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Supplementary Material

APPENDIX I: NON-EXTREMAL
THERMODYNAMIC POTENTIALS

Eqs. (10), (12) can be obtained by extremising an
appropriate effective potential, which can be derived
from thermodynamic considerations (see e.g. [26, 27]).
Since the local temperature of the NS5 brane does
not vanish at extremality, it is appropriate to choose
an effective potential that holds some other quantity
fixed, e.g. the global entropy S =

∫
B5

√
−γs/k =

8π2(gsMb20)5/2Cr30 coshα sin2 ψ, where B5 is the spatial
part of the worldvolume M6, s is the local entropy den-
sity defined above and k the Killing vector in the di-
rection of the velocity vector u. Under the assumptions
that the D3 is trivially embedded within the NS5, that
the D3 directions are aligned with spatial background
isometries, and of constant dilaton and vanishing 5-form
field strength, the potential at fixed global entropy and
charges Q3, Q5 is

VS [ψ] = −
∫
M6

d6σ
√
−γε+Q5

∫
M6

P[B6] , (13)

with ε = 3
2Cr

2
0 + |Q5

√
1 + tan2 θ| tanhα the local energy

density (see (3)) and P[B6] the pullback of the back-
ground B6-field [28]. VS [ψ] is the total energy in the
system and can be obtained from a Legendre transform of
the Euclidean onshell action of the D3-NS5 bound state.

The potential (13) when Wick rotating along the time
direction has the interpretation of an equilibrium par-
tition function for a higher-form fluid. Rewriting the
charge Q3 as

Q3 = Q5

∫
S2

(√
γ⊥ tan θ + P⊥[C2]

)
, (14)

where γ⊥ab is the metric on S2 and P⊥[C2] the pullback
of C2 onto the S2, direct variation with respect to the
sources γab, C3 and C6 yields the stress tensor (3) and
the currents J2 and j6 in (4), respectively [30]. The global
temperature of the system TH and chemical potentials

Φ
(3)
H and Φ

(5)
H can be obtained from (13) according to

TH = − 1√
−γ

δVS
δS

= T k , Φ
(3)
H =

1√
−γ

δVS
δQ3

,

Φ
(5)
H =

1√
−γ

δVS
δQ5

,

(15)

and have the expected form that arises from a general
analysis of higher-form fluids [27].

APPENDIX II: REGIMES OF VALIDITY

Validity of the blackfold expansion requires a large sep-
aration of scales rb � R, L. In the case at hand, the
characteristic length scale rb is the largest scale among
the energy density radius (rε ∼ r0 sinhα) and the scales
associated to the NS5 and D3 charge respectively. The
scale R is controlled by the size of the S2 that the NS5
wraps, while the background scale L is set by the size of
the S3. We also use the fact that in all configurations of
interest the two terms on the RHS of (10) are either com-
parable or the πp/M term dominates. For our purposes

it is sufficient to consider r
(NS5)
h � R and r

(D3)
h � R

respectively leading to

√
N5

M
� gs sinψ ,

√
p

M
� gs

√
M sin2 ψ. (16)

Both equations fail at the North pole, ψ = 0. For suffi-
ciently large M , however, our calculations will be valid
everywhere except a small region around the North pole.
In turn, the constraint rε � R leads to the requirement
d� gs

√
p(
√
N5 sinhα)−1.

In addition, since the NS5 brane has a running dila-
ton one may worry whether regions of spacetime with
large values of string coupling eφ invalidate our analy-
sis. We note that the running of the dilaton is capped
off at the horizon for non-extremal solutions at the value
eφ(r0) = gs

√
sin2 θ + cosh2 α cos2 θ. Hence, by suitably

tuning the asymptotic value of gs we can achieve wide
areas in parameter space where our solutions are every-
where weakly coupled. Admittedly, this tuning is not
possible for extremal solutions. However, since it is un-
derstood how to treat the strong coupling singularity of
NS5 branes in flat space, and since the constraint (black-
fold) equations can be obtained in a far-zone analysis of
the solution, where the string coupling is weak, we an-
ticipate that a large dilaton in the bulk of the solution
does not invalidate the conclusions of our analysis even
at extremality.


