Protic NHC Iridium Complexes with β-H Reactivity—Synthesis, Acetonitrile Insertion, and Oxidative Self-Activation

Mark K. Rong,† Andrei Chirila,‡ David Francioulus,‡ Martin Lutz,‡ Martin Nieger,§ Andreas W. Ehlers,¶†⊥ J. Chris Slootweg,∗†∥⊥ and Koop Lammertsma∗†∥⊥

‡Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
§Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
¶Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, Helsinki, Finland
†Department of Chemistry, Oakland Park 2006University of Johannesburg, Johannesburg 2006, South Africa

ABSTRACT: Protic NHC iridium complexes, obtained from the corresponding azido-phenylene-isocyanide precursor complexes, were investigated for ligand-based reactivity. Under redox-neutral conditions, acetonitrile inserts into the N−H bonds to provide κ2-NHC-imidoyl ligand-based complexes, while under reductive conditions the complex also expels one N−H proton to provide the corresponding deprotonated analogues. Using zinc as a reductor activates the NHC-iridium complex to form an asymmetric bimetallic iridium hydrido complex, in which two anionic N-deprotonated NHCs bridge the bimetallic core. X-ray crystal structures are reported for the azido-phenylene-isocyanide precursor complex, the protic NHC complex, and the asymmetric bimetallic iridium hydride complex. Density functional computations and a QTAIM analysis of the bimetallic iridium hydrido complex are provided.

INTRODUCTION

Since 1968,1,2 N-heterocyclic carbenes (NHCs) have been prominent ligands of high stability with robust coordination chemistry. Protic NHCs (hereafter NHC‡`3) were first introduced in the 1980s,4 but only recently has their chemistry become widely accessible through the syntheses of Hahn et al.5 These synthetic routes conveniently mitigate the inherent acidic reactivity of the NHC‡-NH sites, which contrast with the classical nonreactive N-substituted NHCs.6 This protic character enables hydrogen-bonding interactions, deprotonations, and nucleophilic additions and highlights the ability of NHC‡ to act as “cooperative” or “non-innocent” ligands.6,7 For instance, H-bonding increases substrate recognition in the competitive Rh(I)-catalyzed hydrogenation of esters8 and assists in the Ru(II)-catalyzed condensation of allyl alcohols with 2-pyridylbenzimidazole.9 Deprotonation of the NHC‡ provides an N-anionic ligand which can be used to access nonsymmetrical NHCs (Scheme 1) and macromolecular structures10,11 or to bind a second metal center (Figure 1).12–16 These multimetatalic structures generally bear their bridging NHCs in a head-to-tail fashion and are of interest for multinuclear catalysis.17 Deprotonated NHC N sites have been used in ruthenium(II) complexes for bifunctional activation of amines, dihydrogen, and alcohols, as demonstrated in the catalytic transfer hydrogenation of acetophenone using i-ProOH.18 Iridium(III) NHC‡ complexes have shown bifunctional activation of dihydrogen and acetylene.19 NHC‡ deprotonation has been suggested to be facilitated by intramolecular ligand–metal interactions,9,20 indicating the importance of the nature of the transition metal. For instance, NHC‡ can be transformed to the imidazole form by an external base,18 but in the 2-functionalization of imidazoles by Ru(II)9 and Rh(I) catalysts20 the tautomerization results from ligand-β-H activation by the metal, presumably via metal-hydride intermediates (Scheme 2).20,21 Metal-mediated NHC‡ reactivity can also be induced by free coordination sites. Illustrative is the chloride displacement on iridium(III) that

Scheme 1. Ligand-Based NHC Reactivity

[Diagram of Scheme 1]

Received: August 27, 2019
Published: November 19, 2019

© 2019 American Chemical Society

4543

DOI: 10.1021/acs.organomet.9b00584
Organometallics 2019, 38, 4543–4553

Organometallics
facilitates a nucleophilic attack of the NHCH on a coordinated MeCN molecule to stoichiometrically provide a formal hydroamination product, which rearranges to a bis(imidazole) complex (Scheme 3). Collectively, these examples demonstrate the versatile chemistry of NHCH complexes.

NHCHs can also differ electronically from their N-substituted analogues. The prominence of NHCs in organometallic catalysis is generally attributed to their strong σ donation, but NHCs can also be tunable π acceptors. In a computational study on NHC-phosphinidene complexes, we found the conformation of the NHC to be crucial for its electronic behavior in the complex. For example, the N-methylated NHC in Ru complex A favors the σ-donating orthogonal \perp arrangement over the coplanar \parallel arrangement by 12.5 kcal mol$^{-1}$, but the sterically less encumbered protic NHC in B favors instead a coplanar \parallel conformation by 2.5 kcal mol$^{-1}$ (Figure 2), thereby allowing for significant π-acceptor capacity due to increased phosphinidene-NHC orbital overlap. This unique effect of the NHC ligand is even more pronounced in benzimidazolidin-2-ylidene iridium complexes as NHCMe complex C is favored by 22.0 kcal mol$^{-1}$, while NHCMe complex D is favored by 3.4 kcal mol$^{-1}$ (Figure 2). These results prompted us to study NHCH iridium complexes and assess the effect of the ligand on the complex’s overall reactivity. We address the distinct coordination parameters of NHCH iridium(III) complexes and then explore the reactivity of their β-NH groups in stoichiometric hydroamination-type activations, as well as in self-activation under reductive conditions toward a unique bimetallic structure.

RESULTS AND DISCUSSION

The syntheses and properties of the NHCH iridium complexes are discussed first. Next, their reactivity toward MeCN is explored under both redox-neutral and reductive conditions. Finally, the NHCH reactivity will be addressed in an oxidative reaction to examine the influence of an N-anionic NHCH on the formation of a dinuclear complex. Computational methodologies are used to provide background for the observed reactivity.

Synthesis of NHCH Ir(III) Complexes. The synthesis of the NHCH iridium(III) complexes was pursued in analogy to that reported for the related ruthenium(II) complexes, in which 2-azido-isonitrile precursors are reduced to aminoisonitrile intermediates that then cyclize. Reacting 2-azidophenylisonitrile (1) with 0.5 equiv of $[\text{IrCp}^*\text{Cl}_2]^2$ in DCM at room temperature provided $[\text{(2-azidophenylisonitrile)}\text{IrCp}^*\text{Cl}_2]$ in 98% isolated yield as a light-sensitive yellow powder (Scheme 4).

Whereas 2 was stable as a solid in darkness for months, it slowly decomposed in solution, even at -80°C. To allow for full analysis, 2 was treated with NaI in acetone to quantitatively provide the thermally stable diiodo complex 3. Suitable crystals for an X-ray crystal structure determination were obtained by slow diffusion of pentane into a DCM solution. The molecular structure of 3 shows a linear isocyanide with a C1–N1 triple-bond length of 1.159(3) Å (Figure 3). The Ir–C1 bond length...
of 1.922(2) Å compares well to those of other (aryl)-isocyanide-iridium(III) complexes, as do the iridium–iodide bond lengths (Ir1–I1 = 2.6965(3); Ir1–I2 = 2.6965(3) Å). The distance of 3.445(3) Å between the C1 and N2 atoms together with the C2–C7–N2–N3 torsion angle of 178.0(2)° illustrate the rearrangement of N2 for nucleophilic attack on C1 in the subsequent reduction step (vide infra). The structural parameters of the isocyanide ligand compare also well with those reported for \([\text{IrC}p\{\text{N}e\text{t}_3\}\{\text{C}Cl_2\}]^2 (88\%)\) and subsequent \(\text{Cl}^-\) ion exchange using \(\text{NaCl}\) (quantitative, Scheme 6). The \(^{13}\text{C}\) NMR spectra showed an upfield shift for the NCN carbene carbon of the NHCH\(_3\) complex (4, \(\delta = 161.0\) ppm; 6, \(\delta = 167.0\) ppm), similar to the trend for comparable Pd\(_{2}\) complexes, and is suggestive of a stronger C–Ir interaction, which could be confirmed by comparing the molecular structures obtained from X-ray structure determinations (Figure 4). Red crystalline needles of 4 were obtained by slow diffusion of pentane into a DCM solution and those of 6 from DCM/pentane at 5 °C. The molecular structures show a near-C\(_2\) symmetry, an identical NHCH\(_3\) complex, with indeed a shorter iridium–carbene bond length for the protic complex (4, Ir1–C1 = 2.008(4); 6, Ir1–C1 = 2.034(4) Å) and a larger I1–I1–I2 bond angle (4, 90.381(11)°; 6, 86.008(10)°). These differences may be the result of the sterically smaller N substituents of 4 (see Figure S35 in the Supporting Information) or the observed intermolecular NH–I hydrogen bonds (H1–I2 = 2.86(3); H2–I2 = 2.85(2) Å), ETS-NOCV fragment analysis on BP86-D3(ZORA)/TZ2P\(_{2}\) optimized structures of 4 and 6 revealed tighter orbital interactions for the NHCH\(_3\) ligand (\(E_{\text{a} \leftarrow \text{c}} = -114.1\) kcal mol\(^{-1}\); \(E_{\text{a} \leftarrow \text{c}} = -106.2\) kcal mol\(^{-1}\)), due to significant donation from the carbene to the metal (\(E_{\text{a} \leftarrow \text{c}} = -90.6\) kcal mol\(^{-1}\), \(E_{\text{a} \leftarrow \text{c}} = -82.6\) kcal mol\(^{-1}\)) as well as back-donation to the carbene p orbital (\(E_{\text{c} \leftarrow \text{a}} = -16.6\) kcal mol\(^{-1}\), \(E_{\text{c} \leftarrow \text{a}} = -15.4\) kcal mol\(^{-1}\)) and the C=N antibonding orbitals (\(E_{\text{c} \leftarrow \text{a}} = -6.9\) kcal mol\(^{-1}\), \(E_{\text{c} \leftarrow \text{a}} = -8.2\) kcal mol\(^{-1}\)). The possibility of a 90° rotation in the NHCH conformation and the effect thereof on the electronic parameters was examined as well and appeared to be more accessible for the protic complex (4: \(\Delta E_{\text{c} \leftarrow \text{a}} = +3.7\) kcal mol\(^{-1}\); \(\Delta E_{\text{c} \leftarrow \text{a}} = +13.4\) kcal mol\(^{-1}\)), which weakens the Ir–C bond (\(E_{\text{a} \leftarrow \text{c}} = -110.4\) kcal mol\(^{-1}\); \(E_{\text{a} \leftarrow \text{c}} = -86.5\) kcal mol\(^{-1}\), \(E_{\text{a} \leftarrow \text{c}} = -17.2\) kcal mol\(^{-1}\), \(E_{\text{a} \leftarrow \text{c}} = -6.7\) kcal mol\(^{-1}\)). Thus, the accessible coplanar conformation and observed hydrogen bonding sets the protic NHC apart from those of \(\text{NHC}_{\text{Me}}\) analogue 6, which was obtained by coordinating bis(1,3-dimethylbenzimidazolidin-2-ylidene)\(^{40}\) to \([\text{IrC}p\{\text{C}Cl_2\}]_{2}\) (88%) and subsequent Cl → I ion exchange using NaI (quantitative, Scheme 6). The \(^{13}\text{C}\) NMR spectra showed...
from its N-methylated analogue. The stronger Ir—C bond is favorable for anchoring the ligand firmly for followup reactions.

NHC^H MeCN Activation. Next, stoichiometric hydroamination-type activation by the protic NHC^H-Ir complex was assessed. Refluxing 4 for 24 h in MeCN resulted in the nitrile's insertion into one of the ligand’s N—H bonds to quantitatively afford 7 as an unstable yellow solid (Scheme 7).

The product’s asymmetrically substituted benzimidazolin-2-ylidene ligand is evident from the two different NH groups in the ¹H NMR spectrum (δ 13.08, 10.88 ppm). BP86-D3(ZORA)/TZ2P calculations^{32,33} indicate that, upon MeCN coordination (7^a), the addition of the NHC^H—NH bond to the CN triple bond to give 7 is exothermic by 9.9 kcal mol^{−1} (Scheme 7). No full characterization by ¹³C NMR or an X-ray structure determination could be performed, as isolated 7 quickly converted into an intractable solid, which we presume to be the (benzimidazolyl)Ir₂Cl₂ tautomer.⁴⁵

We wondered whether 7 also forms directly from precursor 2 in a one-pot reaction. However, increasing the reaction time for the FeCl₃/NaI-facilitated reduction to 48 h provided instead exclusively the deprotonated bidentate [(imidoyl-NHC^H)Ir₂Cl₂Ir₂Cl₂Cl₂] complex 8 (76%, Scheme 7). Its ¹H NMR spectrum showed one N—H resonance (δ 7.94 ppm) and an asymmetrically substituted benzimidazolin-2-ylidene with chemical shifts that differ from those of 7 (see Figure S30 in the Supporting Information) and distinctive carbene and imidoyl ¹³C NMR resonances (δ 171.6 (NCN), 164.6 (CNH) ppm). The same product was obtained by deprotonating 7 with DBU in THF (1 h, room temperature, 32%). In contrast to 7, 8 is stable in air and water. Exposure of intermediate 4 to FeCl₃/NaI for 48 h in MeCN yielded the same complex 8 (74%; Scheme 7). This suggests that the reductive reaction medium causes the loss of 1 equiv of HI from 4, since no deprotonating base is present. The activator could be Fe(II), which is generated in situ on mixing FeCl₃ and NaI in solution.^{38,46}

The observed insertion reactivity in complexes 7 and 8 may have potential in catalysis. Since the products are reminiscent of iminium ions (i.e., nitrogen-stabilized N-protic nitrilium ions), which readily undergo nucleophilic attack,⁴⁷ this might be exploited in the (catalytic) functionalization of nitriles or terminal triple bonds.^{35,48} Alternatively, 7 and 8 could serve as, for instance, [(k²-imidoyl-aryl)]²⁺ transfer hydrogenation catalysts.⁴⁹ Overall, it is especially interesting that the reactivity of the NHC^H complex changes upon reduction. To better understand the role of the metal center in this, we continued using a well-defined iridium reductor.

Scheme 7. Protopic NHC-NH Addition over the MeCN Triple Bond and DFT Analysis of [7^a][−] and [7][−]

Scheme 8. Formation of Dinuclear Complex 9

NHCH^β-Deprotonation to Dinuclear Complex. The conversion of 4 to 8 occurred under reductive conditions. Since zinc is a well-known reductor for iridium(III) chlorides⁵⁰ and compatible with NHC^H^β,⁵¹ we decided to explore it for enhanced NH—metal interactions with surprising results. When dichloro complex 5 was refluxed in MeOH for 7 days in the presence of Zn, the μ-hydrido dinuclear complex 9 was obtained as an unexpected product (Scheme 8); no reaction took place in the absence of Zn. Complex 9 also resulted directly from 2 in 75% yield by refluxing in MeOH/H₂O for 7 days in the presence of Zn and NH₄Cl. This method is more efficient than the three-step approach (36%).

Complex 9 has a unique C₂i symmetry with two anionic NHC ligands and a hydride bridging its bridging hydride atoms (δ(1H) = 20.01 ppm).⁵² While bimetallic iridium species with bridging hydrides are well-known,^{42,53–57} those with bridging NHC ligands are rare and tend to have them coordinated in a head-to-tail fashion between identical metal centers.^{58–60} In contrast, 9 features a head-to-head arrangement with inequivalent Ir centers. This is supported by two distinct Cp[−]-CH₃, ¹H and ¹³C NMR chemical shifts (δ(1H) 2.23, 2.15; δ(13C) 11.8, 10.9 ppm). NOESY measurements show coupling of one Cp[−] ligand with the two NH₂-hydrides and coupling of the other Cp[−] ligand with the nearby aromatic N-C=C hydrogens (see the Supporting Information). The two carbene ¹³C NMR resonances of 9 are considerably more upfield than that of 5 (9: 9: δ 142.2 ppm; 5: δ 165.7 ppm), which is attributed to the higher shielding in the anionic NHC.

An X-ray crystal structure determination established unequivocally the molecular structure of 9 (Figure 5). Single crystals were obtained by slow diffusion of diethyl ether into a DCM solution in the presence of TPPO.^{58,59} The two independent molecules in the asymmetric unit of 9 are located on general positions without crystallographic symmetry. The iridium—carbene distances are similar to those in mononuclear 4, 9: Ir1—C11 = 2.016(7) Å, Ir1—C11—C81 = 2.020(7) Å, Ir1—C12 = 2.038(7) Å, Ir1—C12—C82 = 2.014(7) Å; 4, Ir1—C1 = 2.008(4) Å, and the nitrogen—iridium bond lengths (Ir1—N11 = 2.083(6) Å, Ir1—N11—C31 = 2.088(6) Å, Ir1—N12 = 2.072(6) Å, Ir2—N32 = 2.078(7) Å) are comparable to those found in structurally similar iridium imidazolide and pyrazolyl complexes.^{55,60} The location of the μ-hydride could not be determined from difference-Fourier maps, but its calculated position was evident from the geometry of the iridium centers. The intriguing bonding in the metallic core of 9, with its bridging hydride and delocalized anionicy of the NHC...
ligands, makes the oxidation states of the metal centers ambiguous. \(^{56}\) (i.e., Ir(III) → Ir(III), Ir(II) → Ir(IV), or Ir(II) → Ir(IV)). Intermetalloc interaction between the two Ir centers seems arguable \(^{54-57}\) because of the rather large separation (Ir11−Ir21 = 3.0410(4), Ir12−Ir22 = 3.0501(4) Å). Since the low solubility of 9 prevented CV measurements, we used a QTAIM analysis \(^{61}\) on a BP86-D3(ZORA)/TZ2P \(^{32,33}\) optimized geometry, which showed near-identical bond paths of the two iridium nuclei to the hydride (critical bond points Ir11−H1 ρ 0.12 au, ε 0.09, Ir21−H1 ρ 0.10 au, ε 0.08; ring critical points Ir11−H1−Ir21−N31−C81: ρ 0.03 au, ε 0.03; Ir11−H1−Ir21−N11−C11: ρ 0.03 au) but no intermetallic interactions (Figure 6 and Figure S36 in the Supporting Information). This indicates true hydride bridging and minimal electronic differences between the Ir nuclei: i.e., a Ir(III)/Ir(III) complex. \(^{62}\)

The unique NHC\(^+\) orientation in 9 was examined computationally, since it contrasts with that of known NHC-bridged complexes. \(^{12-16}\) The head-to-head coordination of complex 9 is indeed energetically favored at the BP86-D3(ZORA)/TZ2P level \(^{32,33}\) over head-to-tail complex 10, but by only 1.9 kcal mol\(^{-1}\) (Figure 7). This small energy difference is somewhat surprising, since \(^1^H\) NMR spectra of the crude reaction mixtures show full selectivity of its formation. For the formation of 9 from the monometallic precursor, one NHC ligand has to undergo an in situ tautomerization, either prior to or after coordination to the second Ir center. Considering that zinc is essential for the conversion, we presume it oxidizes to ZnCl\(_2\) to facilitate the Ir(III) → Ir(I) reduction of one monometalloc complex, which then undergoes an auto-oxidative 1,3-H shift to the corresponding hydride complex, as has been reported for alkyl-iridium(III) hydrides. \(^{63}\) NHC tautomerization is likely for Ir(I) complexes bearing ligands with a strong trans effect, such as hydrides. \(^{31,64}\) Such an oxidative addition–tautomerization sequence has also been suggested for benzimidazole-Ru-hydrides (DFT). \(^{21b}\) It should be noted that the tautomerization step may also be influenced by the second metal center, as was found for Au/Mn-NHC systems. \(^{13}\)

The observed oxidative activity leading to 9 seems to be specific for iridium; using [Rh\(^{11}\)I\(_3\)C\(_p\)Cl\(_2\)]\(^+\) and [Ru\(^{11}\)I(p-cym)-Cl\(_2\)]\(^+\) in the same one-pot procedure resulted in a mixture of Rh and Ru analogues of 5 with unidentified side products (see the Supporting Information). The Ir-chloride atoms are essential, as the diiodo complexes 3 and 4 gave no conversion. This halide-specific reactivity may be attributed to the difference in redox potentials or alternatively be related to a difference in H-bonding interactions that can assist 1,3-H shifts in iridium hydrides. \(^{53}\)

\section*{CONCLUSION}

Using a robust route from azido-phenylene-isocyanide precursor complexes, we obtained NHC\(^+\) Ir(III) complexes. The reactivity of the NHC N−H group in these complexes could be enhanced under reductive conditions, which is suggestive of a metallophilic interaction (β-H activation) that distinguishes it from reported base-induced reactions. The reactivity was used to access various unique complexes. The NHC\(^+\) could nucleophilically attack MeCN to provide neutral \(\kappa^2\)-NHC-imidoyl ligands and under reductive conditions their anionic analogues, which both are interesting ligands for Rh and Ru analogues of 5 with unidentified side products (see the Supporting Information). The Ir-chloride atoms are essential, as the diiodo complexes 3 and 4 gave no conversion. This halide-specific reactivity may be attributed to the difference in redox potentials or alternatively be related to a difference in H-bonding interactions that can assist 1,3-H shifts in iridium hydrides. \(^{53}\)
observe that the reactivity of the NHCs changes upon reduction of the complex. It may lead to new applications for these ligands, prove helpful in understanding the mechanistic steps for NHC catalysts, and, as such, further the development of NHCs as cooperative ligands.

EXPERIMENTAL SECTION

Computational Procedures

Density functional calculations were performed at the BP86/ZORA/Grüneisen-D3/TZ2P level of theory \(^{27}\) using the Amsterdam Density Functional (ADF) \(^{28}\) (geometrical optimisations, QTAIM\(^{29}\)) and 2016.102 (ETS-NOCCV\(^{30}\)). The nature of each stationary point was confirmed by frequency calculations.

Preparation of Compounds

All experiments were performed under an atmosphere of dry nitrogen using standard Schlenk-line and glovebox techniques, unless stated otherwise. Solvents were distilled before use. Melting points were measured using a Büchi Melting Point M-565 apparatus (sealed capillaries) and are uncorrected. High-resolution electrospray ionization (ESI) mass spectrometry was carried out using a Bruker microTOF-Q instrument in positive ion mode (capillary potential of 4500 V). Infrared spectra have been recorded on a Shimadzu FT-IR 8400S spectrophotometer. For alternative protocols we refer to literature procedures. All other reagents were used as received.

(2-Azidophenylisonitrile)(1-methyl-4-pentadienyl)iridium(III) Dichloride (2).

A brown powder, which was washed with Et\(_2\)O (2 × 15 mL) to provide [(2-azidophenylisonitrile)IrC\(_2\)Cl\(_2\)] as a yellow powder (835 mg, 1.54 mmol, 98.1%). [(2-azidophenylisonitrile)IrC\(_2\)Cl\(_2\)] is light-sensitive in solution and was stored as a solid in the absence of light at −20 °C.

(2-Azidophenylisonitrile)(1,2,3,4,5-pentamethylcyclopenta-diencyl)iridium(III) Diiodide (3).

(2-azidophenylisonitrile)IrC\(_2\)Cl\(_2\)] (298 mg, 0.55 mmol, 1.0 equiv) and NaI (1.5 g, 10 mmol, 18.0 equiv) were dissolved in aceton (20 mL) to provide an orange solution, which was stirred for 48 h at room temperature, in the absence of light. The resulting orange suspension was filtered to provide a red residue, which was repeatedly extracted with DCM until colorless extracts were obtained (approximately 4 × 4 mL). Evaporation of the combined extracts yielded [(2-azidophenylisonitrile)IrC\(_2\)I\(_2\)] as a dark orange-red solid (335 mg, 0.46 mmol, 84%). [(2-azidophenylisonitrile)IrC\(_2\)I\(_2\)] is light-sensitive in solution and was stored as a solid in the absence of light at −20 °C.

(1H-Benzimidazolylidine)(1,2,3,4,5-pentamethylcyclopenta-diencyl)iridium(III) Dichloride (4).

NaI (236 mg, 1.58 mmol, 4.1 equiv) was dissolved in aceton (40 mL), after which it was added to FeCl\(_3\) (113 mg, 0.70 mmol, 1.8 equiv) to provide a black suspension. Immediately afterward, a solution of [(2-azidophenylisonitrile)IrC\(_2\)Cl\(_2\)] (207 mg, 0.38 mmol, 1.0 equiv) in DCM (10 mL) was added to the black suspension and the resulting mixture was stirred for 48 h at room temperature, during which the mixture turned dark red. Volatiles (including iodine) were removed in vacuo to provide a very dark red residue, which was extracted in DCM (180 mL) under atmospheric conditions. The dark extract was subsequently washed with a solution of Na\(_2\)SO\(_4\) (200 mL, 20% in H\(_2\)O), a solution of NaHCO\(_3\) (200 mL, saturated solution in H\(_2\)O) and

Spectroscopic data

- **IR** (nujol mull): 2936 (w), 2864 (m), 1649 (m), 1602 (s), 1480 (s), 1423 (s), 1377 (w), 1312 (s), 1292 (w), 1283 (w), 1265 (w), 1209 (w), 1148 (w), 1098 (m), 1028 (w), 1024 (w), 962 (w), 831 (w), 798 (w), 779 (m), 756 (m), 733 (w), 704 (w), 687 (w), 650 (w), 619 (w), 577 (m), 544 (w), 530 (w), 517 (w), 474 (w), 449 (m), 420 (w) cm\(^{-1}\). MS (ESI-Q-TOF): calcd for C\(_{17}\)H\(_{19}\)N\(_4\)IrCl, 507.0922; found, 507.0879.

Spectroscopic data

- **NMR** (CDCl\(_3\), ppm, J values): 1H NMR (400.23 MHz, CDCl\(_3\)): δ 8.0 Hz, J\(_{1,3}\)H = 1.2 Hz, 1H, o-Ar-H), 7.36 (dd, J\(_{1,3}\)H = 7.9 Hz, J\(_{3,5}\)H = 1.5 Hz, H, m-Ar-H), 7.21 (dd, J\(_{3,5}\)H = 8.3 Hz, J\(_{5,7}\)H = 0.9 Hz, 1H, m-Ar-H), 7.17 (td, J\(_{5,7}\)H = 7.8 Hz, J\(_{5,7}\)H = 1.1 Hz, 1H, p-Ar-H), 2.15 (s, 15C, Cp-CH\(_3\)). 13C{1H} NMR (125.78 MHz, CDCl\(_3\)): δ 137.0 (s, m-Ar-CN), 130.7 (s, ipso-Ar-CN), 130.1 (s, o-Ar-CH), 128.7 (s, m-Ar-CH), 125.2 (s, m-Ar-CH), 118.9 (s, p-Ar-CH), 96.0 (Cp+-C\(_H\)) 10.6 (Cp+-C\(_H\)), the signal for Ar-CN is unresolved. FT-IR: \(\nu\) 2962 (w), 2916 (w), 2858 (w), 2357 (w), 2349 (w), 2262 (w), 2287 (w), 2118 (s), 2095 (s), 1894 (w), 1758 (w), 1485 (m), 1443 (m), 1423 (w), 1373 (w), 1358 (s), 1213 (s), 1258 (s), 1121 (w), 1080 (m), 963 (m), 849 (w), 786 (s), 764 (s), 710 (w), 613 (w), 579 (s), 544 (m), 525 (s), 571 (m), 432 (m) cm\(^{-1}\). MS (ESI-Q-TOF): calculated for C\(_{17}\)H\(_{19}\)N\(_4\)IrCl, 507.0922; found, 507.0879.
benzimidazolylidene)IrCpCl₂ as an orange solid (17 mg, 0.033 mmol, 34%). Mp: 289 °C dec. 1H NMR (500.23 MHz, CDCl₃): δ 10.52 (s, 2H, N-H), 7.24–7.19 (m, 2H, Ar-H), 7.03–6.98 (m, 2H, Ar-H), 1.74 (s, 15H, Cp*-C₅H₅). 13C{1H} NMR (125.78 MHz, CDCl₃): δ 165.7 (s, NCN), 133.5 (s, Ar-C), 123.4 (s, Ar-CH), 111.5 (s, Ar-CH), 90.0 (s, Cp*-C₅H₅), 91.1 (s, Cp*-C₅H₅). FT-IR: ν 3271 (w), 3024 (w), 2962 (w), 2907 (w), 2853 (s), 2818 (w), 1491 (w), 1456 (s), 1400 (w), 1362 (m), 1348 (m), 1259 (s), 1246 (m), 1151 (w), 1080 (s), 1014 (s), 864 (w), 795 (s), 756 (s), 743 (s), 700 (m), 681 (s), 662 (m), 638 (w), 621 (m), 586 (w), 563 (w), 486 (w), 459 (m), 447 (s), 434 (m), 401 (s) cm⁻¹. MS (ESI-Q-TOF): calc'd for C₃₆H₂₃IrN₇, 641.0699; found, 641.0698.

Article

\(\text{[κ²-C,N-1-(Acetimido)benzimidazolylidene](1,2,3,4,5-pentamethylcyclopentadienylium)(III) Iodide (8). FeCl₃ (121 mg, 0.75 mmol, 1.5 equiv) was dissolved in MeCN (20 mL) to provide a black mixture. Immediately afterward, a solution of [2-azidophenylisonitrile]-IrCpCl₂] (270 mg, 0.5 mmol, 1.0 equiv) in DCM (6 mL) was added and the resulting black mixture was stirred for 48 h at room temperature. Volatiles (including iodine) were removed in vacuo to provide a black residue, which was extracted with DCM (70 mL) under atmospheric conditions. The extract was subsequently washed with a solution of Na₂SO₄ (100 mL, 20% in H₂O) and NaHCO₃ (100 mL, saturated solution in H₂O). The resulting yellow solution was dried over Na₂SO₄. After evaporation and washing with CHCl₃ (10 mL), [κ²-C,N-(acetimido-benzimidazolylidene)IrCp*] was obtained as a yellow powder (232 mg, 0.38 mmol, 76%). Mp: 316 °C dec. 1H NMR (500.23 MHz, CDCl₃): δ 7.94 (s, 1H, NH), 7.54 (d, \(\gamma_{HH} = 7.6 \) Hz, 1H, Ar-H), 7.48 (d, \(\gamma_{HH} = 7.8 \) Hz, 1H, Ar-H), 7.23–7.18 (m, 1H, Ar-H), 7.06–7.01 (m, 1H, Ar-H), 3.00 (d, \(\gamma_{HH} = 0.9 \) Hz, 3H, Ir-NC–CH₃), 1.94 (s, 15H, Cp*-C₅H₅). 13C{1H} NMR (125.78 MHz, CDCl₃): δ 217.8 (s, N-CN), 123.4 (s, Ar-CH), 121.1 (s, Ar-CH), 118.4 (s, Ar-CH), 110.1 (s, Ar-CH), 91.0 (s, Cp*-C₅H₅), 19.8 (s, Ir-NC–CH₃), 15.0 (s, Cp*-C₅H₅), signals for Ar-C are unresolved. FT-IR: ν 3132 (w), 2947 (w), 2912 (w), 2862 (w), 2812 (w), 1620 (m), 1585 (s), 1493 (s), 1313 (m), 1327 (w), 1292 (w), 1227 (m), 1184 (w), 1117 (w), 1126 (m), 1088 (m), 1022 (m), 987 (s), 910 (w), 810 (w), 752 (s), 737 (s), 710 (m), 687 (w), 663 (w), 617 (m), 552 (w), 498 (m), 432 (m) cm⁻¹. MS (ESI-Q-TOF): calc'd for C₃₆H₂₃IrN₇, 641.0639; found, 641.0670.

Bis(1,2,3,4,5-pentamethylcyclopentadienylium)(III) μ-Hydrido Bis(μ₂-C,N-1,1'-benzimidazolylidene) Chloride (9). [2-azidophenylisonitrile]-IrCpCl₂ (299 mg, 0.55 mmol, 1.0 equiv), NH₄Cl (130 mg, 2.43 mmol, 4.4 equiv), and zinc dust (90 mg, 1.38 mmol, 2.5 equiv) were combined in MeOH (60 mL) to give a yellow suspension, to which H₂O (0.6 mL) was added. The mixture was stirred at reflux for 166 h to provide a red solution, which was cooled to room temperature and was evaporated to give a red powder, which was washed with pentane (40 mL). Under atmospheric conditions, the powder was dissolved in DCM (120 mL) and washed with H₂O (6 × 50 mL). The organic layer was dried with Na₂SO₄, and the solvent was evaporated to provide a red powder, which was washed with Et₂O (3 × 30 mL) to yield [κ²-C,N-1,1'-benzimidazolylidene]Ir(Cp*)₂(μ-HCl) as a red solid (198 mg, 0.21 mmol, 75%). Crystallization: crystallization by slow diffusion of Et₂O (5 mL) into a DCM (5 mL) solution at room temperature, provided [κ²-C,N-1,1'-benzimidazolylidene]Ir(Cp*)₂(μ-HCl) as red needles (76 mg, 0.08 mmol, 30%). Single crystals were obtained by slow diffusion of Et₂O (1 equiv) of [κ²-C,N-1,1'-benzimidazolylidene]Ir(Cp*)₂(μ-HCl)/2 equiv of triphenylphosphate oxide in DCM (0.5 mL), buffered by a layer of DCM (0.1 mL) in an NMR tube. Mp: 212 °C dec. 1H NMR (500.23 MHz, CDCl₃): δ 12.37 (s, 2H, NH), 7.83 (d, \(\gamma_{HH} = 7.9 \) Hz, 2H, Ar-NC-CH), 7.11 (d, \(\gamma_{HH} = 7.9 \) Hz, 7.2H, Ar-NC-CH₂), 6.99 (t, \(\gamma_{HH} = 7.6 \) Hz, 2H, Ar-NC-CH₂), 6.86 (t, \(\gamma_{HH} = 7.6 \) Hz, 2H, Ar-NC-CH₂), 2.23 (s, 15H, CH₃IrCp*-C₅H₅), 2.15 (s, 15H, N₂IrCp*-C₅H₅), 1.95 (s, 1H, Ir-H). 13C{1H} NMR (125.78 MHz, CDCl₃): δ 142.2 (s, NCN), 141.5 (s, Ar-CH), 113.0 (s, Ar-CH), 109.0 (s, Ar-CH), 111.2 (s, Ar-NC-CH₂), 111.7 (s, Ar-NC-CH₃), 109.6 (s, Ar-NC-CH₃), 87.4 (s, N₂IrCp*-C₅H₅), 11.9 (s, N₂IrCp*-C₅H₅), 10.9 (s, CH₂IrCp*-C₅H₅). FT-IR: ν 3131 (w), 3252 (w), 3225 (w), 3117 (w), 3067 (w), 2962 (w), 2920 (w), 2854 (w), 1616 (w), 1450 (m), 1442 (m), 1369 (m), 1346 (w), 1292 (w), 1261 (m), 1219 (w), 1153

DOI: 10.1021/acs.organomet.9b00584
Organometallics 2019, 38, 4541–4553
Organometallics

(31) Method: BP86/ZORA/TZ2P,32 using ADF2010.02.33. See the Supporting Information.

(38) No details of the reduction mechanism have been reported.37 We observed in situ iodine formation, as evidenced by purple fumes, when FeCl3 and NaI were mixed, indicating the generation of I2 and FeCl4, which then produce the azide reduction. Hydrogen atom donation is assumed to take place during the aqueous workup.

(39) The same side reaction had been observed previously for Ru(II).38 In the case of incomplete halogen exchange, the crude product was stirred with excess NaI in aceton at room temperature (Finkelstein conditions) to reach full conversion to 4.

(40) Çetinkaya, E.; Hitchcock, P. B.; Kicikbay, H.; Lappert, M. F.; Al-Juaid, S. Carbene complexes XXIV. Preparation and characterization of two enetetramine-derived carbenerhodium(I) chloride complexes RhCl(L3,3) and [RhCl(COD)L5] (L5 = dC(NMe)Cu(C)-CH(Me)-n) and the preparation and X-ray structures of the enetetramine L3 and its salt [L3][BF4]. J. Organomet. Chem. 1994, 481, 89–95.

(52) On the basis of the Ir–C and Ir–N distances, the ligand is described as an N-anionic NHC, rather than a C-anionic benzimidazole.

(59) Cocrystallization with TPPO was expected to provide beneficial hydrogen-bonding interactions with the N–H atoms, but no TPPO was incorporated in the final structure.

