SUPPLEMENTARY MATERIAL

Mapping Degradation Pathways of Natural and Synthetic Dyes with LC-MS: Influence of Solvent on Degradation Mechanisms

Bob W.J. Piroka,b,*, Giacomo Moroa, Nienke Meekela, Sanne V.J. Berbersa, Peter J. Schoenmakersa, Maarten R. van Bommela,c

a University of Amsterdam, van ’t Hoff Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
b TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands.
c University of Amsterdam, Faculty of Humanities, Conservation and Restoration of Cultural Heritage, Johannes Vermeerplein 1, 1071 DV, Amsterdam.

(*) Corresponding author
E-mail: B.W.J.Pirok@uva.nl
Contents

S-1 Influence of injection volume: de-mixing effects ... 3
S-2 Interaction of DMSO with carminic acid, eosin and their degradation products 4
S-3 MS/MS data of carminic acid with DMSO .. 5
S-4 MS/MS and UV-vis data of carminic-acid degradation product 6
S-5 Loss of Bromine in Eosin .. 7
S-6 MS/MS data for eosin interaction with DMSO ... 7
S-7 MS/MS and UV-vis data for eosin degradation products as a result of loss of bromine 8
S-8 MS/MS data for methylated eosin ... 13
S-9 MS/MS and UV-vis data for unknown main degradation product of eosin 14
S-10 MS/MS and UV-vis data for oxygenation of eosin ... 15
S-11 Oxygenation under influence of light by interaction with hydroperoxides 16
S-12 Proposed structure for main degradation product of eosin .. 17
S-13 Technical data Xenotest 150 S Heraeus ... 17
References ... 18
S-1 Influence of injection volume: de-mixing effects

Good peak shapes are observed when injecting small volumes, as shown in Figure S-1 (5-μL injection). When injecting larger volumes (e.g. 20 μL) detection limits are lowered, but peak deformation may occur, as described in the main text.

Figure S-1 – LC-UV chromatogram of the analysis of carminic acid dissolved in DMSO. Detection wavelength 254 nm. Injection volume: 5 μL.
S-2 Interaction of DMSO with carminic acid, eosin and their degradation products
The reaction mechanism below clarifies the interaction of DMSO with the carboxylic-acid groups [1–5] of carminic acid, eosin and their degradation product. The authors acknowledge Rien Reijneveld for compiling this overview.

Figure S-2 – Reaction mechanism for interaction of carboxylic acid with DMSO.
S-3 MS/MS data of carminic acid with DMSO

The MS/MS spectrum shown below confirms the interaction and reaction of DMSO with carminic acid.

Figure S-3 – MS/MS spectrum of analyte formed (m/z 281.01) by the reaction of carminic acid (221.01) with DMSO and the subsequent removal of water (m/z differences of 60 Da).
S-4 MS/MS and UV-vis data of carminic-acid degradation product
The MS/MS spectra below display the removal of carboxylic acid from precursor ion with \(m/z \) 221.0 to product ion with \(m/z \) 177.0. As a result, it can be concluded that a carboxylic-acid moiety is present.

Figure S-4 - MS/MS spectra of one of the degradation products of carminic acid (\(m/z \) 221.0).

Figure S-5 – UV-vis spectrum of degradation product of carminic acid (\(m/z \) 221.0).
S-5 Loss of Bromine in Eosin
The reaction mechanism below clarifies the loss of bromine under the influence of light [6–8]. The authors acknowledge Rien Reijneveld for compiling this overview.

Figure S-6 – Reaction mechanism for the loss of bromine under the influence of light.

S-6 MS/MS data for eosin interaction with DMSO
The MS/MS spectrum shown below confirms the interaction of eosin with DMSO.

Figure S-7 – MS/MS spectra of the product (m/z 706.69) of DMSO interaction with eosin (m/z 646.69).
S-7 MS/MS and UV-vis data for eosin degradation products as a result of loss of bromine

One of the degradation pathways found for eosin was the (subsequent) loss of one (or multiple) bromine atoms. The MS/MS and UV-vis spectra below were used to tentatively identify these compounds. Information obtained from the typical isotope ratios indicating the presence of one or more bromine atoms is indispensable.

Figure S-8 - MS/MS spectra of eosin (m/z 646.69).

Figure S-9 – UV-vis spectrum of eosin (marked 1 in Figure 5).
Figure S-10 - MS/MS spectra of eosin after the loss of one bromine atom (m/z 566.79).

Figure S-11 – UV-vis spectrum of eosin after the loss of one bromine atom (marked 2 in Figure 5). It should be noted that the spectrum is not pure due to (partial) co-elution.
Figure S-12 - MS/MS spectra of eosin after the loss of two bromine atoms (m/z 488.88).

Figure S-13 – UV-vis spectrum of eosin after the loss of two bromine atoms (marked 3 in Figure 5). It should be noted that the spectrum is not pure due to (partial) co-elution.
Figure S-14 - MS/MS spectra of eosin after the loss of three bromine atoms (m/z 410.97).

Figure S-15 – UV-vis spectrum of eosin after the loss of three bromine atoms (marked 4 in Figure 5). It should be noted that the spectrum is not pure due to (partial) co-elution.
Figure S-16 – MS/MS spectra of uranin (eosin without all of its Bromine atoms) at m/z 331.06.
S-8 MS/MS data for methylated eosin
The MS/MS spectrum shown below was used to confirm the methylation of eosin.

Figure S-17 - MS/MS spectra for methylated eosin with a clarification of the molecular structures.
S-9 MS/MS and UV-vis data for unknown main degradation product of eosin
Using the data shown in this section, a possible molecular structure was proposed in the main article. One key aspect is the apparent loss of the molecular-structure fragment shown below.

Figure S-18 – MS/MS spectra of main, unknown degradation product of eosin of m/z 414.86. The mass-to-charge ratio of 266.95 corresponds to the structural formula provided above. The isotope pattern confirms the presence of two remaining bromine atoms.

Figure S-19 – UV-vis spectrum of unknown degradation product of eosin of m/z 414.86.
S-10 MS/MS and UV-vis data for oxygenation of eosin
The following data were obtained for the oxygenated and methylated-oxygenated eosin molecules.

Figure S-20 – MS/MS spectra for oxygenated eosin (O1 in Figure 5).

Figure S-21 - UV-vis spectrum of oxygenated eosin (marked O1 in Figure 5).
S-11 Oxygenation under influence of light by interaction with hydroperoxides

The proposed reaction mechanism below gives a possible explanation for the observed oxygenation of eosin under the influence of light [8]. The authors acknowledge Rien Reijneveld for compiling this overview.

Figure S-23 – Example of possible clarification for the oxygenation of eosin.
S-12 Proposed structure for main degradation product of eosin

The following reaction is proposed for the formation of the main degradation product of eosin based on literature [9].

![Proposed structure for main degradation product of eosin](image)

Figure S-24 - Proposed structure and mechanism for unknown main degradation product of eosin with mass 414.86.

S-13 Technical data Xenotest 150 S Heraeus

Instrument: Xenon 130 mm vertical arch 1300 W, air cooled. Spectral range: 300 - 830 nm. Energy emitted: 1154 W/m². Filters: UV cutoff 310 nm, IR (corresponding to "solar radiation through a glass"). Black cell temperature: 40°C. Relative humidity: not controlled. During the experiments for this work, the relative humidity of the Xenotest was between 50 and 60%. Sample exposure: The homogeneity of the exposure of different samples is ensured by rotation of sample holders around the light source (Fig. S-25, left). The exposure can be continuous or alternate (1 iteration exposed to the source, then 180° holder rotation and 1 iteration not exposed). Rotation speed: about 5 iterations/min. A total of 10 sample holders 130 × 45 mm are present. Thus, in alternate-exposure mode, a total of 20 sample holder slots are available. One half of each sample can be protected with black paper band (Fig. S-25, right).

The ageing was kindly performed by Witold Nowik (CNRS-C2RMF, France, within the framework of an H2020 funded project, IPERION-CH, GA 654028).
References

