Using eye-tracking to measure cross-situational word learning online in Dutch adults

Broedelet, I.R.L.; Rispens, J.E.; Boersma, P.P.G.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Using eye-tracking to measure cross-situational word learning online in Dutch adults

Iris Broedelet, Judith Rispens and Paul Boersma

University of Amsterdam
Amsterdam Center for Language and Communication

CROSS-SITUATIONAL WORD LEARNING

- 'Gavagai problem': how can a language learner know to what exactly a new word refers? (Quine, 1960)
- Research suggests statistical learning plays a role in tracking the co-occurrences between words and referents.

RESEARCH QUESTIONS

- Are adults able to learn 8 word-referent pairs in a cross-situational word learning task with ambiguous learning trials?
- Can we measure learning online using eye-tracking?

METHOD

Participants
- 21 native speakers of Dutch, between 18 and 35 years old (mean age = 25.5).

Learning phase (approx. 3 minutes)
- 28 learning trials with novel objects (Kachergis et al., 2014) and Dutch-like non-words;
- 8 word-referent pairs;
- Each pair occurred 7 times.
 - A word and its referent always occurred together;
 - Accompanied by another word-referent pair.

Eye-tracking (online measure)
- Eye movements were measured during the learning phase to investigate whether participants, while listening to a certain word, looked more at the correct referent as opposed to the distractor picture.

Test phase (offline measure)
- 8 four-alternative forced-choice test items.

RESULTS

Data was made suitable for analysis using the eyetrackingR (Bolker & Ferguson, 2008) package. Then, the data was analyzed using linear mixed effect models in R (R Core Team, 2019) from the lme4 package (Bates et al., 2015). Participant and Item were included in the models as random factors.

Eye-tracking (online measure)
- The proportion of looking at the correct referent as opposed to the distractor picture significantly increased as exposure to the learning trials increased (t = 3.734, p < .001).

Test phase (offline measure)
- Participants scored 83% correct on average (significantly higher than chance level (25%), p < .001).

DISCUSSION AND FUTURE RESEARCH

- Adults can learn word-referent mappings in a cross-situational word learning task with ambiguous learning trials.
- Eye-tracking data reveal online learning on this task.
- Statistical learning might play a role in word learning.
- This paradigm will be used to compare typically developing (TD) children to children with developmental language disorder (DLD). Children with DLD seem to have difficulty with statistical learning (van Lerenacht et al., 2021). Do children with DLD have difficulty with statistical word-referent learning (offline / online) compared to TD children?

CONTACT

Iris.Broedelet@uva.nl

REFERENCES

- Image “Gavagai problem” https://slideplayer.com/slide/7253589/
- Image “Eye-tracking” https://slideplayer.com/slide/7253589/