Using eye-tracking to measure cross-situational word learning online in Dutch adults

Broedelet, I. R. L.; Rispens, J. E.; Boersma, P. P. G.

Publication date
2019

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Using eye-tracking to measure cross-situational word learning online in Dutch adults

Iris Broedelet, Judith Rispens and Paul Boersma
University of Amsterdam
Amsterdam Center for Language and Communication

CROSS-SITUATIONAL WORD LEARNING

- 'Gavagai problem': how can a language learner know to what exactly a new word refers? [Quine, 1960]
- Research suggests statistical learning plays a role in tracking the co-occurrences between words and referents.

Yu & Smith, 2017; Smith & Yu, 2008; Suanda et al., 2014

RESEARCH QUESTIONS

- Are adults able to learn 8 word-referent pairs in a cross-situational word learning task with ambiguous learning trials?
- Can we measure learning online using eye-tracking?

METHOD

Participants
- 21 native speakers of Dutch, between 18 and 35 years old (mean age = 25.5).

Learning phase (approx. 3 minutes)
- 28 learning trials with novel objects [Kachergis et al., 2016] and Dutch-like non-words;
- 8 word-referent pairs;
- Each pair occurred 7 times.
- A word and its referent always occurred together!
- Accompanied by another word-referent pair.

Eye-tracking (online measure)

Eye movements were measured during the learning phase to investigate whether participants, while listening to a certain word, looked more at the correct referent as opposed to the distractor picture.

Test phase (offline measure)

- 8 four-alternative forced-choice test items.

RESULTS

Data was made suitable for analysis using the eyetrackingR [Dink & Ferguson, 2006] package. Then, the data was analyzed using linear mixed effect models in R (Dink & Ferguson, 2006) from the lme4 package [Bates et al., 2014]. Participant and Item were included in the models as random factors.

Eye-tracking (online measure)

The proportion of looking at the correct referent as opposed to the distractor picture significantly increased as exposure to the learning trials increased \(t = 3.754, p = .001 \).

Test phase (offline measure)

Participants scored 83% correct on average (significantly higher than chance level 25%), \(p < .001 \).

DISCUSSION AND FUTURE RESEARCH

- Adults can learn word-referent mappings in a cross-situational word learning task with ambiguous learning trials.
- Eye-tracking data reveal online learning on this task.
- Statistical learning might play a role in word learning.
- This paradigm will be used to compare typically developing (TD) children to children with developmental language disorder (DLD). Children with DLD seem to have difficulty with statistical learning [e.g., Leemans et al., 2017]. Do children with DLD have difficulty with statistical word-referent learning (offline / online) compared to TD children?

CONTACT

Iris.Broedelet@uva.nl

REFERENCES

- image “Gavagai problem” [https://slideplayer.com/slide/7253589/]