduction potential \(E^0_{\text{O}_2/\text{H}_2\text{O}_2} = 0.7 \text{V} \) and is among the highest reported for the \(\text{O}_2/\text{H}_2\text{O}_2 \) conversion [17,27,58–61]. Moreover, unlike many excellent carbon-based ORR catalysts [18,23,62,63], our Mn–N–C nanorods showed not only high activity in acidic media, but also exceptionally high \(\text{H}_2\text{O}_2 \) selectivity (98%) at potentials > 0.5 V vs RHE (see

Table 1

BET SSA, Saito and Foley micropore, BJH mesopore and BJH total pore volume of both the N–C and the commercial activated carbon.

<table>
<thead>
<tr>
<th>Carbon</th>
<th>SSA (m(^2)g(^{-1}))</th>
<th>Micropore volume (mLg(^{-1}))</th>
<th>Gurvich pore volume (mLg(^{-1}))</th>
<th>Hg intrusion mesopore volume (mLg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>N–C nanorods</td>
<td>1333</td>
<td>0.76</td>
<td>4.54</td>
<td>3.45</td>
</tr>
<tr>
<td>Commercial activated (Norit Darco)</td>
<td>1301</td>
<td>0.64</td>
<td>0.75</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

a Gurvich volume calculated with \(p/p_0^{0.95} \).
Fig. 7. (a) Disk current density and (b) ring current from the RRDE experiments in an O2-saturated 0.1 M HClO4 with and without the addition of 25 ppm MB, the scan rate is 10 mV s⁻¹ and the rotating speed is 1600 rpm. (c) in situ UV–Vis measurements for the oxidation of MB by the N–C nanorods. (A colour version of this figure can be viewed online.)

Fig. 6c), which implied that the number of electron transferred was close to 2. At the benchmark 1 mA cm⁻², the potential reached 0.41 V vs RHE and the selectivity remained 74%, comparable with the noble metal catalyst. A detailed comparison with the state-of-the-art is included in Table S1. Note that the Pt/C showed better ORR activity with an onset potential of 0.92 V vs RHE, due to the 4-electron transfer reaction pathway in which the O₂ was fully reduced to H₂O₂. The H₂O₂ selectivity for the Pt/C catalyst was <10%, in good agreement with published results [64]. The commercial activated carbon is inactive in the acidic electrolyte, with a very low current and H₂O₂ yield. Besides, Mn–N–C also demonstrated excellent stability in terms of both O₂ activation and H₂O₂ selectivity in the 18 h longevity test (see Fig. S6).

2.4. Electrochemical degradation of methylene blue

H₂O₂ can hardly oxidize many “robust” organic pollutants directly (such as the aromatics and MB) [12,65]. Typically, the oxidation can only occur via the scission of the peroxo bond and the generation of active free-radicals (eq (1)). Transition metal ions are often applied as the catalysts [66–68], as is the activated carbon [69,70]. Remarkably, the advantage of converting O₂ into H₂O₂ electrochemically is the formation in situ of these hydroxyl and peroxyl radical intermediates [11–13]. A 3-electron transfer process and a mono-electron reduction of H₂O₂ have been proposed as the two possible pathways (eqs (2) and (3)):

$$2\text{H}_2\text{O}_2 \rightarrow \text{HOO}^- + \text{HO}^- + \text{H}_2\text{O} \quad (1)$$

$$\text{O}_2 + 3\text{H}^+ + 3\text{e}^- \rightarrow \text{HO}^- + \text{H}_2\text{O} \quad (2)$$

$$\text{H}_2\text{O}_2 + \text{e}^- + \text{H}^+ \rightarrow \text{HO}^- + \text{H}_2\text{O} \quad (3)$$

With the presence of hydroxyl radicals, the complete oxidation of MB can be achieved following eq (4) with minimal toxic products release [71]. As the hydroxyl radicals can be rapidly reduced to hydroxyl ions, it is critical that MB is pre-adsorbed in the porous structure where the radical-generation sites are nearby (see Fig. 1).

$$\text{C}_{16}\text{H}_{18}\text{N}_3\text{SCI}^{51} + 16\text{CO}_2 + 6\text{H}_2\text{O} + \text{H}_2\text{SO}_4 + 3\text{HNO}_3 + \text{HCl} \quad (4)$$

Before studying the electrocatalytic degradation of MB, we first examined whether the adsorption of MB will cause the poison of our catalyst. Fig. 7a compares the performances of Mn–N–C nanorods with and without the presence of 25 ppm MB. Despite the fact that the reduction current has shifted a little to lower voltages due to the MB addition, the onset potential barely changed. This is also reflected by the unchanged onset potential, recorded at the ring in Fig. 7b, at which the production of H₂O₂ starts. The current drops in both the ring and disk after adding MB can be ascribed to (1) blockage of active site by adsorbed MB molecules and (2) the consumption of peroxy or hydroxyl radicals by MB.

To study the electrocatalytic degradation of MB, we performed an in-situ UV–vis spectrometric study using a three-electrode cell. The electrolyte was also O₂-saturated 0.1 M HClO₄ containing 10 ppm MB and the working electrode was biased at 0.4 V vs RHE (see supporting information for details). Because the Pt wire reference electrode can catalyze the generation of hydroxyl radicals through eq (1), we limited the test time to <30 s. We anticipated that this can avoid the contact between the generated H₂O₂ and Pt wire. In the Pt working electrode test, the concentration of MB remained constant in time (see Fig. 7c). Interestingly, the test with pristine Mn–N–C nanorod showed that all of the MB disappeared after only 5 s. However, this was not because of the electrocatalytic degradation of MB, but was ascribed to the rapid adsorption of MB on the working electrode. To exclude this artefact, we first immersed the Mn–N–C nanorod working electrode in 10 ppm electrolyte with sufficient volume. Then the MB-saturated working electrode, denoted as treated Mn–N–C, was then mounted in the in situ cell. A clear MB concentration decrease was observed progressively only when the potential was applied, confirming the electrocatalytic decomposition.

3. Conclusions

The decomposition of organic pollutants in water can be done efficiently if one combines adsorption, electrocatalysis, and free-radical reactions. Hierarchically porous carbon nanorods doped with manganese and nitrogen are ideal for this purpose, as they have both a large surface area and a high pore volume, as well as good active sites. These materials can adsorb large amounts of methylene blue from water (385 mg g⁻¹, 46% higher compared to a commercial activated carbon with a similar surface area). Importantly, they also catalyze the electrochemical reduction of dioxygen to hydrogen peroxide with >98% selectivity. In situ generation of hydroxyl free-radicals at the catalyst surface enables the efficient decomposition of methylene blue. The catalysts are made from abundant elements, and can be produced on gram scale. We hope that the results reported here will stimulate researchers to use these materials in a variety of applications.

Acknowledgement

We thank the financial support from the Netherlands Organisation for Scientific Research NWO-GDST Advanced Materials program (project No. 729.001.022), and the research fund through Wuhan University for the in-situ UV–vis measurement. This work is part of the Research Priority Area Sustainable Chemistry of the UvA (www.suschem.uva.nl).

Appendix A. Supplementary data

Supplementary data to this article can be found online at