New Galactic Center X-ray Transient Outburst Detected by Swift: SWIFT J174448.4-290729

Reynolds, M.; Degenaar, N.; Wijnands, R.; Miller, J.; Kennea, J.

Published in:
The astronomer's telegram

Citation for published version (APA):

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
New Galactic Center X-ray Transient Outburst Detected by Swift: SWIFT J174448.4-290729

ATel #12927; Mark Reynolds (Michigan), Nathalie Degenaar (Amsterdam), Rudy Wijnands (Amsterdam), Jon Miller (Michigan), Jamie Kennea (Penn State) on behalf of a larger collaboration.

on 12 Jul 2019; 00:30 UT

Distributed as an Instant Email Notice Transients

Credential Certification: Mark Reynolds (markrey@umich.edu)

Subjects: Radio, Infra-Red, X-ray, Black Hole, Cataclysmic Variable, Neutron Star, Transient, Pulsar

Referred to by ATel #: 12932

We report on our ongoing Swift monitoring observations of the Galactic center (Degenaar et al. 2015). In the latest Swift observation (obsid: 00095329087), a transient X-ray source is detected in a ~ 0.8 ks observation on MJD 58675.19653 (t_start: 190711 @04:42UT) at a position of

RA (J2000): 17h 44m 48.4s (266.20167)
Dec (J2000): -29° 07' 28.8'' (-29.124663)
90% Error radius: 2.2''

This source lies approximately 13.4' southwest of Sgr A*. Extracting a spectrum from a circular region (r=18'') centered on this source and background from an annular region 28''-37'' from the source position, we measure a net count rate of 0.19+/-.05 ct/s. Counts from the source are detected in the 0.3 - 4 keV band. In order to characterize this source, spectral fits were carried out in xspec, utilizing the c-statistic. All quoted uncertainties are at the 90% confidence level.

Assuming a gamma=1.8 powerlaw continuum, we measure

Related

12843 Swift Bulge Survey: X-ray activity of bursters KS 1741-293, IGR J17445-2747, SAX J1750.8-2900, and symbiotic X-ray binary XMMU J174445.5-295044

12751 Swift Bulge Survey detections of the X-ray transients SAX J1750.8-2900 and IGR J17445-2747

12932 New Galactic Center Transient is a nearby late-type dwarf star flare

12927 New Galactic Center X-ray Transient Outburst Detected by Swift: SWIFT J174448.4-290729

12960 Unambiguous radio detection of the tidal disruption event AT2019dsg with e-MERLIN

10428 Chandra follow-up

10422 Radio Non-Detection of the New Swift Bulge Survey Transient, Swift J175233.9-290952

10419 Variability from 1SXPS J1742150-291453: a very nearby X-ray source?

10395 Chandra Localization of IGR J17445-2447

10355 Discovery of a new X-ray transient, Swift J175233.9-290952, in the Swift Bulge Survey

10305 NIR follow-up observations of the IGR J17445-2747 field

10284 Confirmation of IGR J17445-
N_H = (0.25 -0.23 +0.38)e22 cm^-2
Gamma = 1.8
Norm = (2.5 -1.1 +1.8)e-4
Flux = (1.2 +/- 0.7)e-12 erg/s/cm^2 (0.3-10.0 keV) - Lx ~ 1e34 erg/s @8kpc
cstat/dof = 10.6/14

Assuming a 0.5 keV blackbody continuum, we measure
N_H < 0.4e22 cm^-2
kT_bbrad = 0.5 keV
Norm = 1.0 -0.38 +0.75
Flux = (6.7 -3.9 +2.2)e-13 erg/s/cm^2 (0.3-10.0 keV) - Lx ~ 5e33 erg/s @8kpc
cstat/dof = 11.2/14

At a distance of 8 kpc, the inferred luminosity (Lx ~ 1e34 erg/s) is similar to that of the
population of very-faint X-ray transients in the Galactic center. The measured absorption column
density appears to be a factor ~10 lower than for these objects (e.g. Degenaar & Wijnands 2009,
2010). This could suggest that the object is more proximate than 8 kpc (and hence less luminous).

We note that the source position is consistent with that of the known catalogued sources 2XMMi
J174448.0-290731 and CXO J174448.1-290732, where it was previously detected at fluxes of
Fx xmm = (2.5 +/- 0.6)e-14 erg/s/cm^2 (0.2-12.0 keV) and Fx cxo = (1.3 +/- 0.3)e-14 erg/s/cm^2
(0.5-7.0 keV) respectively. If the association is correct, this would imply an increase in flux of
almost 2 orders of magnitude. The measured hardness ratios during the XMM-Newton detection
are consistent with those observed from CVs and rotation/accretion powered pulsars (e.g., Lin et
al. 2012 and Fig. 2 therein). It is possible that we have caught the source on the rise of a larger
outburst. Daily monitoring observations of the Galactic center will continue with Swift, and
further significant evolution will be reported in subsequent telegrams.

At the current time, we cannot firmly associate this source with the above catalogued source and
as such it is possible that the detected source is a previously unknown active Galactic center
transient, which we designate SWIFT J174448.4-290729. Follow-up observations are encouraged
to determine the nature of this source.

The Swift/XRT Monitoring Campaign website can be found at: http://www.swift-sgra.com

References:
Degenaar & Wijnands 2009, A&A 495, 547
Degenaar & Wijnands 2010, A&A 524, 69
Degenaar et al., 2015, JHEAp, 7, 137

[Telegram Index]