Methodological issues in measuring (online) word segmentation

Broedelet, I.R.L.; Rispens, J.E.; Boersma, P.P.G.

Publication date
2019

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The word segmentation task has been used frequently to measure statistical learning in different populations since seminal work by Saffran et al. (1996). There is great need for online measures of statistical learning (Siegelman et al., 2017) and (conceptual) replication studies (Marsden et al., 2018).

EXPERIMENT 1

METHOD
30 Dutch neurotypical adults.

Online measure: click detection task
Click sounds were added to the stream of syllables, either within words or between words. Sensitivity to word boundaries should result in faster reaction times (RTs) for clicks between words than for clicks within words. (Gómez et al., 2011)

Offline measure: 2AFC test phase
16 test items; part-words were used as foils. All four words (TP=1) were combined with all four part-words (TP=0.33) to test whether participants preferred words.

RESULTS
Generalized mixed effect models were used for analysis. Participant and item were included as random factors.

Online measure: click detection task
RTs for clicks between words were not significantly shorter than RTs for clicks within words (t = 0.781, p = 0.4386). There was no significant interaction between click context (within/between words) and block (t = -1.127, p = 0.2663).

Offline measure: 2AFC test phase
The estimate of the average performance was 0.41 (CI: 0.33 – 0.50). As the CI contains 0.50, performance is not significantly above chance level.

EXPERIMENT 2

METHOD
30 Dutch neurotypical adults and 27 typically developing children (8 to 10 years old).

Offline measure: 2AFC test phase
The estimate of the average performance was 0.49 (CI: 0.39 – 0.60) for adults and 0.49 (CI: 0.38 – 0.61) for children. As the CI contains 0.50, performance is not significantly above chance level for either group.

EXPERIMENT 3

Instead of part-words (TP=0.33), we used non-words (TP=0) as foils in the test phase of Experiment 3. Do participants prefer words (TP=1) over non-words (TP=0)?

METHOD
48 Dutch neurotypical adults.

RESULTS
The estimate of the average performance was 0.55 (CI: 0.46 – 0.63). As the CI contains 0.50, performance is not significantly above chance level.

DISCUSSION

- We did not find evidence for ONLINE or OFFLINE learning of word boundaries in adults and children in any of the experiments.
- No indication that interference of click detection task hampered learning, as there was no evidence of learning overall (Franco et al., 2015).
- Possible influencing factors: disyllabic words instead of trisyllabic words (e.g. Saffran et al., 1996), natural speech instead of rhythmic sound (Black et al., 2017).