Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production

Beyraghdar Kashkooli, A.; van der Krol, A.R.; Rabe, P.; Dickschat, J.S.; Bouwmeester, H.

DOI
10.1016/j.ymben.2019.01.007

Publication date
2019

Document Version
Final published version

Published in
Metabolic Engin.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from *Artemisia annua* and *Tanacetum parthenium* allows for novel combinatorial sesquiterpene production

Arman Beyraghdar Kashkoolia, Alexander R. van der Krola, Patrick Rabeb, Jeroen S. Dickschatb, Harro Bouwmeestera,⁎

a Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
b Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany

ARTICLE INFO

Keywords: Combinatorial metabolic engineering Sesquiterpene lactone Double bond reductase Feverfew Sweet wormwood Dihydroparthenolide

ABSTRACT

The therapeutic properties of complex terpenes often depend on the stereochemistry of their functional groups. However, stereospecific chemical synthesis of terpenes is challenging. To overcome this challenge, metabolic engineering can be employed using enzymes with suitable stereospecific catalytic activity. Here we used a combinatorial metabolic engineering approach to explore the stereospecific modification activity of the *Artemisia annua* artemisinic aldehyde Δ11(13) double bond reductase2 (AaDBR2) on products of the feverfew sesquiterpene biosynthesis pathway (GAS, GAO, COS and PTS). This allowed us to produce dihydrcostunolide and dihydroparthenolide. For dihydroparthenolide we demonstrate that the preferred order of biosynthesis of dihydroparthenolide is by reduction of the exocyclic methylene of parthenolide, rather than through C4-C5 epoxidation of dihydrcostunolide. Moreover, we demonstrate a promiscuous activity of feverfew CYP71CB1 on dihydrcostunolide and dihydroparthenolide for the production of 3β-hydroxy-dihydroparthenolide and 3β-hydroxy-dihydrcostunolide, respectively. Combined, these results offer new opportunities for engineering novel sesquiterpene lactones with potentially improved medicinal value.

1. Introduction

The terpenoids are a diverse and important group of secondary metabolites that are composed of C5 isoprene units. One important class of terpenoids, the sesquiterpene (C15) lactones (STLs), are mainly present in Asteraceae such as feverfew (*Tanacetum parthenium*), a well-known medicinal plant that has been used since ancient times for multiple afflictions from arthritis to insect bites, but mainly, as its name indicates, against fever. It is also used to treat migraine (Palevitch et al., 1997), and has been shown to have therapeutic effects on cancer (Guzman et al., 2005), by specifically inducing apoptotic cell death in cancer cells. Parthenolide is the main bioactive STL isolated from feverfew (Pareek et al., 2011). The chemical complexity of parthenolide (with its macrocyclic 10-membered ring, the C4-C5 epoxide and the attached α-methylene-γ-lactone) and of other STLs that have medicinal properties makes them difficult targets for chemical synthesis, especially if stereochemically pure compounds are needed. Recent studies have demonstrated that several important bioactive compounds such as artemisinin (Khairul Ikram et al., 2017; Malhotra et al., 2016; Wang et al., 2016), costunolide (Liu et al., 2011) and parthenolide (Liu et al., 2014) can be produced, with the right stereochemistry, in microbial and plant production platforms through metabolic engineering, i.e. by expressing the pathway genes isolated from the original production host. Such pathway reconstruction in heterologous hosts also opens up the possibility of combinatorial biosynthesis, in which compatible biosynthesis genes from different organisms are combined with the potential to produce novel bioactive secondary metabolites (Julsing, 2006).

Several examples of combinatorial biosynthesis of secondary metabolites are based on the substrate promiscuity of cytochrome P450 monooxygenases that can act on various different substrates (Eudes et al., 2016; Mafu et al., 2016; O’Reilly et al., 2013). For example, CYP71AV8 from chicory (*Cichorium intybus*) can catalyse a triple oxidation of C12 of both amorpha-4,11-diene and germacrene A, resulting
in artemisinic acid and germacrone A acid, respectively (Nguyen et al., 2010), while the same enzyme catalyses a double oxidation at C2 of (+)-valencene, such that nootkatone is produced (Canekar et al., 2011).

Feverfew contains several types of STls (costunolide, parthenolide, artecanin and santamarin) (Fischedick et al., 2012). The biosynthesis of parthenolide proceeds through epoxidation of the C4-C5 double bond of the precursor costunolide (Liu et al., 2014). Although chicory does not contain parthenolide, costunolide is also produced in chicory as an intermediate in the production of (6S,7S,11S)-11,13-dihydrocostunolide and leucodin (de Kraker et al., 2002). Some STls with reduced α-methylene-γ-lactone such as 11,13-β-dihydroartectopicerin are more cytotoxic than their non-reduced counterpart (Ren et al., 2005). de Kraker et al. (2002) reported the presence of an enzymatic activity in chicory root extracts that reduces the exocyclic double bond of costunolide resulting in dihydrocostunolide. Interestingly, a reduced form of parthenolide, dihydroparthenolide, which shows bioactivity against multi-drug resistant Mycobacterium tuberculosis (causative agent of tuberculosis) and Mycobacterium avium (Rugutt et al., 2001), is present in feverfew extracts (Fischedick et al., 2012), suggesting that just as chicory, also feverfew possesses a double bond reductase (DBR) that can reduce the exocyclic double bond of these STls. However, the genes encoding these putative DBRs in chicory and feverfew have not been identified.

Artemisia annua L. is also a member of the Asteraceae and known for production of the antimalarial drug artemisinin. The direct precursor of artemisinin is dihydroartemisinic acid (Fig. 1). An artemisinic aldehyde Δ11(13) double bond reductase2 (AaDBR2) is responsible for reduction of the exocyclic double bond of artemisinic aldehyde to form dihydroartemisinic aldehyde, the precursor of dihydroartemisinic acid. In contrast to chicory and feverfew, the gene encoding DBR2 from A. annua, AaDBR2, has been identified (Zhang et al., 2008).

Here we assess whether AaDBR2 can act on STls and pathway intermediates from feverfew to explore the options to produce novel STls with potential medicinal value. DBRs have been shown to act on early intermediates from feverfew to explore the options to produce novel STls (Fig. 1b) (Ren et al., 2018, 2014). Microsomal fraction isolation was performed according to the method described by Liu et al. (2018).

2. Materials and methods

2.1. Plasmid construction for gene expression in N. benthamiana

TpGAS (KC954155), Tpβ3-hydroxylase (KC954153) and TpKLS (MF197558) were previously cloned into the pESC-Ura vector under the control of the galactose-inducible promoter by addition of BamHI and NotI restriction sites (Liu et al., 2018, 2014). Microsomal fraction isolation was performed according to the method described by Liu et al. (2018).

2.2. Metabolite extraction from N. benthamiana leaves

Agroinfiltrated leaves were harvested and snap-frozen in liquid N₂ for metabolites extraction. For substrate feeding, 2 leaf disks were punched from each leaf and vacuum infiltrated with 20 μM parthenolide or costunolide and kept for 2 h at room temperature. Then the leaves were ground into a fine powder using a tissueusyrer and glass beads. 100 mg of fine ground material was extracted with 300 μl of MeOH:Formic acid (1000:1). Samples were sonicated for 15 min and centrifuged for 15 min at 13500 × g (5 °C). Later the supernatant was filtered through a 0.45 μm filter (Minisart® RC4, Sartorius, Germany) for metabolites analysis by LC-MS. For GC-MS analysis, samples were extracted 2 times with 2 mL of ethyl acetate (EtAc), sonicated for 15 min and centrifuged for 15 min at 3500 × g (10 °C). The upper phase (EtAc) was passed through a Pasteur pipette filled with anhydrous Na₂SO₄ to dehydrate the samples before analysis.

2.3. Plasmid construction for gene expression in yeast

In order to perform yeast in-vitro assays microsomal fractions (72 μl), NADPH (100 μl of 10 mM stock), potassium buffer (20 μl of 1 mM, pH=7.5) and 288 μl of distilled water were mixed with substrate (10 μl of 10 mM stock solution). The mixture was incubated for 150 min at 25 °C in a shaker incubator (250 rpm). The enzymatic mixtures were then centrifuged for 15 min at 13500 × g (5 °C). The supernatant was filtered through a 0.45 μm filter (Minisart® RC4, Sartorius, Germany) for metabolites analysis by LC-MS.

2.4. Yeast microsome assay and metabolites extraction

To analyse the agro-infiltrated N. benthamiana leaf extracts or yeast microsome enzyme assays we used a LC-LTQ-Orbitrap-FTMS system (Thermo Scientific). This system a HPLC, an Accela photodiode array detector (PDA). This was connected to an LTQ-Orbitrap hybrid MS detector coupled with an ESI source. An analytical column of Luna 3 μm C18/2 100 A; 2.0 × 150 mm (Phenomenex, USA) was used for chromatographic separation. We used HPLC H₂O:formic acid (1000:1, v-v) as eluent A while eluent B was combination of acetonitrile: formic acid (1000:1, v-v). Flow rate was set to 0.19 mL min⁻¹ and the gradient was from 5% to 75% acetonitrile in a 45 min gradient. This was then followed by a washing step of 15 min and later equilibrated. Full scan mass analysis was done at a resolution equal to 60000. FTMS calibration was externally done in negative ionisation mode by CHNaO₂⁻. Injection volume for each sample was set to be 5 μl.

2.5. Metabolites analysis by LC-Orbitrap-FMS

In order to analyse the agro-infiltrated N. benthamiana leaf extracts or yeast microsome enzyme assays we used a LC-LTQ-Orbitrap-FTMS system (Thermo Scientific). This system a HPLC, an Accela photodiode array detector (PDA). This was connected to an LTQ-Orbitrap hybrid MS detector coupled with an ESI source. An analytical column of Luna 3 μm C18/2 100 A; 2.0 × 150 mm (Phenomenex, USA) was used for chromatographic separation. We used HPLC H₂O:formic acid (1000:1, v-v) as eluent A while eluent B was combination of acetonitrile: formic acid (1000:1, v-v). Flow rate was set to 0.19 mL min⁻¹ and the gradient was from 5% to 75% acetonitrile in a 45 min gradient. This was then followed by a washing step of 15 min and later equilibrated. Full scan mass analysis was done at a resolution equal to 60000. FTMS calibration was externally done in negative ionisation mode by CHNaO₂⁻. Injection volume for each sample was set to be 5 μl.

2.6. GC-MS analysis

GC-MS analysis using a 7890A gas chromatograph, equipped with a 30 m × 0.25 mm × 0.25 μm film thickness column (DB-5), coupled to a 5975 C Triple-Axis detector (Agilent) was used to analyse the EtAc extracts. The flow rate was adjusted to 1 mL min⁻¹ and helium was used as the carrier gas. No splitting was used for injection and inlet analysis.
temperature set to 250 °C. The initial oven temperature was 45 °C for 1 min, and increased to 300 °C after 1 min at a rate of 10 °C min\(^{-1}\) which was held for 5 min.

2.7. Synthesis of (6S,7S,11S)-11,13-dihydrocostunolide

Costunolide (13.6 mg, 0.058 mmol, 1.0 eq.) was dissolved in dry MeOH (450 µl) and a catalytic amount of Pd/C (< 1 mg) was added. The resulting mixture was stirred in an H\(_2\) atmosphere (1 bar) until the starting material was consumed (90 min). The catalyst was filtered off. Column chromatography on reversed phase silica gel (MeOH: H\(_2\)O 1:1 > 3:1) resulted in the title compound (11 mg, 0.047 mmol, 81%). NMR data are given in Table S1.

2.8. NMR analysis

NMR spectra were recorded on a Bruker (Billerica, MA, USA) Avance I (500 MHz), Avance III HD Prodigy (500 MHz) or an Avance III HD Cryo (700 MHz) NMR spectrometer. Spectra were referenced against the solvent signal (\(^1\)H-NMR, residual proton signal of C\(_6\)D\(_6\) \(\delta = 7.16\); \(^13\)C-NMR: C\(_6\)D\(_6\) \(\delta = 128.06\)).

2.9. Accession numbers

Gene bank accession numbers of the genes used in this study were KC964544 (TpGAO); JF816041 (CiCOS); KC954155 (TpPTS); KC954153 (Tp\(3\beta\)-hydroxylase); JX898526 (AaDBR2) and MF197558 (TpKLS). The cytochrome P450s were previously deposited to David Nelson’s cytochrome P450 database (http://drnelson.uthsc.edu/cytochromeP450.html) with the assigned names of CYP71CA1 (TpPTS); CYP71CB1 (Tp\(3\beta\)-hydroxylase); CYP71BL3 and CYP71BL3 (CiCOS) (Nelson, 2009).

Fig. 1. Biosynthesis pathway of artemisinin in Artemisia annua (a) and of costunolide and parthenolide in Tanacetum parthenium (feverfew) as well as proposed combinatorial biosynthesis of a number of dihydro-derivatives of sesquiterpene lactones(b). ADS: amorphadiene synthase; CYP71AV1: amorphadiene oxidase; ALDH1: alcohol dehydrogenase; DBR2: double bond reductase; GAS: germacrene A synthase; GAO: germacrene A oxidase; COS: costunolide synthase; PTS: parthenolide synthase. Broken arrows indicate possible enzymatic steps that were not experimentally verified in this study.
3. Results

3.1. Functional characterization of AaDBR2 in the costunolide pathway

Incubation of costunolide with a chicory root extract results in the formation of dihydrocostunolide in an NADPH dependent manner (de Kraker et al., 2002). We supposed that dihydrocostunolide, a germacranolide type STL, is formed through the action of a reductase. Dihydrocostunolide and its C4-C5 epoxide (dihydroparthenolide) are detected in chicory and feverfew extracts, respectively, but a reductase that is responsible for the exocyclic double bond reduction in these compounds has not been identified in these two species. Hence we tested DBR2 from *A. annua*, which is active in a closely related artemisinin biosynthesis pathway. AaDBR2 reduces the exocyclic double bond of artemisinic aldehyde, resulting in the formation of dihydroartemisinic aldehyde en route to artemisinin (Ting et al., 2013; Zhang et al., 2008). Here we tested whether AaDBR2 can also reduce the exocyclic double bond of costunolide. Hereto, the costunolide biosynthesis pathway genes (*GAS*, *GAO* and *COS*) were co-expressed with *AaDBR2* using transient expression in *Nicotiana benthamiana* by agro-infiltration. To boost substrate availability, *Arabidopsis thaliana* 3-hydroxy-3-methylglutaryl coenzyme A synthase (*AtHMGR*) was also co-expressed. *AtHMGR* can boost mevalonate production which leads to higher FPP precursor input for STL production in *N. benthamiana* (Liu et al., 2014). Leaves were harvested 5 days post agro-infiltration (5 dpi) and metabolites were extracted with MeOH. A non-targeted metabolite profiling by LC/Q Exactive MS was used for product detection. Comparison of the chromatograms of samples that expressed the costunolide pathway genes with and without *AaDBR2* revealed a new peak eluting at 42.32 min ([M+H]+ = 235.169) (Fig. 2). This mass differs 2.01 Da from that of costunolide ([M+H]+ = 233.153), which fits with a double bond reduction in costunolide. In *N. benthamiana* heterologous
costunolide is detoxified by conjugation to glutathione (GSH) resulting in costunolide-GSH, which over time may break down to the costunolide-cysteine (costunolide-C) conjugate. This GSH conjugation supposedly takes place at the methylene group adjacent to the carbonyl group of the lactone ring of costunolide (Liu et al., 2011). Expression of the costunolide pathway genes with AaDBR2 in N. benthamiana resulted in a 70% reduction in costunolide-GSH and costunolide-C levels, providing additional support for AaDBR2 activity on costunolide.

Since a commercial standard of dihydrocostunolide is not available, we used chemical synthesis to produce dihydrocostunolide to confirm the identity and stereochemistry of the novel product in N. benthamiana. Reduction of the 11,13-double bond in costunolide was done as described in the methods section. This reaction including the workup with a NH4Cl solution resulted in the formation of a complex product mixture from which the cadinenes, dihydro-α-cyclocostunolide (1) and dihydro-β-cyclocostunolide (2) could be isolated in low yields (Scheme 1) and their structure confirmed using NMR (see Suppl Information). The reduction of costunolide using NaBH4 is known to produce both stereoisomers, (11S)- and (11R)-dihydrocostunolide (G. Appendino, personal communication). The cadinenes likely formed from these two stereo-isomers during column chromatography on the slightly acidic silica gel, which is known to cause acid-induced cyclisation in germacranes (de Kraker et al., 2001). Catalytic hydrogenation of costunolide using palladium on charcoal and purification on reversed phase silica gel resulted in the efficient formation of the target compound (6S,7S,11S)-11,13-dihydrocostunolide (dihydrocostunolide) as a single stereoisomer with 81% yield. The synthetic compound had the same mass spectrum and eluted at the same retention time as the metabolite observed in N. benthamiana (Fig. 2). These results show that AaDBR2 can indeed stereospecifically reduce the exocyclic double bond of costunolide to produce (6S,7S,11S)-11,13-dihydrocostunolide (dihydrocostunolide).

3.2. Reduction of parthenolide by AaDBR2

In order to test whether AaDBR2 can also act on parthenolide, all the parthenolide biosynthesis pathway genes (GAS, GAO, COS and PTS) (Liu et al., 2014) were co-expressed with AaDBR2. Again, boosting of FPP production was achieved by co-expression of AdHMGR1. Agro-infiltrated leaves were harvested at 5 dpi and methanolic extracts were injected into LC-Orbitrap-FTMS to analyse product formation. Comparison of the chromatograms of extracts from samples expressing the parthenolide pathway with and without AaDBR2 showed a new peak at RT = 29.47 min ([M+H]⁺ = 251.16). The mass of the new compound
fits that dihydroparthenolide and the retention time shift between parthenolide and the putative dihydroparthenolide of about 0.4 min is similar to the retention time shift between costunolide and dihydrocostunolide (Fig. S5). The identity of the novel compound was confirmed by comparison with an authentic dihydroparthenolide standard, isolated from feverfew extracts (Fischedick et al., 2012) (Fig. 3).

3.3. AaDBR2 reduces costunolide

Formation of dihydrocostunolide by co-expression of AaDBR2 and the costunolide pathway genes in the experiment described above may occur through reduction of costunolide as suggested before (de Kraker et al., 2002), but could also occur through reduction of costunolide pathway intermediates produced by GAS and/or GAO (Fig. 1b-1), particularly considering that the native function of AaDBR2 is to reduce artemisinic aldehyde. If AaDBR2 forms double-bond reduced costunolide pathway intermediates, such products may subsequently be converted by GAO and COS to dihyrocotunolide (Fig. 1b-2), provided these enzymes are promiscuous for dihydro-substrates. To test whether AaDBR2 acts on costunolide we supplied costunolide to A. benthamiana leaf discs transiently expressing only AaDBR2. At three dpi, leaf discs were taken from agro-infiltrated leaves and vacuum infiltrated with water containing costunolide. The infiltrated leaf disks were harvested after 2 h and extracted with methanol for product analysis by LC-Orbitrap-FTMS. The results showed that AaDBR2 catalyses dihydrocostunolide to dihydroparthenolide (Fig. 5a, route 2). To test the promiscuity of TpTPS we used a yeast microsome feeding assay. Yeast WAT11 was transformed with TpTPS and used for isolation of the microsomal fraction containing TpTPS. The microsomal fractions were subsequently incubated with either dihydrocostunolide or costunolide for 2.5 h. As control, microsome fractions from yeast expressing EV were used. Product analysis of these in vitro enzyme assays by LC-Orbitrap-FTMS showed that PTS can use both costunolide and dihydrocostunolide as substrate, resulting in parthenolide and dihydroparthenolide, respectively (Fig. 5a and b). No parthenolide or dihydroparthenolide was detected in microsomes from yeast expressing EV, incubated with costunolide or dihydrocostunolide, respectively. The conversion of dihydrocostunolide to dihydroparthenolide by PTS is not very efficient as only ~2.5% of the infiltrated dihydrocostunolide was converted to dihydroparthenolide.

To test whether AaDBR2 can use parthenolide as substrate (Fig. 5e, route 2) N. benthamiana leaves were infiltrated with A. tumefaciens harbouring the AaDBR2 expression construct. Three dpi, discs were taken from agro-infiltrated leaves and infiltrated with water containing parthenolide. Vacuum infiltration of parthenolide in discs from leaves transformed with EV was used as negative control. Leaf discs were incubated for 2 h after which they were extracted with MeOH and analysed by LC-Orbitrap-FTMS. The results showed that AaDBR2 catalyses exocyclic double bond reduction in parthenolide (Fig. 5c and d). A tiny peak, eluting at the same time as the authentic dihydroparthenolide standard, was detected in leaves expressing EV (Fig. 5c). However, the mass spectrum of this product contains fragment masses m/z = 231.16, m/z = 249.16 and m/z = 273.15 of which only one (m/z = 273.15) fits with fragment masses of authentic dihydroparthenolide, suggesting that this is likely not dihydroparthenolide (Fig. 5d). More than 90% of infiltrated parthenolide was converted by AaDBR2 compared to the activity in leaves expressing EV (Fig. 5c). This shows that parthenolide is a good substrate for AaDBR2.

3.4. AaDBR2 also reduces parthenolide

Formation of dihydroparthenolide by co-expression of AaDBR2 with the parthenolide pathway genes in N. benthamiana may be the result of promiscuous activity of TpTPS oxidising both costunolide and dihydrocostunolide (Fig. 5e, route 1) or by promiscuous activity of AaDBR2, reducing also the double bond of parthenolide (Fig. 5e, route 2). To test the promiscuity of TpTPS we used a yeast microsome feeding assay. Yeast WAT11 was transformed with TpTPS and used for isolation of the microsomal fraction containing TpTPS. The microsomal fractions were subsequently incubated with either dihydrocostunolide or costunolide for 2.5 h. As control, microsome fractions from yeast expressing EV were used. Product analysis of these in vitro enzyme assays by LC-Orbitrap-FTMS showed that PTS can use both costunolide and dihydrocostunolide as substrate, resulting in parthenolide and dihydroparthenolide, respectively (Fig. 5a and b). No parthenolide or dihydroparthenolide was detected in microsomes from yeast expressing EV, incubated with costunolide or dihydrocostunolide, respectively. The conversion of dihydrocostunolide to dihydroparthenolide by PTS is not very efficient as only ~2.5% of the infiltrated dihydrocostunolide was converted to dihydroparthenolide.

To test whether AaDBR2 can use parthenolide as substrate (Fig. 5e, route 2) N. benthamiana leaves were infiltrated with A. tumefaciens harbouring the AaDBR2 expression construct. Three dpi, discs were taken from agro-infiltrated leaves and infiltrated with water containing parthenolide. Vacuum infiltration of parthenolide in discs from leaves transformed with EV was used as negative control. Leaf discs were incubated for 2 h after which they were extracted with MeOH and analysed by LC-Orbitrap-FTMS. The results showed that AaDBR2 catalyses exocyclic double bond reduction in parthenolide (Fig. 5c and d). A tiny peak, eluting at the same time as the authentic dihydroparthenolide standard, was detected in leaves expressing EV (Fig. 5c). However, the mass spectrum of this product contains fragment masses m/z = 231.16, m/z = 249.16 and m/z = 273.15 of which only one (m/z = 273.15) fits with fragment masses of authentic dihydroparthenolide, suggesting that this is likely not dihydroparthenolide (Fig. 5d). More than 90% of infiltrated parthenolide was converted by AaDBR2 compared to the activity in leaves expressing EV (Fig. 5c). This shows that parthenolide is a good substrate for AaDBR2.

3.5. Characterization of substrate promiscuity of Tp3β-hydroxylase

Feverfew also contains a 3β-hydroxylase, which catalyses the stereospecific 3β-hydroxylation of costunolide and parthenolide to form 3β-hydroxycostunolide and 3β-hydroxyparthenolide, respectively (Liu et al., 2002). Feverfew contains a 3β-hydroxylase, which catalyses the stereospecific 3β-hydroxylation of costunolide and parthenolide to form 3β-hydroxycostunolide and 3β-hydroxyparthenolide, respectively (Liu et al., 2002).
et al., 2014). We assessed whether the feverfew 3β-hydroxylase also accepts dihydrocostunolide as a substrate, just as TpPTS that can oxidise both costunolide and dihydrocostunolide as demonstrated above. Hereeto, microsomal fractions isolated from yeast expressing the feverfew 3β-hydroxylase were incubated for 2 h with dihydrocostunolide. Products of the in vitro enzyme assay were extracted and analysed by LC-Orbitrap-FTMS. The resulting chromatograms show a new peak eluting at 23.80 min ([M+H]+ = 251.16472) in samples from yeast expressing Tp3β-hydroxylase incubated with dihydrocostunolide. This peak was not present in the control samples where dihydrocostunolide was fed to microscopic fractions from yeast expressing EV (Fig. 6). The mass of this novel compounds fits with the expected mass of 3β-hydroxyl-dihydrocostunolide. Also the retention time shift of this new peak compared with dihydrocostunolide is similar to the retention time shift between costunolide and 3β-hydroxy-costunolide (~0.4 min, Fig. S5). A commercial standard of 3β-hydroxy-dihydrocostunolide is not available hampering unambiguous confirmation of the identity of this new compound as 3β-hydroxy-dihydrocostunolide.

Similar to dihydroparthenolide formation, a bidirectional biosynthesis pathway can also be postulated for 3β-hydroxy-dihydrocostunolide. In order to test whether 3β-hydroxy-costunolide is the preferred substrate for AaDBR2 (Fig. 6d, Route 2), we infiltrated 3β-hydroxy-costunolide to the N. benthamiana cells expressing AaDBR2 and analysed the EtAC extracts by GC-MS. A new peak eluting at 17.30 min was present in the samples expressing AaDBR2 and not in the EV samples. In order to detect possible traces of the proposed 3β-hydroxy-dihydrocostunolide in the EV samples, both samples were concentrated (×20) and re-injected into the GC-MS, where no new peak eluting at 17.30 min was identified in the EV samples (Fig. 6e).

Tp3β-hydroxylase also acts on parthenolide to form 3β-hydroxy-xyparthenolide (Liu et al., 2014) and we tested whether dihydroparthenolide is also a substrate for this enzyme. Since the amount of dihydroparthenolide we had available was low, we produced dihydroparthenolide in planta by feeding parthenolide to AaDBR2 expressing N. benthamiana. The Tp3β-hydroxylase was co-expressed with AaDBR2 or EV. At three dpi, parthenolide was vacuum infiltrated into the leaf disks and disks were extracted after 2 h incubation for product analysis by LC-Orbitrap-FTMS. Results showed that both in absence and presence of AaDBR2 a product was formed which elutes at 18.70 min ([M+H]+ = 265.14399), which was identified as 3β-hydroxyparthenolide, confirming the enzyme activity of Tp3β-hydroxylase on parthenolide. If double-bond reduced 3β-hydroxy-dihydroparthenolide is formed from 3β-hydroxyparthenolide through the action of AaDBR2, it should have mass [M+H]+ = 267.15964 and an about 0.4 min later retention time. A peak with these characteristics was indeed detected in samples expressing AaDBR2 (RT shift 0.65 min). A similar but smaller peak was identified in the samples only expressing EV (10-fold lower peak intensity), indicating that an endogenous N. benthamiana enzyme may also catalyse this double bond reduction (data not shown). Because we lack the standard for 3β-hydroxy-dihydroparthenolide we cannot unambiguously confirm product identity. However, the five main peaks in the mass spectrum of the novel product, were similar to the five main peaks in the mass spectrum of 3β-hydroxyparthenolide, but with a 2 D higher mass in the m/z for each of the five peaks for the new compound, suggesting that the novel compound is indeed 3β-hydroxy-dihydroparthenolide (Fig. S4).

Very much similar to the bidirectional biosynthesis pathways of costunolide to dihydroparthenolide and costunolide to 3β-hydroxy-dihydrocostunolide a bidirectional biosynthetic pathway can also be proposed for 3β-hydroxy-dihydroparthenolide formation from parthenolide (Fig. 7d). In one pathway the parthenolide exocyclic methylene double bond is first reduced after which 3β-hydroxylation occurs by Tp3β-hydroxylase (Fig. 7d, route 1), while in the other pathway Tp3β-hydroxylase first hydroxylates C3 of parthenolide to produce 3β-hydroxy-parthenolide after which AaDBR reduces the exocyclic double bond to produce 3β-hydroxy-dihydroparthenolide. We had a small amount of authentic 3β-hydroxyparthenolide available and vacuum infiltrated that into N. benthamiana leaf discs expressing AaDBR2. Samples were extracted with EtAC and injected into the GC-MS. After concentration of samples (×20) two peaks were identified in samples expressing AaDBR2 at 21.20 and 21.70 min (Fig. 7a). The mass difference of the major peak in the spectrum of the peak eluting at 21.20 was 2 D, suggesting a double bond reduction of the peak eluting at 21.70 min (3β-hydroxyparthenolide). After concentration of the samples, a tiny peak eluting at 21.19 min was also detected in the control samples (expressing EV) (Fig. 7a) indicating an intrinsic DHR activity of N. benthamiana which was observed also with other substrates infiltrated (see above) (Fig. S4).

In order to test the other route where parthenolide is first reduced by the AaDBR2 and then used by the Tp3β-hydroxylase, we expressed Tp3β-hydroxylase in N. benthamiana leaves and vacuum infiltrated dihydroparthenolide. Samples were extracted with EtAC, concentrated and injected into GC-MS for analysis. This showed that feeding dihydroparthenolide to the cells expressing Tp3β-hydroxylase results in formation of a new compound (proposed 3β-hydroxy-dihydroparthenolide) eluting at 21.21 min (Fig. 7c), similar to the one identified in Fig. 7a. Such a peak was not present in samples expressing EV.

3.6. Dihydro-costunolide is not the substrate for feverfew kauniolide synthase

Recently we also characterized a kauniolide synthase from feverfew (TpKLS), which converts costunolide into the basic guianolide-type sesquiterpene lactone kauniolide (Liu et al., 2018). To assess whether TpKLS can use dihydrocostunolide as a substrate to produce dihydrokauniolide, we incubated dihydrocostunolide with micromolar fractions of yeast expressing KLS. However, there was no decrease in
produced in a N. benthamiana (the headspace) of the reaction mixtures (data not shown). Indeed, AaDBR2 is able to reduce the double bond in germacrene A alcohol, cannot oxidise germacrene A (Nguyen et al., 2010). We tested whether from chicory can act on the non-native substrate amorphadiene from deed, it was previously demonstrated that germacrene A oxidase (GAO) sesquiterpene lactones with reduced exocyclic double bond. This was possible due to substrate promiscuity for a number of the enzymes in different plant species. For instance, although sesquiterpene lactones with reduced exocyclic methylene double bond have been reported both in feverfew and chicory, full reconstruction of their biosynthesis pathway has not been achieved yet, as from neither species the double bond reductases have been characterized. In this paper we took advantage of two sets of available enzymes from A. annua and feverfew in a combinatorial metabolic engineering approach for biosynthesis of sesquiterpene lactones with reduced exocyclic double bond. This was possible due to substrate promiscuity for a number of the enzymes involved in sesquiterpene lactone biosynthesis in these two species. The artemisinin biosynthesis pathway in A. annua L. is similar to the costunolide biosynthesis pathway in chicory and feverfew (Fig. 1). Indeed, it was previously demonstrated that germacrene A oxidase (GAO) from chicory can act on the non-native substrate amorphadiene from A. annua, although amorphadiene oxidase (CYP71AV1) from A. annua cannot oxidise germacrene A (Nguyen et al., 2010). We tested whether AaDBR2 is able to reduce the double bond in germacrene A alcohol, germacrene A aldehyde or germacrene A acid. However, neither these intermediates, nor their reduced forms could be detected in extracts (or the headspace) of the reaction mixtures (data not shown). Indeed, detection of these intermediates was also shown to be problematic when produced in a N. benthamiana heterologous expression system (Liu et al., 2011). However, we show that AaDBR2 can reduce the exocyclic methylene double bond of both costunolide and parthenolide, producing dihydrocostunolide and dihydroparthenolide, respectively (Figs. 4 and 5). Moreover, the reduced products are substrates for CYP71C1 (Tp3β-hydroxylase) of feverfew for production of 3β-hydroxy-dihydrocostunolide and 3β-hydroxy-dihydroparthenolide, respectively (Figs. 6 and 7). Production of 3β-hydroxy-dihydrocostunolide and 3β-hydroxy-dihydroparthenolide may proceed through two routes: first reduction and then C3-hydroxylation or first C3-hydroxylation and then reduction (Figs. 6d and 7e). Results from the bidirectional biosynthesis of dihydroparthenolide (through dihydrocostunolide by PTS or through parthenolide by DBR) suggests a preferred biosynthetic route (Fig. 5e, route 2). The efficiency of this route 2 (exocyclic double bond reduction of parthenolide) is ~90%, while the efficiency of route 1 (Fig. 5e) is calculated to be only ~2.5%. AaDBR2 produces only the 11S-isomers of dihydrocostunolide and dihydroparthenolide. Thus, the enzymatic reaction follows the same stereochemical course as the chemical hydrogenation, likely with attack of the olefinic double bond from the better accessible face and/or producing the thermodynamically more stable stereoisomer. Stereoselective enzymatic reactions are interesting from a pharmaceutical point of view, as often only one of the stereoisomers shows medicinal properties (Julsing, 2006). Thalidomide (softone) for example as a mixture of two enantiomers was used in medicine (as sedative); however one enantiomer is used as sedative while the other one is responsible for teratogenic side effects (Nguyen et al., 2006).

4. Discussion

Co-expression of terpene biosynthesis genes from different species in a single heterologous host can be used to explore the range of compatible substrate-enzyme combinations beyond the substrates that are present in the original host. Such combinatorial metabolic engineering also provides a powerful strategy to produce novel terpenes with new biological activity or can be used to produce desired compounds even when not all the genes encoding its biosynthesis pathway are available (but can be substituted by compatible enzymes from a different plant species). For instance, although sesquiterpene lactones with reduced exocyclic methylene double bond have been reported both in feverfew and chicory, full reconstruction of their biosynthesis pathway has not been achieved yet, as from neither species the double bond reductases have been characterized. In this paper we took advantage of two sets of available enzymes from A. annua and feverfew in a combinatorial metabolic engineering approach for biosynthesis of sesquiterpene lactones with reduced exocyclic double bond. This was possible due to substrate promiscuity for a number of the enzymes involved in sesquiterpene lactone biosynthesis in these two species.

The artemisinin biosynthesis pathway in A. annua L. is similar to the costunolide biosynthesis pathway in chicory and feverfew (Fig. 1). Indeed, it was previously demonstrated that germacrene A oxidase (GAO) from chicory can act on the non-native substrate amorphadiene from A. annua, although amorphadiene oxidase (CYP71AV1) from A. annua cannot oxidise germacrene A (Nguyen et al., 2010). We tested whether AaDBR2 is able to reduce the double bond in germacrene A alcohol, germacrene A aldehyde or germacrene A acid. However, neither these intermediates, nor their reduced forms could be detected in extracts (or the headspace) of the reaction mixtures (data not shown). Indeed, detection of these intermediates was also shown to be problematic when produced in a N. benthamiana heterologous expression system (Liu et al., 2011). However, we show that AaDBR2 can reduce the exocyclic methylene double bond of both costunolide and parthenolide, producing dihydrocostunolide and dihydroparthenolide, respectively (Figs. 4 and 5). Moreover, the reduced products are substrates for CYP71C1 (Tp3β-hydroxylase) of feverfew for production of 3β-hydroxy-dihydrocostunolide and 3β-hydroxy-dihydroparthenolide, respectively (Figs. 6 and 7). Production of 3β-hydroxy-dihydrocostunolide and 3β-hydroxy-dihydroparthenolide may proceed through two routes: first reduction and then C3-hydroxylation or first C3-hydroxylation and then reduction (Figs. 6d and 7e). Results from the bidirectional biosynthesis of dihydroparthenolide (through dihydrocostunolide by PTS or through parthenolide by DBR) suggests a preferred biosynthetic route (Fig. 5e, route 2). The efficiency of this route 2 (exocyclic double bond reduction of parthenolide) is ~90%, while the efficiency of route 1 (Fig. 5e) is calculated to be only ~2.5%.

AaDBR2 produces only the 11S-isomers of dihydrocostunolide and dihydroparthenolide. Thus, the enzymatic reaction follows the same stereochemical course as the chemical hydrogenation, likely with attack of the olefinic double bond from the better accessible face and/or producing the thermodynamically more stable stereoisomer. Stereoselective enzymatic reactions are interesting from a pharmaceutical point of view, as often only one of the stereoisomers shows medicinal properties (Julsing, 2006). Thalidomide (softone) for example as a mixture of two enantiomers was used in medicine (as sedative); however one enantiomer is used as sedative while the other one is responsible for teratogenic side effects (Nguyen et al., 2006).

4.1. Product biosynthesis potential versus actual product accumulation

Our inventory of the promiscuity of sesquiterpene biosynthesis enzymes and the identification of sesquiterpene lactones in feverfew (Fischedick et al., 2012) provide insight in how competition between enzymes in feverfew may regulate accumulation of individual sesquiterpenes. For instance, dihydroparthenolide is detected in feverfew extracts (Fischedick et al., 2012), suggesting that feverfew has an enzyme similar to AaDBR2, which we name here TpDBR. In contrast, dihydrocostunolide is not detected in feverfew (Fischedick et al., 2012), while this is produced by AaDBR2 in our N. benthamiana assays (Fig. 2). This could be due to efficient capturing in feverfew of costunolide by TpPTS, preventing formation of dihydrocostunolide by the putative TpDBR and/or to a lower affinity of the putative TpDBR for costunolide. Indeed, the methylene group of parthenolide is efficiently reduced also by AaDBR2 in the in planta (N. benthamiana) assay and this pathway is more efficient than costunolide reduction to dihydrocostunolide and subsequent epoxidation by PTS to dihydroparthenolide (route 1, Fig. 5). It could be that the putative feverfew DBR also has a higher affinity for parthenolide as substrate than costunolide. Another explanation for the preferred production of dihydroparthenolide from parthenolide may be related to a spatial arrangement of COS, PTS and possibly also the likely cytosolic DBR, in/on the ER membrane, resulting in substrate channelling (metabolone).

We recently showed that Lipid Transfer Proteins (LTPs) may exhibit high selectivity for the transport/sequestration of specific sesquiterpene lactones to the apoplast, where they are no longer available for enzymatic conversion (Wang et al., 2016). Competition for feverfew pathway intermediates may thus not only occur at the enzyme level, but also through transport. We detected up to eight different LTPs in trichomes of feverfew where sesquiterpene biosynthesis takes place. For two of these (TpLTP1 and TpLTP2) we demonstrated involvement in extracellular accumulation of costunolide, while TpLTP3 was highly specific for parthenolide (Beyraghdar Kashkooli et al., submitted). Activity of these LTPs in feverfew would place costunolide and parthenolide out of reach of intracellular (cytosolic) enzymes for further conversion. Characterization of the putative TpDBR and other enzymes in combination with further characterization of the affinity of different feverfew trichome LTPs for pathway products may eventually provide a full understanding of product accumulation in feverfew.

Acknowledgments

We would like to thank Dr. Justin T. Fischedick for providing sesquiterpene lactone standards. We acknowledge funding by the European Commission for project Terpmed (Plant Terpenoids for Human Health: a chemical and genomic approach to identify and produce bioactive compounds) (Project ID 227448). Arman Beyraghdar
A. Beyraghdaran, et al.

Metabolic Engineering 54 (2019) 12–23

(caption on next page)
Fig. 7. Production of tentatively identified 3β-hydroxy-dihydroparthenolide. (a) GC-MS chromatograms of extracts of leaf discs of *Nicotiana benthamiana* expressing *AaDBR2* (top) or EV (bottom), vacuum infiltrated with 3β-hydroxyparthenolene, showing two peaks eluting at 21.20 and 21.70 min. The tiny peak eluting at 21.20 min in the EV samples, fed with 3β-hydroxyparthenolene indicates the intrinsic DBR activity on the 3β-hydroxyparthenolene exocyclic double bond. (b) mass spectra of the peaks at 21.20 min (top) representative of putative 3β-hydroxy-dihydroparthenolene and 21.70 min (bottom) representing 3β-hydroxy-parthenolene. (c) Chromatogram of leaf discs expressing 3β-hydroxylase or EV, vacuum infiltrated with dihydroparthenolene. A tiny peak was identified after concentration of samples in the HPLC extracts of leaves expressing *Tp3βHydroxyxylase* at 21.21 min. This peak was not present in the samples expressing the EV. (d) mass spectra of the peaks at 21.20 min representative of putative 3β-hydroxy-dihydroparthenolene. (e) proposed bidirectional biosynthetic pathway of 3β-hydroxy-dihydroparthenolene. Route 1 represents formation of dihydroparthenolene through the activity of *AaDBR2* and then C3 hydroxylation of dihydroparthenolene to produce 3β-hydroxyparthenolide, while route 2 shows first formation of 3β-hydroxyparthenolide by the activity of the *Tp3βHydroxyxylase* and then reduction of the exocyclic double bond of 3β-hydroxyparthenolene, resulting in formation of 3β-hydroxy-dihydroparthenolene. *AaDBR2*: Artemisia annua double bond reductase2.

Kashkooli was supported by the Iranian Ministry of Science Research and Technology.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.ymben.2019.01.007.

References

