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Article

General Introduction

Scores on psychological tests and questionnaires are used 
for making high-stakes decisions about hiring applicants for 
a job or rejecting them; assigning or withholding a patient a 
particular treatment, a therapy, or a training; accepting stu-
dents at a school or rejecting them; enrolling students in a 
course or rejecting them; or passing or failing an exam. In 
these applications, the stakes are high for the individuals 
and the organizations involved, and tests must satisfy a cou-
ple of quality criteria to guarantee correct decisions. For 
example, the test score must be highly reliable and valid, 
and norms must be available to interpret individual test per-
formance. In lower-stakes applications, tests also must sat-
isfy quality requirements but usually lower than for 
high-stakes decisions (Evers, Lucassen, Meijer, & Sijtsma, 
2010). For example, an inventory may be used to assess 
personal interests to help clarifying the kind of follow-up 
education a high school student might pursue. Often, the 
inventory is only one of the many data sources used next to, 
for example, school and parental advice. Another example 
is the use of the test score as the dependent variables in 
experiments (e.g., degree of anxiety) or an independent 
variable in linear explanatory models (e.g., as predictors of 
therapy success).

The assessment of a test involves many different quality 
aspects (Clark & Watson, 1995). This study focuses on test-
score reliability. In particular, we study the problem that in 
test construction research, test constructors tend not to esti-
mate confidence intervals (CIs) for test-score reliability and 
thus do not take the uncertainty of the estimates into account 

when assessing the quality of their test (Fan & Thompson, 
2001). For example, a sample reliability equal to .84 is 
incorrectly treated as if it were a parameter not liable to 
sampling error and it is concluded, for example, that a test 
has a reliability of .84, ignoring that a 95% CI equal to, say, 
(.74; .91), would suggest true reliability may be consider-
ably higher or lower than .84. Kelley and Cheng (2012) 
argued that CIs may be more important than reliability point 
estimates, and Wilkinson and the Task Force on Statistical 
Inference (1999) provided general guidelines for the use of 
statistics such as CIs in psychological research. In addition, 
test assessment agencies tend to base their assessments of 
reliability on the estimate thus ignoring sampling error 
(e.g., Evers, Lucassen, et al., 2010). This means that if they 
consider reliability denoted by ρ in excess of a criterion 
value of, say, c, to be “good,” they make the decision pro-
vided sample reliability r > c without statistically testing 
whether ρ > c given sample value r.

Maxwell, Kelley, and Rausch (2008) emphasized the 
importance of sample size considerations to obtain CIs 
allowing simultaneously to assess the direction, the magni-
tude (the authors refer to estimation precision), and the 
accuracy of an effect. For reliability, this translates to 
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assessing whether, based on the available sample, one has 
enough evidence that ρ > c (c must not be in the CI), which 
is a power issue, whether one can pinpoint ρ to a sufficiently 
narrow range of plausible values, and whether one can be 
confident that an estimate of ρ is unbiased. The latter topic 
is problematic in reliability estimation, because all avail-
able methods are known to be lower bounds, and hence 
negatively biased, but it is also known which ones are more 
accurate, however leaving the magnitude of the bias 
unknown. Oosterwijk, Van der Ark, and Sijtsma (2017) dis-
cuss estimation procedures that tend to be positively biased. 
In this study, direction and precision are most relevant, and 
using sample r rather than the CI for ρ to make decisions 
invites reliability assessments that are too optimistic, pro-
viding test practitioners, their clients and patients with mea-
surement instruments that promise better psychometric 
quality than is realistic, a situation one should want to avoid.

Relevance of the Study

We estimated the magnitude of the problem of ignoring CIs 
and treating reliability estimates as if they were parameter 
values in practical test construction and test quality assess-
ment. We investigated this in a large database in which test 
assessments are collected (Egberink, Janssen, & Vermeulen, 
2009-2016). The database is operated by the Dutch 
Committee on Tests and Testing (acronym COTAN) that 
works under the auspices of the Dutch Association of 
Psychologists (acronym NIP). Dutch and Dutch-language 
Belgian test constructors and test practitioners appreciate 
COTAN to assess their tests and the results published in the 
database. We investigated to what degree not taking CIs 
into account and relying solely on reliability point estimates 
affected the assessments of tests’ reliability. We determined 
the percentage of tests in the database for which we had to 
change the quality assessment when CIs were considered 
instead of point estimates.

COTAN is an active test assessment agency of good repu-
tation that has assessed the quality of tests and questionnaires 
since 1959; also see Evers, Sijtsma, Meijer, and Lucassen 
(2010) and Sijtsma (2012). Dutch governmental and insur-
ance companies require COTAN’s approval of tests as a nec-
essary condition for accepting requests for particular benefits 
and payments, respectively. For the majority of the tests in the 
database, statistical information needed to estimate CIs was 
unavailable and despite great effort we were able to retrieve 
only little additional information from university libraries. 
Incompleteness of the available subset of tests concerns a 
typical problem found in meta-analysis, possibly introducing 
bias in the results. Despite this drawback, we expect we can 
have more confidence in tests for which complete information 
was available than in tests for which information was lacking. 
In addition, the available tests represent various psychological 
attributes well, thus sufficiently covering the testing field. The 

widespread use of tests in the Netherlands guarantees some 
degree of generality of the results, thus mitigating the call for 
a sample of tests from a larger geographic region. This study 
is unique and the available test subset is comprehensive even 
though it is incomplete.

Based on a sample estimate of the test-score reliability 
the test constructor reports, and using a generally accepted 
classification system that we discuss later, the COTAN 
database classifies the tests’ reliability as insufficient, suf-
ficient, or good. Dutch and Belgian test constructors accept 
and use the COTAN classification system for test assess-
ment including the reliability classification, as a guide for 
test construction, which amplifies its importance even 
though the classification is arbitrary to some extent and 
other guidelines are available in the literature. For different 
reliability classifications, see Nunnally (1978, p. 246), 
Cascio (1991, p. 141), Clark and Watson (1995), Murphy 
and Davidshofer (1998, pp. 142-143), DeVellis (2003, pp. 
94-95), Smith and Smith (2005, pp. 121-122), Gregory 
(2007, p. 113), and McIntire and Miller (2007, p. 202). 
Evers et al. (2013, pp. 43-52), on behalf of the European 
Federation of Psychologists’ Associations (EFPA), pro-
vided four categories for reliability, the highest of which 
was labelled “Excellent” for high-stakes testing (r ≥ .9) and 
the next “Good” (.8 ≤ .9). Christensen (1997, pp. 217-219) 
discussed recommendations for reliability for dependent 
variables in experiments.

We chose to investigate the reliability rather the standard 
error of measurement, although one might argue that the 
latter quantity should be preferred for assessing the quality 
of decisions about individuals on the basis of test scores 
(e.g., Mellenbergh, 1996). Because the standard error of 
measurement is based directly on reliability, the choice for 
either one is arbitrary. Moreover, researchers routinely 
report reliability (e.g., AERA, APA, & NCME, 2014; 
Wilkinson and the Task Force on Statistical Inference, 
1999), and test agencies assess reliability prior to the stan-
dard error of measurement, emphasizing reliability’s piv-
otal position in measurement assessment.

Based on our experience, we had no knowledge of arti-
cles reporting CIs for reliability and a quick and modest 
literature scan did not alter this conclusion. We found this 
absence remarkable, because in particular for coefficient 
alpha (Cronbach, 1951) methods for estimating standard 
errors and CIs have long been available (e.g., Feldt, 1965; 
Feldt, Woodruff, & Salih, 1987; Hakstian & Whalen, 1976; 
Kristof, 1963). In addition, several authorities have urged 
researchers to report CIs (e.g., AERA, APA, & NCME, 
2014), but apparently so far this has had little success.

Organization of the Article

This article is organized as follows. First, the vast majority 
of the tests we studied used coefficient alpha (e.g., Cronbach, 
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1951) and a non-ignorable minority used the split-half 
method (e.g., Lord & Novick, 1968, pp. 135-136). Other 
methods were rarely used. Because split-half method and 
coefficient alpha are based on classical test theory (Lord & 
Novick, 1968), we discussed reliability as defined by clas-
sical test theory, and split-half reliability and coefficient 
alpha. For both methods, we showed how CIs can be com-
puted. Sijtsma and Van der Ark (2015) discuss other 
approaches based on factor analysis and generalizability 
theory. Second, we discuss collecting reliability data for this 
study from the online database of COTAN that is available 
to paid subscribers, and we discuss both the assessment of 
reliability standards without (i.e., COTAN) and with (i.e., 
our approach) using CIs. Third, we present the results of the 
reliability data collection from the COTAN online database 
and we discuss the reliability assessment results using CIs 
for reliability and compare the results with the assessments 
COTAN published. Finally, we outline the results of this 
study and their meaning for future reliability assessment.

Reliability and Estimation Methods

Classical Test Theory and Definition of Reliability

Assume that a psychological test consists of J  items 
indexed by j  ( j J=1, ,… ). Let variable X j  denote the 
score on item j . The test score is the sum of item scores 

X j , defined as X X j
j

J
=

=∑ 1
, with population variance, 

σX
2 . Classical test theory assumes that X  is the sum of an 

unobservable true score T  and an unobservable random 
measurement error E , with variances σT

2  and σE
2 . Because 

random measurement error E  is assumed to be uncorre-
lated with true score T , the variance of the test score can be 

decomposed as σ σ σX T E
2 2 2= + . Two tests with test scores 

X  and ′X  are parallel if (1) for each person i  his true 
scores must be equal, T Ti i= ′ , implying that in the group 
σ σT T
2 2= ′ , and (2) the variance of the test scores in the group 

must be equal, σ σX X
2 2= ′ . The reliability of the test score is 

defined as the product–moment correlation of X  and ′X , 
denoted ρXX ′ , and it is well-known that (Lord & Novick, 
1968, p. 61)

 ρ
σ

σ

σ

σXX
T

X

T

X
′

′

′

= =
2

2

2

2
.  (1)

Reliability ranges from 0 (if σT
2 0= ) to 1 (if σ σT X

2 2= , 
meaning σE

2 0= ). In practice, reliability is almost never 1, 
but several tests from the COTAN database had high reli-
ability even up to 1 00.  (results available on request from 
the authors). Reliability estimates lower than, say, .6 , were 
rarely reported. For a factor-analysis approach to reliability, 
Markon and Chmielewski (2013) discuss how model 

misspecification can cause reliability estimates to be out-
side the [ ; ]0 1  interval.

Reliability in Equation (1) cannot be computed in prac-
tice, because parallel test scores X  and ′X  are rarely 
available, and both true-score variances σT

2  and σ ′T
2  are 

unobservable. In practical test research, usually one has 
data available from one test and one test administration, and 
several methods have been proposed to estimate reliability 
in this situation (e.g., Bentler & Woodward, 1980; Cronbach, 
1951; Guttman, 1945; Lord & Novick, 1968; Ten Berge & 
Zegers, 1978; Zinbarg, Revelle, Yovel, & Li, 2005).

The Two Reliability Methods Used in the 
COTAN Database

We investigated the split-half method and coefficient alpha. 
Cronbach (1951) argued that the latter method must replace 
the former, an advice that test constructors took to heart, 
making the easy to use coefficient alpha by far the most 
popular reliability method (Heiser et al., 2016). Despite 
heavy criticism (e.g., Clark & Watson, 1995; Cortina, 1993; 
Cronbach & Shavelson, 2004; Schmitt,1996; Sijtsma, 2009) 
and the existence of many alternatives providing better 
approximations to reliability (Sijtsma & Van der Ark, 2015), 
coefficient alpha continues to be the reliability method most 
frequently used (Heiser et al., 2016). We limited our atten-
tion to the split-half method and coefficient alpha, not 
because we prefer these methods but because they are pre-
dominantly used in the COTAN database.

Split-Half Method. The researcher splits his test in two 
halves, correlates the test scores obtained on the halves, and 
uses a correction formula to obtain an estimate of the reli-
ability for the whole test. Formally, two situations may be 
distinguished. First, when the test halves are parallel, the 
product–moment correlation between the half-test scores 
Y1  and Y2 , denoted ρYY1 2 , by definition equals the reliabil-
ity of the test score on a half test, ρYY ′ ; that is, ρ ρ

YY YY1 2
= ′ . 

Then, the reliability of the test score on the complete test, 
ρXX ′ , can be computed by means of the Spearman–Brown 
prophesy formula (Lord & Novick, 1968, p. 84) adapted to 
doubling test length,

 ρ ρ

ρ
XX

YY

YY

′
′

′

=
+

2

1
.  (2)

Second, when test halves are not parallel, Equation (2) pro-
duces an invalid result; that is, ρ ρYY YY1 2

≠ ′  and inserting 
ρYY1 2  does not produce reliability ρXX ′  but a value that one 
may denote as SH , for which SH XX≠ ′ρ .

Methods to compute a CI for SH are available (Charter, 
2000; Fan & Thompson 2001). Let rYY1 2  denote the sample 
correlation between the two test scores on the test halves. A 
CI for SH can be constructed that takes the asymmetrical 
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sampling distribution of the product–moment correlation 
into account. First, the estimate of the correlation between 
two test halves ( rYY1 2 ) is obtained. Second, rYY1 2 is trans-
formed using the Fisher Z transformation,

 Z
r

r
YY

YY

=
+

−








. .5

1

1
1 2

1 2

ln  (3)

Z  is approximately normally distributed with a mean 

equal to .5
1

1
1 2

1 2

ln
+

−










ρ

ρ
Y Y

Y Y

 and a standard error approximately 

equal to 
1

3N −  (e.g., Hays, 1994, p. 649). Third, let α  
denote the nominal Type I error rate. Let ζ  be the param-
eter corresponding to Z ; and let Zα/2 be the lower bound 
and let Z1 2−α /  be the upper bound of a ( )1−α 100% CI for 

ζ . For a 95% CI, the lower bound equals Z Z
N

α/
.

2
1 96

3
= −

−
 

and the upper bound equals Z Z
N

1 2
1 96

3
− = +

−
α/

.
, so that 

the 95% CI equals ( ; )/ /Z Zα α2 1 2−  or, equivalently,
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−
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−











1 96

3
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.
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.
.  (4)

Fourth, the bounds of the CI can be transformed into bounds 
on the rYY1 2  scale using the inverse of Equation (3),

 r e

e
YY

Z

Z1 2

2

2

1

1
=

−
+
.  (5)

Finally, after having obtained the bounds of a CI for rYY1 2 , 
Equation (2) is used to transform the bounds into bounds on 
the SH  scale. The resulting CI is asymmetrical.

Coefficient Alpha. Let the covariance between items j  and 
k  be denoted σ jk ; then, coefficient alpha is defined as

 alpha =
−

∑∑ ≠J

J
j k

jk

X1 2

σ

σ
.  (6)

Given classical test theory assumptions, alpha is a lower 
bound to the reliability; alpha ≤ ′ρXX  (Novick & Lewis, 
1967). Other authors (e.g., Bentler, 2009) have noted that 
alpha can also overestimate reliability when a factor anal-
ysis approach to reliability is pursued, but test construc-
tors of the tests we assessed did not follow this approach. 
Standard errors for the sample estimate alpha  and CIs for 
alpha have been derived (e.g., Feldt, 1965; Feldt et al., 
1987; Kuijpers, Van der Ark, & Croon, 2013; Maydeu-
Olivares, Coffman, & Hartmann, 2007; Van Zyl, 
Neudecker, & Nel, 2000). The standard errors these 
authors proposed to estimate CIs for alpha produce sym-
metrical intervals whereas alpha is bounded from above 
by the value 1.

In this study, we used Feldt’s method (Feldt et al., 1987). 
Feldt’s method is convenient because it uses only informa-
tion available for several tests in the COTAN database: 
alpha , test length J ,  and sample size N.  A drawback is 
that failure of the method’s assumptions may bias standard 
errors and CIs, especially as alpha values are higher 
(Kuijpers et al., 2013). Higher alpha values are the more 
interesting values in our study, and using alternative but 
mathematically more involved methods for determining 
standard errors that address the bias problem might have 
solved this problem, were it not that such methods require 
the availability of statistical information that test manuals 
usually did not report, thus rendering the use of these meth-
ods impossible. For examples of more involved methods, 
see Maydeu-Olivares et al. (2007), Kelley and Cheng 
(2012), and Kuijpers, et al. (2013).

To compute the 95% CI for alpha, let the nominal Type I 
error rate be 0.05, and let Fa  and Fb  be critical values of an 
F  distribution with N −1  and ( )( )N J− −1 1  degrees of free-
dom, such that P F Fa( ) .< = 025  and P F Fb( ) .< = 975 . For 
example, using Hays (1994, pp. 1016-1022) for N =100  and 
J =10 , one finds that Fa ≈ 0.7315  and Fb ≈ 1.3198 . Feldt 
et al. (1987) showed that the 95% CI for alpha is estimated by

 1 1 1 1− −



× − −



×( )alpha alpha F Fb a; .  (7)

Method

We used the COTAN database to answer two questions: (1) 
What is the precision of reported reliability estimates 
expressed by 90% and 95% CIs; (2) Does considering pre-
cision change the qualification tests initially received with 
respect to reliability?

Test Population and Test Sample

COTAN assesses the most recent versions of tests that are 
used in the Dutch and Belgian practice for testing individu-
als to obtain a diagnosis, give an advice, or make a decision, 
and in addition COTAN assesses tests used in scientific 
research. COTAN’s database distinguishes three main test 
types: (1) person–situation tests measuring proficiency in a 
particular setting, such as employment or education. 
Examples are questionnaires assessing people’s vocational 
interests, tests for school achievement, but also inventories 
assessing patients’ behavior in mental institutions; (2) per-
son tests measuring personality, addressing stable personal-
ity traits such as the big five, and also intelligence; and (3) 
situation tests assessing situational performance, which 
concern, for example, expert ratings of labor situations’ task 
characteristics and students’ judgments of the affective 
meaning of concepts. These three main test types are subdi-
vided into 38 finer grained test types, which however are 
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not useful for our study. Using an assessment system cre-
ated by COTAN (Evers, Lucassen, et al., 2010), raters com-
missioned by COTAN assessed the reliability of 520 tests to 
have insufficient (138 tests), sufficient (217), or good (165) 
reliability. The tests were 309 person–situation tests, 153 
person tests, and 18 situation tests. Forty tests may be 
placed in more than one category.

Collecting Tests and Composition of Test Subset

We distinguish test batteries and single tests. Test batteries 
consist of several subtests, test scores being provided for 
subtests and for the whole battery based on the subtest 
scores. Single tests measure one attribute and are either sub-
tests from test batteries or tests measuring one attribute that 
are not part of a test battery.

Test publishers provide COTAN with a copy of the test 
and all corresponding materials including the manual, but 
COTAN is not allowed to grant researchers, like the present 
authors, access to these materials. Hence, we retrieved more 
detailed information from the COTAN online database 
(Egberink et al., 2009-2016) and test manuals available 
from libraries of the University of Amsterdam and Tilburg 
University.

To compute a CI, one needs number of items (J), sample 
size (N), and reliability estimate (r). For 116 (22.3%) out of 
520 tests COTAN assessed the results were complete, hence 
we discarded 404 tests from the analysis for which J, N, or 
r were missing. In Table 1, entry “41” (Table 1; 3rd row, 1st 
column) should be read as “For 41 tests COTAN assessed to 
have “Good” reliability, we could retrieve all the relevant 
results.” These 41 tests entail both test batteries that are 
counted once, also when they were assessed for different 

groups, and single tests. Comparing categories for included 
and excluded tests, Table 1 shows that percentages vary lit-
tle across assessment categories and test types (except for 
Situation tests, but here the frequencies were small), sug-
gesting absence of bias due to lack of representation.

The 116 tests produced 1,024 reliability estimates, 105 
of which pertain to total scores on a test battery and 919 to 
single tests. Most reliability estimates (74.71%) were based 
on at most 20 items, and four tests contained more than 200 
items. More than half of the reliabilities were estimated 
from samples smaller than 1,000 observations, and 53 reli-
abilities were estimated from samples ranging from 6,294 
to 12,522 observations. Most (94.73%) reliability estimates 
varied between 0.60 and 0.95 (Figure 1). The split-half 
method was reported 87 times and coefficient alpha 937 
times.

Frequencies M in Table 2 count the number of reliability 
values retrieved for test batteries and single tests, arranged 
by quality assessment and test type. Tables 1 and 2 are 
related as follows. The 41 tests enumerated in Table 1 (3rd 
row, 1st column) produce 55 reliability values (Table 2; 3rd 
row, 1st column) for total scores on test batteries, also sepa-
rately counting available subgroup results; and 468 reliabil-
ity values (3rd row, 5th column) based on single tests. For 
each count M mean number of items, sample size, and reli-
ability are provided.

Reliability Assessment Rules

COTAN Rules. COTAN distinguishes three mutually exclu-
sive and exhaustive reliability intervals labelled “Insuffi-
cient” (I), “Sufficient” (S), and “Good” (G) to assess 
reliability. Let r denote a reported, estimated reliability, let 
cIS  denote the reliability value that separates “Insufficient” 
from “Sufficient,” and cSG  the reliability value that sepa-
rates “Sufficient” from “Good.” Hence, the three regions 
are defined by ( ; ]0 cIS  for “Insufficient”; ( ; ]c cIS SG  for 
“Sufficient”; and ( ; )cSG 1  for “Good.” COTAN assessments 

Table 1. Tests Included in the Analysis and Tests Excluded 
From the Analyses, Arranged by Assessment Category and Test 
Type.

Included Excluded Total

Assessment  
 Insufficient 18 (17.3%) 120 (83.7%) 138 (100%)
 Sufficient 57 (26.3%) 160 (73.7%) 217 (100%)
 Good 41 (24.8%) 124 (75.2%) 165 (100%)
 Total 116 (22.3%) 404 (77.7%) 520 (100%)
Test type  
 Person-Situation 55 (17.8%) 254 (88.2%) 309 (100%)
 Person 34 (22.2%) 119 (77.8%) 153 (100%)
 Situation 12 (66.7%) 6 (33.3%) 18 (100%)
 Two types 15 (37.5%) 25 (62.5%) 40 (100%)
 Total 116 (22.3%) 404 (77.7%) 520 (100%)

Note. Included = tests for which at least one CI (confidence interval) 
could be estimated; Excluded = tests for which number of items, sample 
size, or reliability were not reported, including 51 tests for which no 
reliability research whatsoever was reported.

Figure 1. Split-half reliability (87 estimates) and coefficient 
alpha (937 estimates) distributions.
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are formalized as follows: if r cIS∈ ( ; ]0 , then assign “Insuf-
ficient”; if r c cIS SG∈ ( ; ] , then assign “Sufficient”; and if 
r cSG∈ ( ; )1 , then assign “Good.”

COTAN distinguishes three different uses of tests, which 
are, in decreasing order of importance reflected by smaller 
cIS  and cSG  values: (1) making important decisions about 
individuals, such as admittance to a school or selection for 
a job ( cIS = .8  and cSG = .9 ); (2) obtaining an impression 
about an individual’s personality to help that individual 
think about the kinds of jobs he might consider pursuing 
after he/she has completed school ( cIS = .7  and cSG = .8 ); 
and (3) using the test score for group-level measurement, 
for example, in a research project that studies differences 
between the arithmetic skills in different age groups 
( cIS = .6  and cSG = .7 ).

Confidence Intervals. For individual advice, Figure 2 pres-
ents a numerical example for cIS = .7  and cSG = .8 , and a 
test for which r = .82 . Following COTAN decision rules, 
. [. ; ]82 8 1∈ ; hence, assign “Good.” Assume that CI equals 
(.74; .86); then, because cSG ∈ (. ; . )74 86 , r  is not signifi-
cantly larger than cSG  so that “Good” is ruled out  
but “Insufficient” and “Sufficient” are open. Next, 

cIS ∉ (. ; . )74 86 ; hence, r  is significantly larger than cIS  
and “Sufficient” is assigned for this reliability value (“Insuf-
ficient” is ruled out). We considered 90% and 95% CIs, 
implying nominal one-sided Type I errors of 0.05 and 0.025, 
respectively, for the test that a reliability value is signifi-
cantly greater than a lower threshold value.

Let L denote the lower bound of the CI and U the upper 
bound. The formalized decision rule taking CIs into account 
is as follows: (1) if r cIS< , then assign “Insufficient”; (2) if 
c r cIS SG≤ < , then determine if c L UIS ∈ ( ; ) ; if so, then 
assign “Insufficient,” else assign “Sufficient”; (3) if r cSG≥ , 
then determine if c L UIS ∈ ( ; ) ; if so, then assign 
“Insufficient”; else determine if c L USG ∈ ( ; );  if so, then 
assign “Sufficient,” else assign “Good.”

The decision rule that takes CIs into account cannot 
upgrade a reliability value to a higher category, because it 
tests whether a sample reliability value is significantly 
larger than a cut-off score; if yes, the original COTAN 
assignment is maintained, else it is downgraded. We chose 
our somewhat conservative procedure to protect the test 
practitioner and his clients and patients from tests that pro-
vide less quality than the assessment promises.

Results

As test batteries and single tests are longer and samples are 
larger, reliability and its assessment increase (Table 2) and 
mean CI95% and CI90% width decreases (Table 3), implying 
greater statistical certainty. Compared with test batteries, 
single tests contain fewer items, are based on larger sam-
ples, and have lower reliability, but mean CI width is 
approximately equal. For test type, Table 2 shows for test 
batteries that person–situation tests on average are the lon-
gest and are based on the largest samples. Different test 

Table 2. Descriptive Statistics for Reliability Estimates, Separately for Test Batteries and Single Tests, Arranged by Assessment 
Category and Test Type.

Test battery Single test

 M J N rXX′ M J N rXX′

Assessment  
 Insufficient 16 25.56 530.06 .71 142 11.94 844.28 .68
 Sufficient 34 34.65 550.50 .83 309 12.63 1611.60 .79
 Good 55 63.16 863.29 .90 468 19.10 1338.39 .88
Test type  
 Person–situation 52 57.63 722.75 .85 483 12.68 1910.52 .80
 Person 41 41.56 627.10 .84 254 18.47 844.16 .83
 Situation 9 31.44 1103.11 .86 118 16.51 628.47 .82
 Two types 3 25.67 485.67 .89 64 23.91 513.83 .88
Total 105 48.20 711.23 .85 919 15.71 1353.91 .82

Note. M = number of reliability estimates; J  = mean number of items used for computing coefficient alpha; N  = mean sample size used for computing 
reliability estimate; rXX′  = mean reported reliability estimate.

Figure 2. Example of qualification of reliability and CI for 
reliability.
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types have almost the same mean reliability. Person–
situation tests have the smallest mean CI width.

Table 3 shows the proportions of reliability estimates 
that need not be downgraded when taking confidence inter-
vals into account (Pr); that is, reliability estimates for which 
the lower bound of the 90% CIs and 95% CIs exceeds the 
cIS lower bound of the “Sufficient” category and the cSG 
lower bound of the “Good” category. Proportions for CI90% 
by definition are larger than for CI95%. The “Insufficient” 
category does not have a lower boundary; hence, Pr is not 
available (NA); 67% to 79% of the tests with the qualifica-
tion “Sufficient” exceeded the cIS threshold, and 76% to 
84% of the test with the qualification “Good” exceeded the 
cSG threshold. For person–situation test batteries and situa-
tion test batteries (lower-left panel), CI lower bounds 
exceeded c thresholds more often than for person test 
batteries.

Turnover Table 4 shows the COTAN assessments in 
the columns and the assessment based on CIs in the 
rows, with blanks in the lower triangles because using 
CIs can only produce the same or a lower assessment. 
Diagonal entries show frequencies of reliability esti-
mates that were not reclassified. For test batteries, using 
90% CIs, the entries add up to 16 + 27 + 46 = 89 (84.8% 
of 105 test batteries). Using 95% CIs, 81.0% of the reli-
ability estimates were not reclassified. Of the 34 reli-
ability estimates that were initially classified as 
“Sufficient,” 20.6% (90% CIs) and 29.4% (95% CIs) 
were reclassified as “Insufficient.” Of the 55 reliability 
estimates initially classified as “Good” 16.4% (90% 
CIs) and 18.2% (95% CIs) were reclassified to 
“Sufficient,” and in both cases none were reclassified as 
“Insufficient.” For single tests, out of 919 tests, 79.3% 

(90% CIs) and 76.5% (95% CIs) were not reclassified. 
Of the 309 reliability estimates originally classified as 
“Sufficient,” 29.1% (90% CIs) and 33.3% (95% CIs) 
were reclassified as “Insufficient.” Of the 468 reliability 
estimates originally classified as “Good,” 20.7% (90% 
CIs) and 23.5% (95% CIs) were reclassified as 
“Sufficient,” and 0.6% (90% CIs and 95% CIs) were 
reclassified as “Insufficient.”

Table 3. Proportion of Reliability Estimates (Pr) for Which the Lower Bound of the 90% CIs and 95% CIs Exceeds the cIS  (Sufficient 
Category) and cSG  (Good Category) Lower Bounds, Arranged by Assessment Categories and Test Types.

Test battery Single tests

 

M

95% CI 90% CI

M

95% CI 90% CI

 W Pr W Pr W Pr W Pr

Qualification  
 Insufficient 16 .09 NA .08 NA 142 .09 NA .07 NA
 Sufficient 34 .05 .71 .04 .79 309 .06 .67 .04 .71
 Good 55 .03 .82 .03 .84 468 .04 .76 .02 .79
Test type  
 Person–situation 52 .04 .83 .03 .85 483 .06 .66 .04 .69
 Person 41 .06 .56 .05 .63 254 .05 .74 .04 .78
 Situation 9 .05 .89 .04 .89 118 .05 .69 .04 .74
 Multiple types 3 .04 1.0 .03 1.0 64 .04 .80 .03 .84
 Total 105 .05 .73 .04 .77 919 .06 .70 .04 .73

Note. CI = confidence interval; M = number of reliability estimates; W = mean CI width; Pr = proportion of reliability estimates that need not be 
downgraded; NA = not available (“Insufficient” assessment category does not have lower boundary).

Table 4. Turnover Results for Assessment Categories for Test 
Batteries (Upper Panel) and Single Tests (Lower Panel), Without 
CIs and Using 90% and 95% CIs.

Without CIs

Total I S G

Using 90% CIs I 16 7 0 23
S 27 9 36
G 46 46

Using 95% CIs I 16 10 0 27
S 24 10 34
G 45 45
Total 16 34 55 105

Using 90% CIs I 142 90 3 235
S 219 97 316
G 368 368

Using 95% CIs I 142 103 3 248
S 206 110 316
G 355 355
Total 142 309 468 919

Note. CI = confidence interval; Without CIs = Qualification of reliability 
estimates using COTAN standards; Using 90% CIs = qualification of the 
reliability estimates using 90% CIs; Using 95% CIs = qualification of the 
reliability estimates using 95% CIs; I = insufficient; S = sufficient; G = good.
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Discussion

Using CIs for test batteries, almost 20% of the reliability esti-
mates had to be downgraded to the next lower category, and 
for single tests the percentage exceeded 20%, but downgrad-
ing from “Good” to “Insufficient” only happened with single 
tests and was rare, suggesting such extremities are not a prob-
lem in practice using COTAN rules and given the sample 
sizes typically used. These results demonstrate that interpret-
ing sample reliability values without taking CIs for popula-
tion values into consideration may produce conclusions, 
which are too optimistic. We hope this study is a wake-up call 
for anyone involved in test construction and test assessment 
not to treat sample results as parameters, and to assess reli-
ability using CIs allowing a statistically well-founded deci-
sion whether ρ ≥ c and a precise estimate of ρ. Power and 
precision may not be accomplished simultaneously (e.g., 
high power may go together with low precision reflected by 
wide CIs), but for several statistical procedures (not includ-
ing reliability) Maxwell et al. (2008) discuss sample size 
planning aimed at obtaining both power and precision.

Should using hard category boundaries such as cIS and 
cSG be preferred to soft interval boundaries? Soft boundaries 
allow labeling .79, say, “rather good” if .80 being only .01 
unit higher was labeled “good,” whereas hard boundaries 
such as used by COTAN simply label .79 “insufficient” and 
.80 “good.” We make two remarks. First, whatever catego-
rization one uses, if the purpose is to classify tests, in the 
end one needs to make a decision based on numerical sam-
ple values for which we recommend using CIs that reflect 
ones uncertainty due to sample size. When samples are 
large, CIs are not important anymore and human judgment 
should be used to assess what is reasonable and may be 
inspired by considerations such as the uniqueness of the test 
and the sample available, hence the difficulty to replace 
either. For example, a braille intelligence test for blind peo-
ple may be unique, hence impossible to replace, and even a 
small sample of blind people may be hard to obtain, so that 
one must use whatever data are available and accept results 
for use provided they are not disastrous. Second, to link 
reliability values more tightly to labels that most people 
agree about needs the introduction of external criteria with 
respect to test utility, for example, referring to numbers of 
false positives and false negatives. Relating test results to 
utility of outcomes is a complex topic that is both important 
and beyond the scope of this study.

Will categorization systems other than COTAN’s pro-
duce different results? Probably, for example, if the systems’ 
boundaries do not match the database’s reliability values 
(boundaries are distant from where most reliability values 
are), or when a finer-grained system of boundaries is used so 
that intervals are narrower and more tests are downgraded 
more than one category. Related thereto, we also broke down 
results to test types and use scenarios corresponding to 

different boundary values, and found little differences for 
test types but found that as test use was more important (and 
boundaries higher), the percentage of reclassified tests 
decreased. For 95% CIs, we found for group-level test use 
26.8% reclassification, for individual advice 20.5%, and for 
important individual decision 15.8%. A problem with these 
and similar breakdown results is that it is unknown whether 
trends like this would also be found with other databases and 
different categorization systems. We suspect these and simi-
lar results to be rather system-dependent and thus take such 
results not too literally.

Researchers and test constructors might consider using 
statistically more advanced methods for estimating CIs for 
coefficient alpha and the split-half method. Kelley and 
Cheng (2012) suggested a bootstrap method for obtaining 
CIs for methods other than split-half reliability and coeffi-
cient alpha. Cronbach (1951) intended alpha to replace the 
split-half method and since then many methods have been 
proposed that might be preferred to coefficient alpha 
because they are closer to true reliability ρ (Bentler & 
Woodward, 1980; Brennan, 2001; Guttman, 1945; 
Shavelson & Webb, 1991; Zinbarg et al., 2005). Hence, it is 
remarkable how persistent the use of coefficient alpha is, 
and even more the persistent albeit more modest use of the 
split-half method.

We recommend that test manuals and websites reporting 
test assessments standardize the information they provide 
comparable to a consumer’s guide giving technical and 
user-relevant information for washing machines and dryers, 
cars, cell phones, and computers. However, the absence at 
the COTAN website of simple statistics like test length, 
sample size, and reliability estimates may often not be due 
not to lack of standardization of the website but perhaps 
more to the absence of this kind of information in test man-
uals. A hypothesis the authors discussed but were unable to 
check is that large testing agencies probably are better used 
to working according to protocol than researchers working 
in smaller companies, on their own or in small teams in hos-
pitals, and also researchers working in a university environ-
ment where academic independence is highly valued, 
perhaps at the expense of standardization. It is extremely 
important that large testing agencies and assessment author-
ities such as COTAN emphasize that anyone constructing, 
publishing, and selling tests provides the relevant informa-
tion about test quality.
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