Photocatalytic Hydrogen Generation by Vesicle-Embedded [FeFe]Hydrogenase Mimics: A Mechanistic Study

Published in:
Chemistry-A European Journal

DOI:
10.1002/chem.201902514

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Artificial Photosynthesis

Photocatalytic Hydrogen Generation by Vesicle-Embedded [FeFe]Hydrogenase Mimics: A Mechanistic Study

René Becker, Tessel Bouwens, Esther C. F. Schippers, Toon van Gelderen, Michiel Hilbers, Sander Woutersen, and Joost N. H. Reek

Abstract: Artificial photosynthesis—the direct photochemical generation of hydrogen from water—is a promising but scientifically challenging future technology. Because nature employs membranes for photodriven reactions, the aim of this work is to elucidate the effect of membranes on artificial photocatalysis. To do so, a combination of electrochemistry, photocatalysis, and time-resolved spectroscopy on vesicle-embedded [FeFe]hydrogenase mimics, driven by a ruthenium tris-2,2'-bipyridine photosensitizer, is reported. The membrane effects encountered can be summarized as follows: the presence of vesicles steers the reactivity of the [FeFe]-benzodithiolate catalyst towards disproportionation, instead of protonation, due to membrane characteristics, such as providing a constant local effective pH, and concentrating and organizing species inside the membrane. The maximum turnover number is limited by photodegradation of the resting state in the catalytic cycle. Understanding these fundamental productive and destructive pathways in complex photochemical systems allows progress towards the development of efficient artificial leaves.

Introduction

The transition to a sustainable, green energy economy necessitates the development of a corresponding technology through which abundant and renewable resources can be used to generate transportable fuels, such as hydrogen gas. The most straightforward process for the generation of hydrogen is the photolysis of water with sunlight by using bioinspired synthetic photocatalytic systems known as artificial photosynthesis. Since the first working example reported by Fujishima and Honda in 1972,[1] research into the design and development of these “artificial leaves”[2] has made spectacular progress,[3–5] up to the point where synthetic and biological systems have started to merge.[6–12]

Many artificial photosynthetic systems are inspired by the naturally occurring [FeFe]hydrogenase enzyme, which catalyzes proton reduction with high efficiency and turnover numbers (TONs).[13] Research by the groups of Darensbourg and Lubitz expanded mechanistic and structural insights into the activity of [FeFe]hydrogenase and showed the importance of the essential protein environment surrounding the [FeFe] core.[14–17] Simultaneously, a wide variety of synthetic mimics based on the [FeFe] core of hydrogenase have been developed with different bridgeheads that evolve hydrogen following different mechanisms. To apply hydrogenase mimics in artificial leaves, these catalysts have been studied for their performance in light-driven hydrogen evolution, but mainly in organic solvents due to the apolar nature of these complexes. Typically, these photocatalytic systems consist of three components: a photosensitizer (PS), a sacrificial electron donor (SED), and the catalyst itself.[18] The first report on this system by Sun et al. showed that, after reductive quenching of the excited state of a dichlorobenzenedithiolate-bridged FeS2 cluster in solution,[18] leading to a photocatalytic system that yielded up to 5 turnovers,[19] which was improved upon by Ott et al. through the introduction of a dichlorobenzenedithiolate-bridged FeS2 cluster, which yielded 200 turnovers.[20] To avoid the use of organic solvents that might interfere with catalysis, the group of Wu studied this photocatalytic system by using water-soluble FeS2 analogues, which gave similar TONs and, similar to previous systems, deactivation of the system after 1 to 2 h.[22,23] On the contrary, the use of intact [FeFe]hydrogenase-containing cells from Thiocapsa roseopersicina in the same [Ru(bpy)]3+– system leads to uninterrupted hydrogen evolution for 12 h, with only slow decomposition observed for the isolated enzyme in phosphatidylcholine vesicles.[24]

Evidently, the matrix in which the FeS2 cluster is embedded has an important role in stabilization of the catalyst during photocatalysis, and a synthetic matrix should ideally mimic the...
function of the original enzyme-plus-cell structure. Systems in which hydrogenase mimics were embedded in matrices, such as micelles, amphiphilic polymers, vesicles, proteins, metal–organic frameworks, and hydrogels, displayed TONs below 1000, but generally a positive influence of the matrix on the overall efficiency of the catalytic system was reported.

Moreover, photodriven reactions in nature are performed in the presence of a membrane, which consists of amphiphilic molecules that self-assemble into bilayers in an aqueous environment. The membrane functions can be described as organizing, localizing, and concentrating reactive complexes to enhance reactions and suppress side reactions. In light of this, König and co-workers assembled both membrane-embedded water oxidation catalysts and proton reduction catalysts, and showed water oxidation and hydrogen evolution in presence of a [Ru(bpy)]$_2^{2+}$ as the PS.

Inspired by these results, we were interested in how preorganization of the catalyst and PS components in a lipid bilayer affected the mechanism of (photo)catalytic hydrogen evolution. Herein, we investigated [Ru(bpy)$_3$]$^{2+}$ ([Ru$^{n+}$]) as a dye and [μ-bdt]Fe$_2$(CO)$_6$ (1; bdt = benzene-1,2-dithiolate) as a hydrogen-evolving catalyst embedded in α-phosphatidylcholine (PC)-based vesicles (Figure 1), and used a combination of electrochemistry and time-resolved spectroscopy, visible spectroscopy, and IR spectroscopy to investigate light-driven proton reduction catalysis.

Results and Discussion

Preparation and characterization of the vesicles

We investigated a supramolecular system in which [FeFe]-benzodithiolate catalyst 1 served as a proton reduction catalyst that was embedded in lecithin-based vesicles, which were similar in terms of composition and concentrations to the vesicular system reported by König et al. This system self-assembles in aqueous buffer solution in either the presence or absence of 1 (details in the Experimental Section). Throughout this research, vesicles are studied under a variety of conditions and the presence of vesicles was confirmed by means of dynamic light scattering (DLS). The vesicles formed were similar over a pH range from 4 to 7, in the presence of 1 (concentrations 0/0.1/0.5 mM), by using a buffer medium (0.1 M ascorbate/phosphate). Small deviations in vesicle diameter are attributed to variations during preparation (Table S1 in the Supporting Information).

Inclusion of 1 in the lipid bilayer was confirmed by using IR spectroscopy (Figure 2). Complex 1 does not dissolve in water and PC is used to solubilize this apolar complex in aqueous medium. The iron–carbonyl bands are clearly visible; the three absorption bands of the stretching modes are located at $\tilde{\nu} = 2078$, 2043, and 2004 cm$^{-1}$. Because the width of these bands correlates linearly with the polarity and polarizability solvent parameter π^*,[28] we could use this information to probe the chemical environment of 1 inside the vesicle. The IR spectrum is similar to the spectrum of 1 in ethyl acetate, and quite distinct from that in pentane; this suggests that the carbonyl fragments are in the bilayer in close proximity to the polar head groups of the lipids.

![Figure 1. Molecular structures of the components used in the self-assembled vesicle system for photocatalytic hydrogen production.](image)

Figure 1. Molecular structures of the components used in the self-assembled vesicle system for photocatalytic hydrogen production.

![Figure 2. FTIR spectra of 0.5 mM 1 in pentane, ethyl acetate (580 µm path length CaF$_2$ cell), and a 0.9 mM solution of PC vesicles (25 µm path length CaF$_2$ cell) in H$_2$O.](image)

Figure 2. FTIR spectra of 0.5 mM 1 in pentane, ethyl acetate (580 µm path length CaF$_2$ cell), and a 0.9 mM solution of PC vesicles (25 µm path length CaF$_2$ cell) in H$_2$O.

Electrochemical experiments on a 0.1 mM solution of 1 in a solution of vesicles containing 0.1 M sodium phosphate buffer show electrochemical responses similar to that in organic solvents. Complex 1 evolves hydrogen in organic solvents in the presence of acid through double electron transfer followed by protonation (EEC) to form H_2.[36] In the presence of strong acid, H^+ is protonated to evolve H_2; however, a weak acid is not able to protonate H^+, and therefore, a second reduction step must take place before protonation can occur. Complex 1 inside vesicles shows a reduction wave with a peak potential at -0.8 V versus a normal hydrogen electrode (NHE; Figure 3A). Anodic reoxidation at these potentials was not observed; this is indicative of a protonation step after reduction. A reoxidation wave was observed at potentials around -0.1 V.
The maximum TON was in all cases achieved because there is no TON (in our case [Ru(bpy)]3+, Cl-) as the PS and ascorbic acid as the SED. In these experiments, a solution (5 mL) containing 0.1 mm [Ru(bpy)]3+ and 0.2 mm Ru2+ in 0.1 M ascorbate buffer was irradiated with \(\lambda = 450 \) nm light-emitting diodes (LEDs) and hydrogen formation was quantified with an in-line GC setup. Hydrogen evolution started immediately after switching on the LED and ceased within 30 min (Figure 4A). Control experiments, in which one of the components (Ru2+, 1, PC or ascorbate) was omitted, did not yield any detectable amounts of hydrogen and demonstrated the necessity of every component in the mixture.

![Figure 3](image)

Figure 3. Electrochemical characterization of 0.1 mm 1 in 0.9 mm PC vesicles in 0.1 M sodium phosphate buffer at pH values between 4 and 8. A) Cyclic voltammogram at pH 5 and a scan rate of 1.0 V s\(^{-1}\). The scan direction is indicated with the arrow. B) Cathodic peak currents versus scan rate at various pH values. C) Cathodic peak potentials versus the logarithm of the scan rate at various pH values. D) Differential pulse voltammetry (DPV) was used to determine the half-wave potentials of the cathodic and anodic redox processes. E) Cathodic and anodic half-wave potentials versus pH.

As discussed in the Electrochemistry section, the vesicles provide a constant pH to the catalyst; hence photocatalytic hydrogen evolution in bulk solution can be optimized by fine-tuning the conditions for the (photoinduced) electron-transfer steps independently of the hydrogen-producing part of the system. The pH of the ascorbate buffer was varied between 4 and 7 and an optimum TON of 67 was obtained at pH 4.5. We hypothesize that this pH optimum arises from an increased amount of ascorbate (versus ascorbic acid) at high pH and increased proton reduction activity by 1 at low pH. \([46]\) We need a high ascorbate concentration because this acts as an electron donor, whereas the protonated species, ascorbic acid, does not. The pH optimum is therefore found to be close to the pK\(_a\) of ascorbic acid, 4.2. \([45]\) The maximum TON was in all cases achieved within 30 min and was limited by catalyst decomposition, as indicated by IR spectra recorded after the reaction, which no longer showed characteristic iron–carbonyl bands. Also, the addition of 0.5 \(\mu \)mol 1 to the solution after 60 min resulted in extra hydrogen formation (Figure 4B).

Photocatalytic hydrogen production

Photocatalytic hydrogen evolution from 1 in vesicles was studied by using Ru2+ (in our case [Ru(bpy)]3+, Cl-) as the PS and ascorbic acid as the SED. In these solutions, a solution (5 mL) containing 0.1 mm 1 in 0.9 mm PC vesicles and 0.2 mm Ru2+ in 0.1 M ascorbate buffer was irradiated with \(\lambda = 450 \) nm light-emitting diodes (LEDs) and hydrogen formation was quantified with an in-line GC setup. Hydrogen evolution started immediately after switching on the LED and ceased within 30 min (Figure 4A). Control experiments, in which one of the components (Ru2+, 1, PC or ascorbate) was omitted, did not yield any detectable amounts of hydrogen and demonstrated the necessity of every component in the mixture.

As discussed in the Electrochemistry section, the vesicles provide a constant pH to the catalyst; hence photocatalytic hydrogen evolution in bulk solution can be optimized by fine-tuning the conditions for the (photoinduced) electron-transfer steps independently of the hydrogen-producing part of the system. The pH of the ascorbate buffer was varied between 4 and 7 and an optimum TON of 67 was obtained at pH 4.5. We hypothesize that this pH optimum arises from an increased amount of ascorbate (versus ascorbic acid) at high pH and increased proton reduction activity by 1 at low pH. \([46]\) We need a high ascorbate concentration because this acts as an electron donor, whereas the protonated species, ascorbic acid, does not. The pH optimum is therefore found to be close to the pK\(_a\) of ascorbic acid, 4.2. \([45]\) The maximum TON was in all cases achieved within 30 min and was limited by catalyst decomposition, as indicated by IR spectra recorded after the reaction, which no longer showed characteristic iron–carbonyl bands. Also, the addition of 0.5 \(\mu \)mol 1 to the solution after 60 min resulted in extra hydrogen formation (Figure 4B).
Time-resolved UV/Vis and luminescence spectroscopy

To confirm our findings from electrochemical studies on weak acid catalysis and to gain an insight in the elementary steps of catalysis, we studied the system by using time-resolved UV/Vis and luminescence spectroscopy. During these experiments, we aimed to observe the key intermediates shown in Scheme 1:

![Scheme 1](image)

The triplet lifetime, T_3, of $[^3\text{Ru}(bpy)_3]^{2+}$ -vesicle-1 system was studied by means of time-resolved luminescence and UV/Vis experiments, both in H$_2$O and D$_2$O at pH/pD 4.35, containing 0.1 mM $[^3\text{Ru}(bpy)_3]^{2+}$. Upon excitation of $[^3\text{Ru}(bpy)_3]^{2+}$ with a 1.0 mJ, $\lambda = 485$ nm, nanosecond pulse, the decay of $[^3\text{Ru}(bpy)_3]^{2+}$ and the formation of $[^3\text{Ru}(bpy)_3]^{3+}$ are followed over time (Table 1).

The triplet lifetime, T_3, of $[^3\text{Ru}(bpy)_3]^{2+}$ was determined by fitting the luminescence decay with a monoexponential function (Figure 6 and Figures S6–S9 and S12–S15 in the Supporting Information). The phosphorescence decay rates, k_p, of $[^3\text{Ru}(bpy)_3]^{2+}$ were measured in neat (heavy) water and are summarized in Table 1. It can be seen that the decay is faster in H$_2$O than in D$_2$O, as is the case for the parent complex $[^3\text{Ru}(bpy)_3]^{3+}$. The presence of vesicles slightly increases the triplet...
The reductive quenching rate, \(\kappa_0 \), of \(\text{Ru}_{\text{amph}}^{2+} \) and \(\text{Ru}^{2+} \) in neat H\(_2\)O and D\(_2\)O, as well as reductive quenching rate constants, \(\kappa_0 \) of \(\text{Ru}_{\text{amph}}^{2+} \) (pH/pD 4.35) and \(\text{Ru}^{2+} \) (pD 4.5) by ascorbate in 0.1 m ascorbate buffer.

<table>
<thead>
<tr>
<th>PC [mm]</th>
<th>[1] [μm]</th>
<th>H(_2)O</th>
<th>D(_2)O</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(k_b = 2.68 \times 10^9 \text{ s}^{-1})</td>
<td>(k_b = 1.54 \times 10^9 \text{ s}^{-1})</td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
<td>(k_b = 1.23 \times 10^9 \text{ s}^{-1})</td>
<td>(k_b = 1.93 \times 10^9 \text{ s}^{-1})</td>
</tr>
<tr>
<td>0.9</td>
<td>50</td>
<td>(k_b = 2.05 \times 10^9 \text{ s}^{-1})</td>
<td>(k_b = 1.46 \times 10^9 \text{ s}^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(k_b = 1.08 \times 10^9 \text{ s}^{-1})</td>
<td>(k_b = 0.51 \times 10^9 \text{ s}^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(k_b = 8.4 \times 10^8 \text{ s}^{-1})</td>
<td>(k_b = 5.7 \times 10^8 \text{ s}^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(k_b = 1.64 \times 10^7 \text{ s}^{-1})</td>
<td>(k_b = 1.05 \times 10^7 \text{ s}^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(k_b = 1.0 \times 10^7 \text{ s}^{-1})</td>
<td>(k_b = 1.0 \times 10^7 \text{ s}^{-1})</td>
</tr>
</tbody>
</table>

Indeed the decay is faster in the presence of 1. This observation, in combination with the fact that \(k_0 \) does not change in the presence of 1 (Table 1), indicates that the increased decay is due to an additional decay pathway for \(\text{Ru}_{\text{amph}}^{2+} \) through electron transfer to 1. Although phosphorescence decay and the quenching rate constants differ quite substantially between H\(_2\)O and D\(_2\)O, the measured \(k_b \) values do not. Moreover, the difference between \(k_b \) in the presence and absence of 1 is almost identical for H\(_2\)O and D\(_2\)O; therefore, the decay pathways of \(\text{Ru}_{\text{amph}}^{2+} \) most probably do not involve the transfer of protons. To determine the rate constant, \(k_{ET} \), for electron transfer from \(\text{Ru}_{\text{amph}}^{2+} \) to 1, we assume that the difference in the measured decay values in the absence and presence of 1 is directly related to the electron-transfer rate via \([\text{Asc}^+]([\text{Asc}^-] = \{1\}k_{ET} \text{ As } [\text{Asc}^-] \) being approximately 1 μm during the monooxo decay, the electron-transfer rate \([1]k_{ET} \) is in the order of 10^5 s^-1. The concentration of [1] in the PC vesicles is approximately 70 mM (a concentration increase of over 1000 times; see the Supporting Information for more details), and a lower limit to the bimolecular rate constant, \(k_{ET} \) in the order of 10^8 M^-1 s^-1 was determined.

Time-resolved IR spectroscopy and the overall photocatalytic cycle

To probe the formation of 1^- and/or species formed from 1^- through follow-up reactivity, time-resolved IR spectroscopy was performed on a sample containing 0.1 mm 1 in PC vesicles and 0.1 m \(\text{Ru}_{\text{amph}}^{2+} \) in ascorbate buffer in D\(_2\)O (Figure 7). To avoid catalyst decomposition from the excitation light, the sample was pumped through the cell with a syringe pump. In contrast to experiments in which \(\text{Ru}^{2+} \) was used, in this case, we did see a depletion of the lowest energy CO vibration band of 1 at \(\tilde{\nu} = 2078 \text{ cm}^{-1} \) and growth of a broad band between \(\tilde{\nu} = 2030 \) and 2000 cm^-1 (Figure 7A). Because depletion of the bands at \(\tilde{\nu} = 2043 \) and 2004 cm^-1 belonging to 1 was not observed, the new species formed most likely also contained these bands in its spectrum. Comparing the as-formed species (\(\tilde{\nu} = 2043, 2000–1930 \text{ cm}^{-1} \)) with reported reduced and protonated species of 1 gave a unique match with the deduced, monoprotonated species 1H^+, which has a reported spectrum of \(\tilde{\nu} = 2045, 1996, 1979, 1963, \) and 1935 cm^-1 (Figure 7B).[52] This 1H^+ species, ([\(\mu_4\text{Fe}^{3+}\text{bdts})\text{Ru}(μ-\text{CO})\text{Fe}_2(\text{CO})_2]^+ \), is known for being a stable intermediate during weak acid
proton reduction catalysis with 1. At high initial concentrations of 1, the formation of this bridging hydride species is thought to occur through a sequence of monoreduction, disproportionation of two monoanions to give 1^- and 1^{2-}, and subsequent protonation of 1^{2-} to form 1^-. Because the time-resolved IR data at delay times shorter than 250 ns are masked by shock waves, we cannot elucidate the chemistry before the formation of 1^-. However, the time-resolved IR results are in line with the observed electrochemical formation of 1^- in PC vesicles, and thus, we propose the photocatalytic cycle depicted in Scheme 2.

The catalytic steps observed herein are different from those observed by Lomoth and co-workers in a different Fe$_2$S$_2$ system in organic solvent (acetone), with which 1 is one-electron reduced by photogenerated [Ru(dmb)$_2$]$^{3+}$ (dmb = 4,4’-dimethyl-2,2’-bipyridine) to the monoanion 1^-. In contrast to our findings, this species [Fe$_2$(bdt)(CO)]$_2$$^{3+}$ does not disproportionate and persists on the timescale of seconds to react with a strong acid to form $1H$ instead.$^{[34]}

Figure 7. Time-resolved IR spectroscopy of a sample containing 0.1 mM PC vesicles and 0.1 mM Ru$_{ascorb}$$^{3+}$ in 0.1 M ascorbate buffer (pD 4.5) in D$_2$O in a 250 μm CaF$_2$ cell by using a 25 μJ, λ = 475 nm, nanosecond excitation pulse. A) IR spectra at selected time delays after excitation, showing bleaching of 1 at $\tilde{v} = 2078$ cm$^{-1}$ and growth of $1H^-$ between $\tilde{v} = 1930$ and 2000 cm$^{-1}$. B) Time-resolved spectrum at 1000 ns and comparison with the FTIR spectra of 1 in PC vesicles and $1H^-$ in CH$_2$Cl$_2$ at 193 K (spectrum from ref. [52]).

Scheme 2. Proposed photocatalytic cycle for hydrogen formation. ISC = intersystem crossing.

Experimental Section

General

All syntheses were carried out under a nitrogen atmosphere by using standard Schlenk techniques. All purifications involving column chromatography were performed in air with non-degassed solvents. All commercially available chemicals were used as received. L-α-Phosphatidylcholine (PC; from egg yolk, type XVI-E, ≥99%, lyophilized powder) was obtained from Sigma–Aldrich and stored at −20°C. Compounds 1 and Ru$_{ascorb}$$^{3+}$ were prepared through procedures reported in the literature.$^{[28,54,55]}$ Solutions of PC vesicles were prepared freshly each day. Ascorbate buffer solution was prepared freshly each week and stored at 5°C; the correct pH/pD was set by mixing of a 0.1 M solution of sodium ascorbate with a 0.1 M solution of ascorbic acid, in which pD was measured with a conventional pH meter by using pD = pH + 0.4, in which pH is the observed pH value. For the preparation of vesicles, a Vibramix VX5 500 probe-tip sonicator was used.

Preparation of PC vesicles

For a 1 mL solution: To a finger flask was added PC (5 mg), ethanol (1 mL), or a stock solution of 1 in ethanol (depending on the sample). All solvent was removed on a rotary evaporator until a film was observed. The film was further dried under vacuum and subsequently hydrated by adding buffer solution (1 mL; phosphate buffer or ascorbate buffer) of the desired pH by using a vortex mixer at room temperature. The suspension was transferred to an Eppendorf tube and sonicated by using a probe-tip sonicator for 1 to 2 min, at 10 s on/5 s off intervals, until the suspension was clear to the eye.

Conclusion

A self-assembled system in which a ruthenium PS and a diiron-based proton reduction catalyst are preorganized in vesicles was studied in detail to elucidate preorganization effects in the photocatalytic formation of hydrogen by [FeFe]hydrogenase mimics. Electrochemical experiments indicate that the behavior of 1 inside vesicles is similar to that of 1 in organic solvents in the presence of weak acids. Upon irradiation, the PS (Ru$^{3+}$) is excited, reductively quenched by ascorbate, and an electron is transferred to 1 to initiate the hydrogen-evolution cycle. The effects of the vesicle matrix around 1 during catalysis are two-fold: 1) we hypothesize that the increased local concentration of 1 leads to faster disproportionation of $1^- \rightarrow 1^{2-}$, and 2) the constant neutral pH provided by the vesicles prevents protonation of 1^-. This means that preorganization of the molecular components in vesicles controls the reaction pathway by which the catalyst system photogenerates hydrogen.

Photochemical hydrogen formation at pH 4.5 gives 67 turnovers, and is limited by photodecomposition of the catalyst. The photostability of the hexacarbonyls (and thereby, TON) can possibly be improved upon by substitution of a carbonyl for a phosphorous ligand,$^{[53]}$ but at the expense of a more negative reduction potential. Photodecomposition can more easily be circumvented by choosing PSs that operate at wavelengths at which the catalytic (resting) species is transparent. As such, the use of [Ru(bpy)$_2$]$^{2+}$ with hydrogenase mimics seems to be inappropriate if high TONs are required.
Steady-state spectroscopy

The 1H NMR spectra were measured on a Bruker AV400 spectrometer. FTIR measurements were conducted on a Bruker ALPHA FTIR spectrometer. UV/Vis measurements were conducted on a HP Agilent 8453 UV/Vis spectrometer.

Electrochemistry

Cyclic voltamograms and differential pulse voltamograms were performed by using a Metrohm/Autolab PGSTAT128N instrument. The working electrode was a 2 mm diameter glassy carbon disk and a platinum wire counter electrode. The reference electrode (Ag/AgCl) was calibrated against the ferrocyanide couple to obtain potentials versus NHE (see the Supporting Information). Hardware iR compensation was employed for all CV measurements. DPV was performed by using a step potential of 5 mV, a modulation potential of 25 mV, a modulation time of 50 ms, and an interval time of 500 ms. Half-wave potentials were determined from the peak potentials by addition of 12.5 mV (half the modulation potential).

Photocatalysis

Photocatalysis was performed on a solution (5 mL) in a custom-built setup, in which the cell headspace (ca. 200 mL volume) was continuously pumped through the sampling valve (25 µL sampling volume) of a Global Analyzer Solutions CompactGC 3.0 gas chromatograph and sampled every 5 min. Irradiation was performed with eight LEDs (λ = 450 nm; 4.54 W total power) mounted on air-cooled heat sinks.

Dynamic light scattering (DLS)

The DLS setup was based on an ALV DLS 5000 goniometer with a digital correlator and a λ = 633 nm HeNe laser (35 mW) to minimize fluorescence. A typical DLS run was 120 s long and measurements took place at 20 °C. Scattered photons reaching the two photodetectors were cross-correlated to give one intensity correlation function per measurement. The single-angle DLS measurements were made at 90°. The multiangle DLS measurements were conducted at 60/70/80/90/95/100/105/110/115/120° and fitted to a set of weighed exponentials by using a nonlinear least-squares algorithm.

Time-resolved luminescence and UV/Vis spectroscopy

In this transient spectroscopy setup, an Ekspla NT342B Nd:YAG laser was used for the generation of the pump light pulse. The probe light was generated by an Excelitas Technologies FX-1160 high-stability short-arc xenon flash lamp, the pulses of which were timed by using a modified PS302 controller from EG&G. The spectrograph used was a Princeton Instruments SpectraPro-150 instrument. The reference and signal beam were recorded by using a cooled heat sinks.

Time-resolved IR spectroscopy

A commercial Spectra-Physics OPA-800C BBO-based optical parametric amplifier (OPA) was pumped by a Spectra-Physics Hurricane Ti:sapphire laser (λ = 800 nm; 480 µJ) with a repetition rate of 1 kHz. IR probe pulses were generated by a difference-frequency mixing signal and idler from the OPA in a AgGaS$_2$ crystal. The nanosecond visible pump pulses (λ = 475 nm; 25 µJ) were generated in a GWU versaScan-L BBO-based optical parametric oscillator (OPO) pumped by a Spectra-Physics Quanta-Ray INDI Nd:YAG laser with a repetition rate of 20 Hz. The sample cell with CaF$_2$ windows spaced by 250 µm was placed in the IR focus and the sample was pumped through the cell at a flow rate of 10 µL min$^{-1}$ by using a syringe pump. A custom-built 30 pixel HgCdTe (MCT) detector coupled to an Oriol MS260o spectrograph was employed to record the transient spectra by subtracting nonpumped absorption spectra from the pumped absorption spectra. Background correction was performed by subtracting the time-averaged spectra obtained at negative time delays.

UV/Vis study on the incorporation of Ru$_{amph}$ into vesicles

Because the UV/Vis absorption spectrum of this complex was sensitive to the polarity of its chemical environment, we tracked the UV/Vis spectral changes upon the addition of vesicles (up to 0.9 mM PC) to an aqueous solution of 0.1 mM Ru$_{amph}$ (λ = 480 nm) with a repetition rate of 1 kHz. IR probe pulses were generated by a difference-frequency mixing signal and idler from the OPA in a AgGaS$_2$ crystal. The nanosecond visible pump pulses (λ = 475 nm; 25 µJ) were generated in a GWU versaScan-L BBO-based optical parametric oscillator (OPO) pumped by a Spectra-Physics Quanta-Ray INDI Nd:YAG laser with a repetition rate of 20 Hz. The sample cell with CaF$_2$ windows spaced by 250 µm was placed in the IR focus and the sample was pumped through the cell at a flow rate of 10 µL min$^{-1}$ by using a syringe pump. A custom-built 30 pixel HgCdTe (MCT) detector coupled to an Oriol MS260o spectrograph was employed to record the transient spectra by subtracting nonpumped absorption spectra from the pumped absorption spectra. Background correction was performed by subtracting the time-averaged spectra obtained at negative time delays.

Concentration of compounds in/on liposomes

The concentration of PC in vesicles was [PC] = 1000 mM L$^{-1}$ (768 g mol$^{-1}$ × 0.99 mL g$^{-1}$) = 1.3 mM. The concentration of 1 in PC
vesicles was 50 μm/0.9 mm × 1.3 m = 70 mm. The concentration of Ruamp+ in PC vesicles was 100 μm/0.9 mm × 1.3 m = 140 mm.

Chemical models and kinetic equations

Samples containing only Ru

For the samples only containing the PS, there were only two chemical species present, namely, the ground state (G) and the excited state (E). From t = 0 onward, the reactivity was E → G with decay constant kG.

The rate equations and boundary conditions are given in Table 4, and the resulting concentration time dependence is given in Equations (1) and (2).

\[E(t) = C \exp(-k_E t) \]
\[G(t) = -C \exp(-k_G t) \]

Samples containing Ru

With respect to the previous sample, one additional species was now present. This “monooanion” (M) was generated and consumed as given by Equations (3)–(5).

\[E \rightarrow G, \text{ with decay constant } k_G \]
\[E + \text{Asc} \rightarrow M + \text{Asc}^+, \text{ with quenching constant } k_h \]
\[M + \text{Asc}^+ \rightarrow G + \text{Asc}, \text{ with constant } k_b \]

Because [Asc] \(\gg \) [Ru**], we could assume that [Asc] = Q was constant over time. Moreover, because Asc \(\rightarrow \) was generated and consumed stoichiometrically with M, we could equate \([\text{Asc}^+]\) at \(t \) = \([M] \) at \(t \). The rate equations and boundary conditions are given in Table 5.

Fitting of time-resolved luminescence and UV/Vis data

All acquired time-resolved data was fitted in Matlab by using the nonlinear least-squares function lsqcurvefit in the physical model outlined above. The experimental time-resolved data matrix \(A_{exp}(t, \lambda) \) was fitted to \(A_{fit}(t, \lambda) \), which was a linear combination of time-dependent species spectra as given by Equation (8).

\[A_{fit}(t, \lambda) = e_{E}(\lambda)G(t) + e_{E}(\lambda)E(t) + e_{M}(\lambda)M(t) \]

The spectra \(e_{E}(\lambda) \) and constants \(k_Q, k_h, \) and \(k_b \) were determined by the fitting procedure, if they had not already been determined in previous experiments. This yielded an approach in which the set of experiments were designed in such a way that every experiment generated a set of spectra and rate constants that could be used as fixed values in the next experiment, to provide minimum freedom during the fitting procedure, and thereby, maximum accuracy in the determination of kinetic rate constants. To minimize the amount of parameters in the fitting procedure even further, we only determined difference spectra with respect to G because \(G(t) = -E(t) - M(t) \) [Eq. (9)].

\[A_{fit}(t, \lambda) = [e_{E}(\lambda) - e_{M}(\lambda)]E(t) + [e_{M}(\lambda) - e_{E}(\lambda)]M(t) \]

This redundancy of \(e_{E}(\lambda) \) was general and held for all analyzed chemical systems. The values of the obtained rate constants can be found in Tables 1 and 2. The Supporting Information contains cyclic voltammograms and experimental, fitted, and error plots for all time-resolved spectroscopy experiments.

Acknowledgements

We thank the Soft Matter research group (Institute of Physics, University of Amsterdam) of Prof. Daniel Bonn for (multiline) dynamic light scattering measurements and Benjamin Strudwick (van ’t Hoff Institute for Molecular Sciences, University of Amsterdam) for his help with the time-resolved IR spectroscopy setup. The Research Priority Area Sustainable Chemistry from the University of Amsterdam is kindly acknowledged for support.

Conflict of interest

The authors declare no conflict of interest.

Keywords: artificial photosynthesis · iron · photochemistry · time-resolved spectroscopy · vesicles
