Protic NHC Iridium Complexes with β-H Reactivity–Synthesis, Acetonitrile Insertion, and Oxidative Self-Activation

Published in:
Organometallics

DOI:
10.1021/acs.organomet.9b00584

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
CC BY-NC-ND

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
INTRODUCTION

Since 1968,1,2 N-heterocyclic carbenes (NHCs) have been prominent ligands of high stability with robust coordination chemistry. Protic NHCs (hereafter NHC\(^+\)) were first introduced in the 1980s,3 but only recently has their chemistry become widely accessible through the syntheses of Hahn et al.4 These synthetic routes conveniently mitigate the inherent acidic reactivity of the NHC\(^{+}-\)NH sites, which contrast with the classical nonreactive N-substituted NHCs.5 This protic character enables hydrogen-bonding interactions, deprotonations, and nucleophilic additions and highlights the ability of NHC\(^{+}\) to act as “cooperative” or “non-innocent” ligands.6,7 For instance, H-bonding increases substrate recognition in the competitive Rh(I)-catalyzed hydrogenation of esters8 and assists in the Ru(II)-catalyzed condensation of allyl alcohols with 2-pyridylbenzimidazole.9 Deprotonation of the NHC\(^{+}\) provides an N-anionic ligand which can be used to access nonsymmetrical NHCs (Scheme 1) and macromolecular structures10,11 or to bind a second metal center (Figure 1).12,13 These multimetallic structures generally bear their bridging NHCs in a head-to-tail fashion and are of interest for multinuclear catalysis.14 Deprotonated NHC N sites have been used in ruthenium(II) complexes for bifunctional activation of amines, dihydrogen, and alcohols, as demonstrated in the catalytic transfer hydrogenation of acetophenone using i-PrOH.18 Iridium(III) NHC\(^{+}\) complexes have shown bifunctional activation of dihydrogen and acetylene.19 NHC\(^{+}\) deprotonation has been suggested to be facilitated by intramolecular ligand–metal interactions,9,20 indicating the importance of the nature of the transition metal. For instance, NHC\(^{+}\)s can be transformed to the imidazole form by an external base,13 but in the 2-functionalization of imidazoles by Ru(II)9 and Rh(I) catalysts20 the tautomerization results from ligand–H activation by the metal, presumably via metal-hydride intermediates (Scheme 2).20,21 Metal-mediated NHC reactivity can also be induced by free coordination sites. Illustrative is the chloride displacement on iridium(III) that

Scheme 1. Ligand-Based NHC Reactivity

![Scheme 1. Ligand-Based NHC Reactivity](image)
facilitates a nucleophilic attack of the NHCH on a coordinated MeCN molecule to stoichiometrically provide a formal hydroamination product, which rearranges to a bis(imidazole) complex (Scheme 3). Collectively, these examples demonstrate the versatile chemistry of NHCH complexes.

NHCHs can also differ electronically from their N-substituted analogues. The prominence of NHCs in organometallic catalysis is generally attributed to their strong σ donation, but NHCs can also be tunable π acceptors. In a computational study on NHC-phosphinidene complexes, we found the conformation of the NHC to be crucial for its electronic behavior in the complex. For example, the N-methylated NHC in Ru complex A favors the σ-donating orthogonal ⊥ arrangement over the coplanar || arrangement by 12.5 kcal mol⁻¹, but the sterically less encumbered protic NHC in B favors instead a coplanar || conformation by 2.5 kcal mol⁻¹ (Figure 2), thereby allowing for significant π-acceptor capacity due to increased phosphinidene-NHC orbital overlap. This unique effect of the NHCH ligand is even more pronounced in benzimidazolidin-2-ylidene iridium complexes as NHCMe complex C ⊥ is favored by 22.0 kcal mol⁻¹, while NHCH complex D || is favored by 3.4 kcal mol⁻¹ (Figure 2). These results prompted us to study NHCH iridium complexes and assess the electronic effects of the NHC ligand on the complex’s overall reactivity. We address the distinct coordination parameters of NHCH iridium(III) complexes and then explore the reactivity of their β-NH groups in stoichiometric hydroamination-type activations, as well as in self-activation under reductive conditions toward a unique bimetallic structure.

RESULTS AND DISCUSSION

The syntheses and properties of the NHCH iridium complexes are discussed first. Next, their reactivity toward MeCN is explored under both redox-neutral and reductive conditions. Finally, the NHCH reactivity will be addressed in an oxidative reaction to examine the influence of an N-anionic NHCH on the formation of a dinuclear complex. Computational methodologies are used to provide background for the observed reactivity.

Synthesis of NHCH Ir(III) Complexes. The synthesis of the NHCH iridium(III) complexes was pursued in analogy to that reported for the related ruthenium(II) complexes, in which 2-azido-isonitrile precursors are reduced to amino-isonitrile intermediates that then cyclize. Reacting 2-azidophenylisonitrile (1) with 0.5 equiv of [IrCp*Cl₂]₂ in DCM at room temperature provided precursor complex 2 in 98% isolated yield as a light-sensitive yellow powder (Scheme 4). Whereas 2 was stable as a solid in darkness for months, it slowly decomposed in solution, even at −80 °C. To allow for full analysis, 2 was treated with NaI in acetone to quantitatively provide the thermally stable diiodo complex 3. Suitable crystals for an X-ray crystal structure determination were obtained by slow diffusion of pentane into a DCM solution. The molecular structure of 3 shows a linear isocyanide with a C1–N1 triple-bond length of 1.159(3) Å (Figure 3). The Ir–C1 bond length...
Scheme 4). The chloride to iodide exchange that occurs on those of NHC Me analogue bond lengths (Ir1–C1 = 1.922(2), Ir1–I1 = 2.6965(3); Ir1–I2 = 2.6965(3), C1–N1 = 1.159(5), N1–C2 = 1.390(3), C2–C7 = 1.401(3), C7–N2 = 1.416(3), N2–N3 = 1.254(3), N3–N4 = 1.125(3), C1–N2 = 3.445(3), N1–C1–Ir1 = 177.6(2), C1–N1–C2 = 177.2(2), C2– C7–N2 = 115.9(2), N4–N3–N2 = 172.8(3), I1–Ir1–I2 = 90.709(7), C2–C7–N2–N3 = 178.0(2)).

Figure 3. Displacement ellipsoid plot of iridium complex 3 at the 50% probability level. Hydrogen atoms and DCM solvent molecules are omitted for clarity. Selected bond lengths (Å) and angles (deg): Ir1–C1 = 1.922(2), Ir1–I1 = 2.6965(3), Ir1–I2 = 2.6965(3), C1–N1 = 1.159(5), N1–C2 = 1.390(3), C2–C7 = 1.401(3), C7–N2 = 1.416(3), N2–N3 = 1.254(3), N3–N4 = 1.125(3), C1–N2 = 3.445(3), N1–C1–Ir1 = 177.6(2), C1–N1–C2 = 177.2(2), C2–C7–N2 = 115.9(2), N4–N3–N2 = 172.8(3), I1–Ir1–I2 = 90.709(7), C2–C7–N2–N3 = 178.0(2).

Of 1.922(2) Å compares well to those of other (aryl)-isocyanide-iridium(III) complexes, as do the iridium–iodide bond lengths (Ir1–I1 = 2.6965(3); Ir1–I2 = 2.6965(3) Å). The distance of 3.445(3) Å between the C1 and N2 atoms together with the C2–C7–N2–N3 torsion angle of 178.0(2)° illustrate the rearrangement of N2 for nucleophilic attack on C1 in the subsequent reduction step (vide infra). The structural parameters of the isocyanide ligand compare also well with those reported for [Ir–W(CO)5].

Reduction of the azide group of 2 to the corresponding amine induces cyclization to the desired NHC H complex (Scheme 4). This was accomplished by reaction with NaI and FeCl3 in DCM and MeCN for 4 h, after which quenching and purification of the black reaction mixture provided the desired diiodo complex 4 as a yellow solid in 63% yield (δ(1H) 9.88 (NH); δ(13C) 161.0 (NCN) ppm) (A in Scheme 4). The chloride to iodide exchange that occurs on iridium results from the excess of NaI that is required for the azide reduction. This exchange can also be performed prior to the reduction step: i.e., 2 → 3 → 4. The best results were obtained by performing the azide reduction in a mixture of acetone/DCM over 20 h at room temperature (B in Scheme 4) to provide 4 in higher purity and yield (87%).

For completeness, we note that the chloride to iodide exchange on iridium can easily be reversed (Scheme 5); to the best of our knowledge, such a protocol is still undocumented. Thus, reacting 4 with 2 equiv of AgOTf in THF provides a bright yellow bis(triflate) complex, which on treatment with NEt3·HCl as chloride donor turns orange, which indicates the formation of the dichloro complex. Purification and crystallization provided 5 as orange needles (34%; δ(1H) 10.52 (NH); δ(13C) 165.7 (NCN) ppm).

Next, we compared the properties of NHCH complex 4 with those of NHCHMe analogue 6, which was obtained by coordinating bis(1,3-dimethylbenzimidazolin-2-yliden) to [IrCp*Cl2]2 (88%) and subsequent Cl → I ion exchange using NaI (quantitative, Scheme 6). The 13C NMR spectra showed an upfield shift for the NCN carbene carbon of the NHC complex (4, δ 161.0 ppm; 6, δ 167.0 ppm), similar to the trend for comparable Pd10a complexes, and is suggestive of a stronger C–Ir interaction, which could be confirmed by comparing the molecular structures obtained from X-ray structure determinations (Figure 4). Red crystalline needles of 4 were obtained by slow diffusion of pentane into a DCM solution and those of 6 from DCM/pentane at 5 °C. The molecular structures show a near-C2 symmetry, an identical NHC conformation and parameters comparable to those of related Ir-NHC complexes, with indeed a shorter iridium–carbene bond length for the protic complex (4, Ir1–C1 = 2.008(4); 6, Ir1–C1 = 2.034(4) Å) and a larger Ir1–I2 bond angle (4, 90.381(11); 6, 86.008(10)). These differences may be the result of the sterically smaller N substituents of 4 (see Figure S35 in the Supporting Information) or the observed intermolecular NH–I hydrogen bonds (H1–I2 = 2.86(3); H2–I2 = 2.85(2) Å). ET5-NOCV fragment analysis on BP86-D3(ZORA)/TZ2P optimized structures of 4 and 6 revealed tighter orbital interactions for the NHCH ligand (Ea = −114.1 kcal mol−1; Ee = −106.2 kcal mol−1), due to significant donation from the carbene to the metal (Ea = −90.6 kcal mol−1; Ee = −82.6 kcal mol−1), as well as back-donation to the carbene p orbital (Ea = −16.6 kcal mol−1, Ee = −15.4 kcal mol−1) and the C=N antibonding orbitals (Ea = −6.9 kcal mol−1, Ee = −8.2 kcal mol−1). The possibility of a 90° rotation in the NHC conformation and the effect thereof on the electronic parameters was examined as well and appeared to be more accessible for the protic complex 4 (maxima: ∆Ea = 3.7 kcal mol−1; ∆Ee = 13.4 kcal mol−1), which weakens the Ir–C bond (Ea = −110.4 kcal mol−1; Ee = −86.5 kcal mol−1, Ea = −17.2 kcal mol−1, Ee = −6.7 kcal mol−1). Thus, the accessible conformation and observed hydrogen bonding sets the protic NHC apart.
from its N-methylated analogue. The stronger Ir—C bond is favorable for anchoring the ligand firmly for followup reactions.

NHC^H **MeCN Activation.** Next, stoichiometric hydromination-type activation by the protic NHC**^H-Ir complex was assessed. Refluxing 4 for 24 h in MeCN resulted in the nitrile’s insertion into one of the ligand’s N—H bonds to quantitatively afford 7 as an unstable yellow solid (Scheme 7).

The product’s asymmetrically substituted benzimidazolin-2-ylidene ligand is evident from the two different NH groups in the ¹H NMR spectrum (δ 13.08, 10.88 ppm). BP86-D3(ZORA)/TZ2P calculations indicate that, upon MeCN coordination (Scheme 7), the addition of the NHC**^H—NH bond to the CN triple bond to give 7 is exothermic by 9.9 kcal mol^{−1} (Scheme 7). No full characterization by ¹³C NMR or an X-ray structure determination could be performed, as isolated 7 quickly converted into an intractable solid, which we presume to be the (benzimidazolyl)Ir_{Cp}*I₂ tautomer.

We wondered whether 7 also forms directly from precursor 2 in a one-pot reaction. However, increasing the reaction time for the FeCl₃/NaI-facilitated reduction to 48 h provided instead exclusively the deprotonated bidentate [imidoyl-NHC^H-Ir] complex 8 (76%, Scheme 7). Its ¹H NMR spectrum showed one N—H resonance (δ 7.94 ppm) and an asymmetrically substituted benzimidazolin-2-ylidene with chemical shifts that differ from those of 7 (see the Supporting Information). The two carbene distances are similar to those in mononuclear 4 and DBU in THF (1 h, room temperature, 32%). In contrast to 7, 8 is stable in air and water. Exposure of intermediate 4 to FeCl₃/NaI for 48 h in MeCN yielded the same complex 8 (74%; Scheme 7). This suggests that the reductive reaction medium causes the loss of 1 equiv of HI from 4, since no deprotonating base is present. The activator could be Fe(II), which is generated in situ on mixing FeCl₃ and NaI in deprotonating base is present. The activator could be Fe(II), which readily undergo nucleophilic attack, this might be exploited in the (catalytic) functionalization of nitriles or terminal triple bonds. Alternatively, 7 and 8 could serve as, for instance, (κ²-imidoyl-aryl)I² transfer hydrogenation catalysts. Overall, it is especially interesting that the reactivity of the NHC^H complex changes upon reduction. To better understand the role of the metal center in this, we continued using a well-defined iridium reducer.

NHC^H β-Deprotonation to Dinuclear Complex. The conversion of 4 to 8 occurred under reductive conditions. Since zinc is a well-known reductor for iridium(III) chlorides and compatible with NHC**^HN₃Cl, we decided to explore it for enhanced NH—metal interactions with surprising results. When dichloro complex 5 was refluxed in MeOH for 7 days in the presence of Zn, the μ-hydrido dinuclear complex 9 was obtained as an unexpected product (Scheme 8); no reaction took place in the absence of Zn. Complex 9 also resulted directly from 2 in 75% yield by refluxing in MeOH/H₂O for 7 days in the presence of Zn and NH₄Cl. This method is more efficient than the three-step approach (36%).

Complex 9 has a unique C₂ symmetry with two anionic NHC ligands and a hydride bridging its iridium atoms (δ(1H) −20.01 ppm). While bimetallic iridium species with bridging hydride ligands are well-known, those with bridging NHC ligands are rare and tend to have them coordinated in a head-to-tail fashion between identical metal centers. In contrast, 9 features a head-to-head arrangement with inequivalent Ir centers. This is supported by two distinct C^p-C₁H and ¹³C NMR chemical shifts (δ(1H) 2.23, 2.15; δ(13C) 11.8, 10.9 ppm). NOESY measurements show coupling of one C^p* ligand with the two NHC N-hydrides and coupling of the other C^p* ligand with the nearby aromatic N²-CCH hydrogens (see the Supporting Information). The two carbene ¹³C NMR resonances of 9 are considerably more upfield than that of 5 (9: δ 142.2 ppm; 5: δ 165.7 ppm), which is attributed to the higher shielding in the anionic NHC.

An X-ray crystal structure determination established unequivocally the molecular structure of 9 (Figure 5). Single crystals were obtained by slow diffusion of diethyl ether into a DCM solution in the presence of TPPO. The two independent molecules in the asymmetric unit of 9 are located on general positions without crystallographic symmetry. The iridium—carbene distances are similar to those in mononuclear 4, 9, Ir₁₁—C₁₁ = 2.016(7) Å, Ir₁₁—C₁₁ = 2.020(7) Å, Ir₁₂—C₁₂ = 2.038(7) Å, Ir₁₂—C₁₂ = 2.014(7) Å; 4, Ir₁—C₁ = 2.008(4) Å, and the nitrogen—iridium bond lengths (Ir₁—N₁ = 2.083(6) Å, Ir₂—N₃₁ = 2.088(6) Å, Ir₂—N₁₂ = 2.072(6) Å, Ir₂—N₃₂ = 2.078(6) Å) are comparable to those found in structurally similar iridium imidazolate and pyrazolate complexes. The location of the μ-hydride could not be determined from difference-Fourier maps, but its calculated position was evident from the geometry of the iridium centers.

The intriguing bonding in the metallic core of 9, with its bridging hydride and delocalized anionicity of the NHC...
Figure 5. Displacement ellipsoid plots of dinuclear iridium complex 9 at the 50% probability level. Only one of the two independent molecules is shown. C–H hydrogen atoms, the chloride anion, and DCM solvent molecules are omitted for clarity. Selected bond lengths (Å) and angles (deg): Ir11–C11 = 2.016(7), Ir11–C81 = 2.020(7), Ir21–N11 = 2.083(6), Ir21–N31 = 2.088(6), N11–C11 = 1.344(9), N21–C11 = 1.351(9), N31–C81 = 1.341(9), N41–C81 = 1.349(9), Ir11–Ir21 = 3.0410(4), C11–Ir11–C81 = 81.0(3), N11–Ir21–N31 = 80.0(2). Atom H1 was introduced in a calculated position.

ligands, makes the oxidation states of the metal centers ambiguous56 (i.e., Ir(III)–Ir(III), Ir(II)–Ir(IV), or Ir(II)→Ir(IV)). Intermolecular interaction between the two Ir centers seems arguable54,57 because of the rather large separation (Ir11–Ir21 = 3.0410(4), Ir12–Ir22 = 3.0501(4) Å). Since the low solubility of 9 prevented CV measurements, we used a QTAIM analysis61 on a BP86-D3(ZORA)/TZ2P32,33 optimized geometry, which showed near-identical bond paths of the two iridium nuclei to the hydride (critical bond points Ir11–H1 ρ 0.12 au, ε 0.09, Ir21–H1 ρ 0.10 au, ε 0.08; ring critical points Ir11–H1–Ir21–N31–C81: ρ 0.03 au, Ir11–H1–Ir21–N31–C11: ρ 0.03 au) but no intermetallic interactions (Figure 6 and Figure S36 in the Supporting Information). This indicates true hydride bridging and minimal electronic differences between the Ir nuclei: i.e., a Ir(III)/Ir(III) complex.62

The unique NHCH orientation in 9 was examined computationally, since it contrasts with that of known NHC-bridged complexes.12–16 The head-to-head coordination of complex 9 is indeed energetically favored at the BP86-D3(ZORA)/TZ2P level32,33 over head-to-tail complex 10, but by only 1.9 kcal mol−1 (Figure 7). This small energy difference is somewhat surprising, since 1H NMR spectra of the crude reaction mixtures show full selectivity of its formation. For the formation of 9 from the monometallic precursor, one NHC ligand has to undergo an in situ tautomerization, either prior to or after coordination to the second Ir center. Considering that zinc is essential for the conversion, we presume it oxidizes to ZnCl\textsubscript{2} to facilitate the Ir(III)→Ir(I) reduction of one monometallic complex, which then undergoes an auto-oxidative 1,3-H shift to the corresponding hydride complex, as has been reported for alkyl-iridium(III) hydrides.63 NHC tautomerization is likely for Ir(IV) complexes bearing ligands with a strong trans effect, such as hydrides.31,64 Such an oxidative addition–tautomerization sequence has also been suggested for benzimidazole-Ru-hydrides (DFT).21b It should be noted that the tautomerization step may also be influenced by the second metal center, as was found for Au/Mn-NHC systems.13

The observed oxidative activity leading to 9 seems to be specific for iridium; using [RhIICp3Cl\textsubscript{2}] and [RuII(p-cym)-Cl\textsubscript{2}] in the same one-pot procedure resulted in a mixture of Rh and Ru analogues of 5 with unidentified side products (see the Supporting Information). The Ir-chloride atoms are essential, as the diiodo complexes 3 and 4 gave no conversion. This halide-specific reactivity may be attributed to the difference in redox potentials or alternatively be related to a difference in H-bonding interactions that can assist 1,3-H shifts in iridium hydrides.53

\section*{CONCLUSION}

Using a robust route from azido-phenylene-isocyanide precursor complexes, we obtained NHCH Ir(III) complexes. The reactivity of the NHC N=H group in these complexes could be enhanced under reductive conditions, which is suggestive of a metallophilic interaction (β-H activation) that distinguishes it from reported base-induced reactions. The reactivity was used to access various unique complexes. The NHCH could nucleophilically attack MeCN to provide neutral \textsuperscript{κ2}-NHC-imidoyl ligands and under reductive conditions their anionic analogues, which both are interesting ligands for catalysis. In the presence of zinc, the NHCH iridium chloride complex underwent oxidative self-activation, which resulted in the formation of an unprecedented \textsuperscript{C\textsubscript{3}}-symmetric dinuclear iridium hydride complex, bearing two head-to-head coordinated bridging N-deprotonated NHCs. Overall, it is exciting to
observe that the reactivity of the NHCs changes upon reduction of the complex. It may lead to new applications for these ligands, prove helpful in understanding the mechanistic steps for NHC catalysts, and, as such, further the development of NHCs as cooperative ligands.

EXPERIMENTAL SECTION

Computational Procedures. Density functional calculations were performed at the BP86/ZORA/Grimme-DS/TZ2P level of theory using the Amsterdam Density Functional (ADF) (2013.01) (geometry optimization, QTAIM) and 2016.102 (ETS-NOCV). The nature of each stationary point was confirmed by frequency calculations.

Preparation of Compounds. All experiments were performed under an atmosphere of dry nitrogen using standard Schlenk-line and glovebox techniques, unless stated otherwise. Solvents were distilled under nitrogen over the appropriate drying agent: CaCl2 (DCM), benzophenone/NaK (Et2O, THF), LiAlH4 (pentane), K2CO3 (MeCN, acetone), Pd(OAc)2 (CDCl3, CDCl2). Anhydrous MeOH was obtained from Sigma-Aldrich. Water was degassed ultrasonically before use.

(2-Azidophenylisonitrile)IrCp*IrII3 was kindly provided by C. A. Dumke and F. E. Hahn. 1,3-Dimethylbenzimidazolium iodide, 67 bis(1,3-dimethylbenzimidazolylidene), 40 and (2-azidophenylisonitrile)(1-methyl-4-isopropylbenzene)埒(II) dichloride were prepared according to literature procedures. All other reagents were used as received.

Organometallics

Organometallics 2019, 38, 4543–4553

(1H-Benzimidazolylidene)(1,2,3,4,5-pentamethylyclopentadienyl)iridium(III) Dichloride (4). NaI (236 mg, 1.58 mmol, 4.1 equiv) was dissolved in acetone (40 mL), after which it was added to FeCl3 (113 mg, 0.70 mmol, 1.8 equiv) to provide a black suspension. Immediately afterward, a solution of [(2-azidophenylisonitrile)IrCp*IrII3 (207 mg, 0.38 mmol, 1.0 equiv) in DCM (10 mL) was added to the black suspension and the resulting mixture was stirred for 43 h at room temperature, during which the mixture turned dark red. Volatiles (including iodine) were removed in vacuo to provide a very dark red residue, which was extracted in DCM (180 mL) under atmospheric conditions. The dark extract was subsequently washed with a solution of Na2S2O3 (200 mL, 20% in H2O), a solution of NaHCO3 (200 mL, saturated solution in H2O) and brine (200 mL). The resulting orange solution was dried over Na2SO4. After evaporation, [(1H-Benzimidazolylidene)IrCp*IrII3 was obtained as a yellow powder (233 mg, 0.33 mmol, 87%).

Crystallization: single crystals could be obtained by slow diffusion of pentane into a DCM solution (pentane:DCM approximately 1:3). Mp: 330 °C dec. 1H NMR (500.23 MHz, CDCl3): δ 8.88 (s, 2H, N-H), 7.47–7.42 (m, 2H, Ar-H), 7.27–7.22 (m, 2H, Ar-H), 1.92 (s, 15H, Cp*–CH3). 13C[1H] NMR (125.78 MHz, CDCl3): δ 161.0 (s, NCN), 134.2 (s, Ar-C), 128.3 (s, Ar-C), 111.3 (s, Ar-CH), 91.6 (s, Cp*–CH3), 10.4 (s, Cp*–CCH). FT-IR: 3275 (w), 2962 (m), 2905 (w), 2380 (w), 1720 (w), 1616 (w), 1489 (s), 1450 (s), 1350 (s), 1204 (s), 1153 (s), 1076 (s), 1011 (s), 864 (m), 791 (s), 729 (s), 706 (m), 675 (m), 636 (w), 602 (w), 532 (w), 494 (w) cm⁻¹. MS (ESI-Q-TOF): calcd for C32H23N2I2Ir, 599.0284; found, 599.0249.

(1H-Benzimidazolylidene)(1,2,3,4,5-pentamethylyclopentadienyl)iridium(III) Dichloride (5). To an orange solution of [(1H-Benzimidazolylidene)IrCp*IrII3 (69 mg, 0.098 mmol, 1.0 equiv) in THF (14 mL) was added AgOTf (53 mg, 0.206 mmol, 2.1 equiv) to provide a yellow suspension, which was stirred for 40 min at room temperature, in the absence of light. Et,NHCl (36 mg, 0.262 mmol, 2.7 equiv) was added to provide an orange-yellow solution, which was stirred for 120 min at room temperature. Filtration provided a yellow solution, which was evaporated. The resulting yellow solid was redissolved in DCM (40 mL) and washed with H2O (2 × 40 mL). The yellow organic layer was dried with MgSO4 and evaporated to provide an orange-yellow solid. Crystallization by cooling a DCM/ pentane solution (20 mL/20 mL) to −80 °C provided pure [(1H-

Organometallics
benzimidazolylidene)Ir(Cp(Cl2)] as an orange solid (17 mg, 0.033 mmol, 34%). Mp: 289 °C dec. 1H NMR (500.23 MHz, CDCl3): δ 10.52 (s, 2H, N-H), 7.24–7.19 (m, 2H, Ar-H), 7.03–6.98 (m, 2H, Ar-H), 1.74 (s, 15H, Cp*-C). 13C{1H} NMR (125.78 MHz, CDCl3): δ 165.7 (s, NCN), 133.5 (s, Ar-C), 123.4 (s, Ar-CH), 111.5 (s, Ar-CH), 90.0 (s, Cp*-CCH), 91.1 (s, Cp*-C). FT-IR: ν 3271 (w), 3040 (w), 2970 (w), 2853 (w), 1706 (w), 1675 (w), 1618 (w), 1491 (w), 1456 (s), 1400 (w), 1362 (m), 1258 (s), 1246 (m), 1151 (w), 1080 (s), 1014 (s), 864 (w), 795 (s), 756 (s), 743 (s), 700 (m), 681 (s), 662 (m), 638 (w), 621 (m), 586 (w), 563 (w), 486 (w), 459 (m), 447 (s), 434 (m), 401 (s) cm⁻¹. MS (ESI-Q-TOF): calcd for C18H18ClIr, 540.9744; found, 540.9745.

(N,N’-Dimethyl-2-benzimidazolylidene)(1,2,3,4,5-pentamethylcyclopentadienylidium)(III) Dichloride. To an orange solution of [Ir(Cp(Cl2)] (79.7 mg, 0.10 mmol, 1.0 equiv) in toluene (1 mL) was added a yellow solution of bis(1,2,3,4,5-pentamethylcyclopentadienyl)iridium(III) Dichloride (270 mg, 0.5 mmol, 1.0 equiv) in DCM (3 mL) to provide a red-orange suspension which was stirred for 22 h at room temperature. Volatiles (including iodine) were removed in vacuo to give a red powder, which was washed with pentane (40 mL). Under atmospheric conditions, the powder was dissolved in DCM (120 mL) and washed with H2O (6 × 50 mL). The organic layer was dried with Na2SO4, and the solvent was evaporated to provide a red powder, which was washed with Et2O (3 × 50 mL) to yield [(μ²-C,N=CH2-iridato)IrCl2] (55 mg, 0.09 mmol, 30%). Single crystals were obtained by slow diffusion of Et2O (0.5 mL) into a saturated solution of [Ir(Cp(Cl2)] (0.6 mL) in an NMR tube. Mp: 212 °C dec. 1H NMR (500.23 MHz, CDCl3): δ 13.27 (s, 2H, N-H), 7.83 (d, δJHH = 7.9 Hz, 2H, Ar-N=C-CH), 7.11 (d, δJHH = 7.9 Hz, 2H, Ar-N=C-CH), 6.99 (t, δJHH = 7.6 Hz, 2H, Ar-N=C-CH), 6.86 (t, δJHH = 7.6 Hz, 2H, Ar-N=C-CH), 2.23 (s, 15H, Cp*-C), 2.15 (s, 15H, N2-Cp*-C). FT-IR: ν 3313 (w), 3252 (w), 3225 (w), 3117 (w), 3067 (w), 2962 (w), 2920 (w), 2854 (w), 1616 (w), 1450 (m), 1412 (m), 1369 (m), 1346 (w), 1292 (w), 1261 (m), 1219 (w), 1153 cm⁻¹.
organometallic chemistry.

2009

S. P. N-Heterocyclic Carbenes in Late Transition Metal Catalysis. Ed.

2010

Measure of All Rings

(4) For reviews on proton NHCs, see: (a) Hahn, F. E. Substrate Recognition and Regioselective Catalysis with Complexes Bearing NR, NH-NHC Ligands. ChemCatChem 2013, 5, 419−430. (b) Jahnke, M. C.; Hahn, F. E. Complexes with protic (NH, NH and NH, NR) N-heterocyclic carbene ligands. Coord. Chem. Rev. 2015, 293−294, 95−115.

(31) Method: BP86/ZORA/TZ2P,32 using ADF2010.02.33 to see the Supporting Information.

(35) No details of the reduction mechanism have been reported.37
We observed in situ iodine formation, as evidenced by purple fumes, when FeCl3 and NaI were mixed, indicating the generation of I2 and FeX4, which after iodide abstraction generates FeX4 and a free coordination site. However, this is unlikely to lead to deprotonation, since a synthesis route toward a complex akin to the nondeprotonated 7 was reported by exploiting free coordination sites on iridium(III) (Scheme 3).22

(37) The same side reaction had been observed previously for Ru(I).22 In the case of incomplete halogen exchange, the crude product was stirred with excess NaI in acetone at room temperature (Finkelstein conditions) to reach full conversion to 4.

(38) We observed in situ iodine formation, as evidenced by purple fumes, when FeCl3 and NaI were mixed, indicating the generation of I2 and FeX4, which then produce the azide reduction. Hydrogen atom donation is assumed to take place during the aqeous workup.

(39) The same side reaction had been observed previously for Ru(I).22 In the case of incomplete halogen exchange, the crude product was stirred with excess NaI in acetone at room temperature (Finkelstein conditions) to reach full conversion to 4.

(c) For molecular structures of related imidazol-2-ylidineIr(III) complexes, see ref 19 and: Hansakata, F.; Fujita, K.-i.; Yamaguchi, R. Synthesis of New Cationic Cp’*Ir N-Heterocyclic Carbene Complexes and Their High Catalytic Activities in the Oppenauer-Type Oxidation of Primary and Secondary Alcohols. Organometallics 2005, 24, 3422−3433 (c) For the molecular structure of the related (NH2)2Ru(II)(p-cym)2 complex, see ref 34.

(42) For the molecular structure of (N,N′-dimethyl-2-benzimidazolylidine)IrCp3Cl3, see: (a) Meredith, J. M.; Robinson, R. J.; Goldberg, K. I.; Kaminsky, W.; Heinekey, D. M. C-H Bond Activation by Caticonic Iridium(III) NH Complexes: A Combined Experimental and Computational Study. Organometallics 2012, 31, 1879−1887. (b) For molecular structures of related imidazol-2-ylidine-Ir(III) complexes, see ref 19 and: Hansakata, F.; Fujita, K.-i.; Yamaguchi, R. Synthesis of New Cationic Cp’*Ir N-Heterocyclic Carbene Complexes and Their High Catalytic Activities in the Oppenauer-Type Oxidation of Primary and Secondary Alcohols. Organometallics 2005, 24, 3422−3433 (c) For the molecular structure of the related (NH2)2Ru(II)(p-cym)2 complex, see ref 34.

(52) On the basis of the Ir–C and Ir–N distances, the ligand is described as an N-anionic NHC, rather than a C-anionic benzimidazole.

(59) Cocryocrystallization with TPPO was expected to provide beneficial hydrogen-bonding interactions with the N–H atoms, but no TPPO was incorporated in the final structure.

(62) Additionally, Ir(II) and Ir(IV) are paramagnetic species, which should have had a clear effect on the NMR spectroscopic data and no such effects were observed.
