New Insights in Frustrated Lewis Pair Chemistry with Azides

Published in:
CHEMISTRY-A EUROPEAN JOURNAL

DOI:
10.1002/chem.201902710

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
CC BY-NC-ND

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
New Insights in Frustrated Lewis Pair Chemistry with Azides

Abstract: The geminal frustrated Lewis pair (FLP) \(\text{Bu}_3\text{PCH}_3\text{BPh}_3\) (1) reacts with phenyl-, mesityl-, and tert-butyl azide affording, respectively, six, five, and four-membered rings as isolable products. DFT calculations revealed that the formation of all products proceeds via the six-membered ring structure, which is thermally stable with an N-phenyl group, but rearranges when sterically more encumbered Mes–N and tBu–N are used. The reaction of 1 with Me, Si–N\(_3\) is believed to follow the same course, yet subsequent N\(_3\) elimination occurs to afford a four-membered heterocycle (5), which can be considered as a formal FLP-trimethylsilyl nitrene adduct. Compound 5 reacts with hydrochloric acid or tetramethylammonium fluoride and showed frustrated Lewis pair reactivity towards phenylisocyanate.

Introduction

During the past two decades a vast amount of research has been conducted on small-molecule activation utilizing main-group species as viable alternatives to the well-established transition-metal complexes. For example, cyclic (alkyl)(amino)carbenes (CAACs) can cleave the strong covalent H–H, N–H, P–H, B–C, and B–H bonds,\(^{[11]}\) and can capture CO and catecholborane.\(^{[4, 5]}\) Organic azides are common organic molecules and are key building blocks in, for example, the Staudinger reaction, which is the reaction of a phosphine with an azide to form a phosphazene after elimination of dinitrogen.\(^{[6]}\) Interestingly, the reaction between N-heterocyclic carbenes (NHCs) and azides offers the opportunity to trap reaction intermediates by an “interrupted Staudinger” reaction,\(^{[7, 8]}\) forming the stabilized triazene moiety A (Figure 1)\(^{[9, 10]}\) that can be functionalized and gives access to highly colored donor–acceptor materials (B), which may find new applications in nonlinear optics.\(^{[11]}\) The analogous reaction with TMS–N\(_3\) (TMS: SiMe\(_3\)) leads to the facile elimination of dinitrogen and formation of the imidazolidin-2-imine derivative C, which can be viewed as a NHC–nitrene adduct. Subsequent cleavage of the TMS group affords the interesting anionic imidazolin-2-iminato ligands, which can coordinate to almost any metal and be utilized in homogeneous catalysis.\(^{[12]}\)

Related is the reactivity of frustrated Lewis pairs (FLPs)\(^{[13]}\) towards organic azides, but in this case multiple Staudinger intermediates have been isolated. Phosphorus/boron-based FLPs have been shown to add to the \(\alpha\)-nitrogen of the azide forming coordination mode D (Figure 1)\(^{[14]}\) and, in one case, it was found that upon irradiation this species rearranges to \(\alpha, \beta\)-nitrogen adduct E.\(^{[15]}\) The \(\alpha, \gamma\)-nitrogen coordination mode F was found by treating a geminal FLP with mesityl azide.\(^{[16, 17]}\) In analogy to the reactivity of NHCs (C; Figure 1), dinitrogen elimination occurs when TMS azide was reacted with a P/Al-based FLP affording heterocycle G,\(^{[18]}\) yet in this case no follow-up chemistry has been investigated.

Given the diverse reactivity of frustrated Lewis pairs with organic azides, we were keen to unravel the mechanistic details of this chemistry as well as to elucidate if all three coordination modes (D, E, F) are interconnected on the potential energy surface. We discovered that by using the geminal phosphorus/boron-based FLP \(\text{Bu}_3\text{PCH}_3\text{BPh}_3\) (1)\(^{[19]}\) and differently substituted azides all coordination modes can be obtained by formation of the corresponding four, five, and six-membered heterocycles (Scheme 1). In addition, we were keen to investigate the reaction of 1 with Me, Si–N\(_3\) and explored the reactivity of the resulting four-membered ring 5.

Results and Discussion

Treatment of \(\text{Bu}_3\text{PCH}_3\text{BPh}_3\) (1) with 1 equiv of Ph–N\(_3\) in THF at \(-10^\circ\text{C}\) and subsequent warming to room temperature resulted in the immediate conversion to 2\(_{\text{Ph}}\), which after workup was isolated as a yellow powder in 98% yield (\(\Delta H^{\circ}(\text{Ph}^\text{H}) = 31.8\); \(\Delta H^{\circ}(\text{B}^\text{H}) = -6.8\) ppm; Scheme 1).\(^{[20]}\) The molecular structure of 2\(_{\text{Ph}}\), determined by a single-crystal X-ray diffraction analysis, established unequivocally the formation of a six-membered heterocycle (Figure 2, top left) with P1–N1 (1.687(2) [1.686(2)] Å)
and B1–N3 (1.597(3) [1.603(3)] Å) bonds (the numbers in brackets refer to the bond metrics of a second crystallographically independent molecule in the asymmetric unit). Interestingly, 2

2 displays much more localized N–N bonds (N1–N2: 1.290(3) [1.291(3)], N2–N3: 1.323(3) [1.329(3)] Å) compared with F (N1–N2: 1.304(3), N2–N3: 1.306(3) Å; Figure 1)[16] which is likely due to the more electron-rich phosphorus center in 2

2.

Figure 1. Molecular structures of 2

2, 3

3, and 4

4 (ellipsoids at 50% probability, hydrogen atoms and for 2

2 and 4

4, second crystallographic independent molecules omitted for clarity). Selected bond lengths [Å] and angles [°] for 2

2 (structural parameter for the second crystallographic independent molecule in brackets): P1–N1 1.6872(2) [1.6862(2)], N1–N2 1.290(3) [1.291(3)], N2–N3 1.323(3) [1.329(3)], N3–B1 1.597(3) [1.603(3)], 3

3: P1–N1 1.6675(12), N1–N2 1.3573(16), N2–N3 1.2502(17), N1–B1 1.6066(19); P1–N1–N2–N3 1.66(19), 3

3; P1–N1 1.6838(19), N1–N2 1.342(3), N2–N3 1.259(3), N1–B1 1.613(3); P1–N1–N2–N3 0.000(1), 4

4: P1–N1 1.6592(13) [1.6557(13)], N1–N2 1.3364(17) [1.3397(17)], 1.2733(17) [1.2695(17)], N2–B1 1.6682(13) [1.6552(13)]; P1–N1–N2–N3 −176.26(11) [175.08(11)].

Next, we treated FLP 1 with tBu–N1 and Mes–N1 and found that the reaction rate is significantly slower.

Figure 2. Complete energy profile (ΔE) in kcal mol⁻¹ for the formation of 2

2 (blue), 3

3 (red) and 4

4 (green) through initial P–N bond formation (interrupted Staudinger reaction, shown in red) versus initial B–N bond formation and rearrangement to heterocycle 3. *TS4

4 could not be located.

and B1–N3 (1.597(3) [1.603(3)] Å) bonds. Interestingly, 2 displays much more localized N–N bonds (N1–N2: 1.290(3) [1.291(3)], N2–N3: 1.323(3) [1.329(3)] Å) compared with F (N1–N2: 1.304(3), N2–N3: 1.306(3) Å; Figure 1)[16] which is likely due to the more electron-rich phosphorus center in 2.

We wanted to explore the mechanism for the formation of 2, and considered two options that differ according to the initial interaction of the azide with the FLP. DFT calculations at the ωB97X-D/6-31G* level of theory showed that the nucleophilic attack of the phosphine to the azide (TS3

3; ΔE⁺ = 9.6 kcal mol⁻¹) is the first step in the Staudinger reaction[21] is disfavored, and instead nucleophilic attack of the azide to the boron moiety of the FLP is preferred, which leads to INT1

1 (ΔE = 5.2, ΔE⁺ = 8.0 kcal mol⁻¹) by formation of a boron–N–nitrogen bond (Scheme 2). Note that this reaction path is well documented for the related transition metal chemistry with azides[22,23] yet poorly described for main-group systems.[24] Subsequent ring closure of this Lewis adduct (Scheme 2) affords the product 2 in ΔE = −37.2, ΔE⁺ = 3.12 kcal mol⁻¹).

Next, we treated FLP 1 with tBu–N1 and Mes–N1 and found that the reaction rate is significantly slower.

and B1–N3 (1.597(3) [1.603(3)] Å) bonds. Interestingly, 2 displays much more localized N–N bonds (N1–N2: 1.290(3) [1.291(3)], N2–N3: 1.323(3) [1.329(3)] Å) compared with F (N1–N2: 1.304(3), N2–N3: 1.306(3) Å; Figure 1)[16] which is likely due to the more electron-rich phosphorus center in 2.

We wanted to explore the mechanism for the formation of 2, and considered two options that differ according to the initial interaction of the azide with the FLP. DFT calculations at the ωB97X-D/6-31G* level of theory showed that the nucleophilic attack of the phosphine to the azide (TS3; ΔE⁺ = 9.6 kcal mol⁻¹) is the first step in the Staudinger reaction[21] is disfavored, and instead nucleophilic attack of the azide to the boron moiety of the FLP is preferred, which leads to INT1 (ΔE = 5.2, ΔE⁺ = 8.0 kcal mol⁻¹) by formation of a boron–N–nitrogen bond (Scheme 2). Note that this reaction path is well documented for the related transition metal chemistry with azides[22,23] yet poorly described for main-group systems.[24] Subsequent ring closure of this Lewis adduct (Scheme 2) affords the product 2 in ΔE = −37.2, ΔE⁺ = 3.12 kcal mol⁻¹).

Next, we treated FLP 1 with tBu–N1 and Mes–N1 and found that the reaction rate is significantly slower.

and B1–N3 (1.597(3) [1.603(3)] Å) bonds. Interestingly, 2 displays much more localized N–N bonds (N1–N2: 1.290(3) [1.291(3)], N2–N3: 1.323(3) [1.329(3)] Å) compared with F (N1–N2: 1.304(3), N2–N3: 1.306(3) Å; Figure 1)[16] which is likely due to the more electron-rich phosphorus center in 2.

We wanted to explore the mechanism for the formation of 2, and considered two options that differ according to the initial interaction of the azide with the FLP. DFT calculations at the ωB97X-D/6-31G* level of theory showed that the nucleophilic attack of the phosphine to the azide (TS3; ΔE⁺ = 9.6 kcal mol⁻¹) is the first step in the Staudinger reaction[21] is disfavored, and instead nucleophilic attack of the azide to the boron moiety of the FLP is preferred, which leads to INT1 (ΔE = 5.2, ΔE⁺ = 8.0 kcal mol⁻¹) by formation of a boron–N–nitrogen bond (Scheme 2). Note that this reaction path is well documented for the related transition metal chemistry with azides[22,23] yet poorly described for main-group systems.[24] Subsequent ring closure of this Lewis adduct (Scheme 2) affords the product 2 in ΔE = −37.2, ΔE⁺ = 3.12 kcal mol⁻¹).

Next, we treated FLP 1 with tBu–N1 and Mes–N1 and found that the reaction rate is significantly slower.

and B1–N3 (1.597(3) [1.603(3)] Å) bonds. Interestingly, 2 displays much more localized N–N bonds (N1–N2: 1.290(3) [1.291(3)], N2–N3: 1.323(3) [1.329(3)] Å) compared with F (N1–N2: 1.304(3), N2–N3: 1.306(3) Å; Figure 1)[16] which is likely due to the more electron-rich phosphorus center in 2.

We wanted to explore the mechanism for the formation of 2, and considered two options that differ according to the initial interaction of the azide with the FLP. DFT calculations at the ωB97X-D/6-31G* level of theory showed that the nucleophilic attack of the phosphine to the azide (TS3; ΔE⁺ = 9.6 kcal mol⁻¹) is the first step in the Staudinger reaction[21] is disfavored, and instead nucleophilic attack of the azide to the boron moiety of the FLP is preferred, which leads to INT1 (ΔE = 5.2, ΔE⁺ = 8.0 kcal mol⁻¹) by formation of a boron–N–nitrogen bond (Scheme 2). Note that this reaction path is well documented for the related transition metal chemistry with azides[22,23] yet poorly described for main-group systems.[24] Subsequent ring closure of this Lewis adduct (Scheme 2) affords the product 2 in ΔE = −37.2, ΔE⁺ = 3.12 kcal mol⁻¹)
responding azide. The azide fragment in 3_{Bu} and 3_{Mes} is attached to 1 with a s-Z conformation of the P1 and N3 moieties (3_{Bu}: P1-N1-N2-N3 = 1.66(19)°, 3_{Mes}: P1-N1-N2-N3 = 0.00(1)°; Figure 2). The N1–N2 bond lengths (3_{Bu}: 1.3571(16), 3_{Mes}: 1.342(3) Å) are typical for a N–N single bond and the shorter N2–N3 distance (3_{Bu}: 1.2502(17), 3_{Mes}: 1.259(3) Å) resembles a N=N double bond, which matches well with the related adducts $1^{14–16}$. Monitoring of the reaction of 1 with Bu–N and Mes–N by variable-temperature NMR spectroscopy revealed the presence of an intermediate during the reaction with comparable 13P[H] and 11B[H] NMR signals as observed for 2_{Bu} (2_{Bu}: $\delta^{11}(^{13}P[H]) = 27.0$; $\delta^{11}(B[H]) = -7.0$, 2_{Mes}: $\delta^{11}(^{13}P[H]) = 40.5$; $\delta^{11}(B[H]) = -6.7$ ppm), suggesting that the six-membered heterocycle is an intermediate in the formation of 3_{Bu} and 3_{Mes}.

DFT calculations indeed supported this hypothesis and we found that upon reacting 1 with Bu–N and Mes–N, the six-membered intermediates 3_{Bu} and 3_{Mes} are easily accessible by B–N Lewis adduct formation and subsequent ring closure with maximum barriers of 9.2 and 9.4 kcal mol$^{-1}$ ($\Delta \varepsilon$, respectively. All of the systems show a preference for initial B–N interaction over the Staudinger pathway that is 1.9–4.2 kcal mol$^{-1}$ higher energy process (Bu–N, $\Delta \varepsilon = 13.4$, Mes–N, $\Delta \varepsilon = 11.3$ kcal mol$^{-1}$), but due to the small energetic differences it is possible that the initial P–N formation is also a minor competing process. In the case of phenyl azide, the six-membered heterocycle 2_{Ph} is the kinetic and thermodynamic product ($\Delta \varepsilon_{ring} = -21.6$ vs. $\Delta \varepsilon_{ring} = -19.7$ kcal mol$^{-1}$; see Figure 3 and Table 1), whereas with tert-butyldimethyl azides this heterocycle is only the kinetic product that can rearrange to the four-membered heterocycles 3_{Bu} and 3_{Mes}. When the steric bulk on the azide was reduced in silico (R = H, Table 1), more insight in the preference in ring formation was obtained: the formation of a 6-membered ring is most favored ($\Delta \varepsilon_{ring} = -23.7$ kcal mol$^{-1}$), and the smaller the ring becomes, the less favored the formation is ($\Delta \varepsilon_{ring} = -18.2$ (see below) vs. $\Delta \varepsilon_{ring} = -15.8$ kcal mol$^{-1}$).

For the follow-up reaction, DFT calculations (ωB97X-D/6-31G*) showed that indeed the six-membered intermediate 2_{Bu} (Scheme 2) can ring open by breaking the B–N bond to form a phosphazide, INT2_{Bu} which is the first intermediate of a Staudinger reaction. Subsequent rotation around the P–N bond perfectly aligns the α-nitrogen of INT3_{Bu} for a barrierless ring closing to the α,α-nitrogen-coordinated four-membered heterocycle 3_{Bu} (Scheme 2), which is the thermodynamic product. It should be noted that INT2_{Bu} can be formed directly from 1 and Bu–N, through the Staudinger reaction, but the barrier for this process ($\Delta \varepsilon = 13.4$ kcal mol$^{-1}$) is higher than the barrier for the initial formation of 2_{Bu} ($\Delta \varepsilon = 9.2$ kcal mol$^{-1}$), and thus the six-membered heterocycle is computed to be a likely intermediate in this transformation, consistent with the aforementioned NMR spectroscopic data. This process is also the preferred path for the rearrangement of 2_{Bu} into 3_{Mes}.[27]

Interestingly, our computational analysis[28] revealed that for the reaction with mesityl azide the four-membered heterocycle 3_{Mes} is not the most stable isomer (Table 1). Indeed, heating a solution of 3_{Mes} in toluene at 75 °C for 3 days resulted in the formation of the thermodynamic product 4_{Mes} ($\delta(\text{^13}P[H]) = 91.6$; $\delta(\text{^11}B[H]) = 5.9$ ppm; Scheme 1), which is favored over 3_{Mes} by $\Delta \varepsilon = -1.5$ kcal mol$^{-1}$ (Figure 3) and most likely proceeds through the endothermic ring opening of 3_{Mes} to INT3_{Mes} ($\Delta \varepsilon = 22.5$ kcal mol$^{-1}$). Single-crystal X-ray structure determination provided the molecular structure of 4_{Mes} (Figure 2, bottom right) which shows a five-membered heterocycle in which the FLP is attached to the α and β-nitrogen of the azide, which is only the second example of such coordination mode for the reaction of an intramolecular frustrated Lewis pair with an organic azide[15] and highlights that for mesityl azide all three possible coordination modes are synthetically accessible. The P1−N1 and B1−N2 bond lengths (1.6592(13) [1.6557(13)], 1.6682(12) [1.6552(12)] Å, respectively) represent typical single bonds, and, similar to 3_{Bu} and 3_{Mes} the N1−N2 bond is elongated (1.3364(17) [1.3397(17)] Å) compared with 2_{Bu} and the N2–N3 bond is shortened (1.2733(17) [1.2695] Å), suggesting that resonance structure 3 (Figure 3) has a major contributing structure.

Next, we investigated the reactivity of $\text{Bu}3P\text{CH}3\text{BPH}_3$ (1) with trimethylisilyl azide. Treatment of 1 with 1.1 equiv of TMS–N at room temperature afforded complete conversion after six days to product 5, which was isolated as a colorless solid in 89% yield ($\delta(\text{^13}P[H]) = 84.3$; $\delta(\text{^11}B[H]) = 3.2$ ppm; Scheme 3). The molecular structure of 5 revealed the formation of a four-membered heterocycle akin to G with only one azide N atom present; note that 5 can be regarded as a non-fluorinated analogue of the PCBN heterocycle reported by Stephan and coworkers, which is obtained from the reaction between a lithiated iminophosphorane and a chloroborane.[29] In 5, the B1–N1 distance of 1.6802(18) Å is notably longer compared to the four-membered heterocycles 3_{Bu} and 3_{Mes} indicating a weaker B1−N1 bond, likely due to steric hindrance. The P1−N1 distance is slightly shorter (1.6366(11) Å) and the nitrogen has a planar environment ($\Sigma = 359^\circ$), which suggest a pronounced phosphazenec character of the P1−N1 bond. As 5 is obtained after elimination of dinitrogen, we were interested to find out

Table 1. The Gibbs free energy of formation of the three different adducts in kcal mol$^{-1}$; the lowest energy isomer in each case is highlighted.[26]

<table>
<thead>
<tr>
<th>6-ring (2)</th>
<th>4-ring s-Z (3)</th>
<th>5-ring (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+HPhN$_N$</td>
<td>-23.7</td>
<td>-15.8</td>
</tr>
<tr>
<td>1+PhN$_N$</td>
<td>-21.6</td>
<td>-19.7</td>
</tr>
<tr>
<td>1+BuN$_N$</td>
<td>-15.0</td>
<td>-19.7</td>
</tr>
<tr>
<td>1+Me$_N$N$_N$</td>
<td>-15.1</td>
<td>-20.5</td>
</tr>
<tr>
<td>1+TMSN$_N$</td>
<td>-13.2</td>
<td>-7.08</td>
</tr>
</tbody>
</table>

[a] Calculated at the ωB97X-D/6-31G* level of theory.
how it is formed. During the reaction, one intermediate was observed by 31P and 19B NMR spectroscopy with similar chemical shifts as observed for 2 (R = Ph, tBu, Mes) (δ(H)) = 26.7; δ(H)) = −9.9 ppm), therefore we postulate that the six-membered heterocycle TMS_{2} is an intermediate in the formation of 5. DFT calculations support this notion and revealed that the formation of TMS_{2} via INT1_{TMS} is a low-energy process (ΔE = 9.8, ΔE = −24.2 kcal mol$^{-1}$), which is in good agreement with our spectroscopic findings.[26] We were able to locate a transition state for direct N$_2$ elimination from INT1_{TMS}, which is comparable to the thermal elimination of N$_2$ from diarylazido-boranes (see page S72, Supporting Information).[30] However, this process is too high in energy (ΔE = 37.3, ΔG = 44.2 kcal mol$^{-1}$) to proceed at room temperature and was therefore regarded as unfeasible. We postulate that the elimination of N$_2$ proceeds through ring opening of TMS_{2} by breaking the B–N bond that affords intermediate INT2_{TMS}, which eliminates dinitrogen through a classical Staudinger mechanism to form the corresponding iminophosphorane followed by ring closure to form 5 (Scheme 3), yet the transition states for this process could not be located on the potential-energy surface. Alternatively, Schulz and co-workers found that elimination of N$_2$ could proceed via a structure comparable to INT1_{TMS}.[24] However, such mechanism would presumably lead to a different product than 5.[31] Related compounds have been referred to as formal FLP adducts of nitrenes.[36] Based on this finding of N$_2$ loss in the TMS–N$_2$ reactions, we explored the possibility of similar N$_2$ extrusion for the Ph-, tBu- and Mes-substituted azide products; according to DFT calculations, N$_2$ loss is thermodynamically favorable in all cases (see Table S1 in the Supporting Information). However, 3$_{\text{tBu}}$ and 4$_{\text{tBu}}$ are both thermally stable up to 100 °C when dissolved in toluene, whereas 2$_{\text{tBu}}$ decomposes unspectively to a range of products.

To investigate the follow-up chemistry of 5, we first targeted removal of the TMS group, in analogy to the related carbene–nitrene adducts C (Figure 1).[33] Unfortunately, treatment of 5 with 1 equiv of ethanol resulted in the formation of multiple unidentifiable products. More successful was the reaction of 5 with 1 equiv of HCl (2 M in Et$_2$O) at −78 °C, which led to the selective formation of a new product 6, which shows only marginally different signals in the 31P(1H) and 19B(1H) NMR spectrum (δ(H)) = 78.1; δ(H)) = 2.4 ppm) compared to 5, and an additional doublet for a N–H proton in the 1H NMR spectrum (δ(H) = 4.68 ppm, J_{NH} = 12.6 Hz). We postulate 5 to behave as a “masked FLP” capturing HCl by ring opening, comparable to the P/AI and P/B FLPs reported by Uhl and Erker,[32,33] which leads to protonation of the phosphazen moiety and chloride addition to the borane giving compound 6 (Scheme 4). The formation of 6 is further supported by the detection of the [6–Cl]$^+$ cation by high-resolution mass spectrometry.

To investigate the ring-opening behavior of 5 in more detail, we reacted 5 with an equimolar amount of anhydrous tetramethylammonium fluoride (TMAF) in MeCN/THF at 0 °C, which afforded the ring-opened product 7. The 31P(1H) NMR spectrum displayed a singlet at 38.2 ppm, and the 19B(1H) NMR spectrum showed a characteristic doublet due to a J_{BF} coupling at δ(H)) = 2.35 ppm with J_{BF} = 48.6 Hz indicating that the fluoride is directly attached to the borane moiety. As final proof, a single-crystal X-ray structure determination confirmed the molecular structure of 7, which displays a slightly shortened P–N bond (1.543(3) [1.545(3)] Å) compared with 5 and an almost linear orientation of the P1-N1-Si bond angle (171.5(2) [174.6(2)]°; Scheme 4), which is relatively large for such P–N–Si motif, but observed previously for electron rich phosphines.[34]

![Scheme 3](image)

Scheme 3. The reaction of 1 with TMS–N$_2$ (top) and the molecular structure of 5 (bottom; ellipsoids at 50% probability, hydrogens are omitted for clarity). Selected bond lengths (Å) and angles (°) for 5: P1–N1 1.6366(11), B1–N1 1.6802(18), N1–Si1 1.7348(12); P1–N1–B1 90.96(7), B1–N1–Si1 132.33(8), Si1–N1–P1 135.66(7).

![Scheme 4](image)

Scheme 4. The reaction of 5 with HCl and TMAF (top) and the molecular structure of 7 (bottom; ellipsoids at 50% probability, hydrogens Me,N cation and a second ion pair of 7 are omitted for clarity). Selected bond lengths (Å) and angles (°) for 7 (structural parameter for the second crystallographic independent molecule in brackets): P1–N1 1.543(3) [1.545(3)], B1–F1 1.470(4) [1.473(4)], N1–Si1 1.653(3) [1.648(3)]; P1–C1–B1 113.91(2) [130.9(2)], P1–N1–Si1 171.5(2) [174.6(2)], 2/C–B1–C 331 [332].
To further probe the reactivity of 5 as a “masked” frustrated Lewis pair, ωB97X-D/6-31G* calculations revealed that the splitting of the boron–nitrogen bond creating iminophosphorane/borane based FLP 5 is only slightly uphill (∆G = 5.53, ∆E = 9.48 kcal mol⁻¹; Scheme 5) and is comparable to the energy required for ring opening of the four-membered heterocyclic P/B FLP reported by Erker and co-workers (∆E ≈ 7 kcal mol⁻¹). We found that 5 is indeed susceptible to undergo reactions with typical FLP substrates, such as isocyanates.

![Scheme 5. The equilibrium between the open (5') and closed form of 5 and the corresponding energies.](image5)

Specifically, treatment of 6 with an excess (14.4 equiv) of phenylisocyanate in THF at 60 °C for three days resulted in the formation of insertion product 8 (δ(1H)(Ph)= 57.1; δ(13C)(H)= -3.1 ppm; Scheme 6), which represents a rare case of an FLP using a iminophosphorane as Lewis base. Next to the formation of 5 with phenylisocyanate, 6 reacts with an excess (14.4 equiv) of phenyl isocyanate (PhNCO) to the corresponding isocyanurate. The reaction of the phosphorus/boron-based FLP reported by Erker and co-workers (masked) frustrated Lewis pair is involved.

![Scheme 6. The reaction of 5 with phenylisocyanate.](image6)

Conclusions

We have shown that the phosphorus/boron-based FLP rBuP=BPh₂ (1) reacts with rBu–N₃, Mes–N₃ and Ph–N₃ giving four-, five-, and six-membered heterocycles, respectively. The mechanism was studied by DFT calculations, which revealed that instead of a Staudinger reaction, the reaction starts with formation of a B–N Lewis adduct (INT1), which ring closes to form the six-membered heterocycle 2. In case of the bulkier rBu–N₃ and Mes–N₃, 2 is the kinetically stable isomer. DFT calculations and NMR spectroscopy suggest that reaction of 1 with TMS–N₃ follows the same mechanism, however the six-membered intermediate is unstable and rapid extrusion of dinitrogen results in full conversion towards the four-membered heterocycle 5.

Experimental Section

General methods and materials

All manipulations were carried out under an atmosphere of dry nitrogen, using standard Schlenk and drybox techniques, and were performed in the dark as a precaution to prevent decomposition. Solvents were purified, dried, and degassed according to standard procedures. ¹H and ¹³C(NMR) spectra were recorded on a Bruker Avance 400 spectrometer and internally referenced to the residual solvent resonances ([D₆]THF: ¹H = 3.58, 1.72, ¹³C(NMR): ¹H = 67.2, 25.3; CD₂Cl₂: ¹H: δ = 3.52, ¹³C(NMR): δ = 53.8 ppm). ¹H(NMR) and ¹³C(NMR) NMR spectra were recorded on a Bruker Avance 400 spectrometer and externally referenced (85% H3PO4, BF₃•OEt2, respectively). ¹F NMR spectra were recorded on a Bruker AM300-II and externally referenced (CFCl₃). Chemical shifts are reported in ppm. Melting points were measured on a Büchi M-565 melting point apparatus in sealed capillaries and are not corrected. High-resolution mass spectra were recorded on a Bruker MicroTOF with ESI nebulizer (ESI), or on an AccuTOF GC v4 G Mass spectrometer (JEOL, Japan) with a LIFDI probe (F/D/I) equipped with a F D Emitter. All manipulations were carried out under an atmosphere of dry nitrogen, using standard Schlenk and drybox techniques, and were referenced (CFCl₃). Hydrochloric acid 2 M in diethyl ether (HCl/ Et₂O) and phenyl isocyanate (PhNCO) were purchased from commercial resources. TMS–N₃ and PhNCO were stored over molecular sieves (4 Å), and HCl/Et₂O (2 M) was used as received. rBu–N₃, Ph–N₃, Mes–N₃ and anhydrous tetramethylammonium fluoride (TMAF) were prepared following literature procedures.

Synthesis and characterization

Synthesis of 2ₚₖ: Phenyl azide (0.074 g, 0.617 mmol, 1.0 equiv) was added to a solution of rBuP=BPh₂ (1; 0.200 g, 0.617 mmol, 1.0 equiv) in THF (10 mL) at −10 °C. After addition, the reaction mixture was stirred for 10 minutes at −10 °C, after which it was allowed to warm to room temperature and stirred for another 10 minutes. Removal of the solvent and subsequent washing with n-pentane (3 × 10 mL) gave 2ₚₖ as a yellow solid (0.267 g, 98%). X-ray quality crystals were grown at room temperature from a THF/toluene solvent mixture layered with n-pentane. M. p. (nitrogen, sealed capillary): 121 °C (decomp); ¹H NMR (400.1 MHz, [D₆]THF, 293 K): δ = 7.26 (d, Jₙₛₖ = 6.9 Hz, 4H; o-BC₃H₅), 7.09 (d, Jₙₛₖ = 7.3 Hz, 2H; o-NC₃H₅), 7.04 (t, Jₙₛₖ = 7.4 Hz, 4H; m-BC₃H₅), 6.95–6.84 (m, 5H; m-NC₃H₅, p-BC₃H₅ and p-NC₃H₅), 1.81 (d, Jₙₛₖ = 12.0 Hz, 2H; PCH₂(B)), 1.22 ppm (d, Jₙₛₖ = 14.3 Hz, 18H; PC(CH₃)₃); ¹³C(NMR) NMR (100.6 MHz, [D₆]THF, 293 K): δ = 153.2 (only observed in the HMBC spectrum, Jₙₛₖ, coupling with o-BC₃H₅, Jₙₛₖ, coupling with m-BC₃H₅ and PCH₂(B) and PCH₂(B) are observed as a multiplet at δ 134.8, 134.8, respectively).
coupling with 3 in THF. M.p. (nitrogen, sealed capillary): 94 °C (decomp); 1H NMR (400.1 MHz, [D8]THF, 297 K): δ = 7.74 (d, 1JCH = 7.3 Hz, 4H; o-C6H4), 7.00 (t, 1JCH = 7.4 Hz, 4H; m-C6H4), 6.84 (t, 1JCH = 7.3 Hz, 2H; p-C6H4), 6.14 (d, 1JCH = 11.0 Hz, 2H; PCH3-B); 13C NMR (100.6 MHz, [D8]THF, 297 K): δ = 156.5 (only observed in the HMBC spectrum; 1JCH coupling with o-C6H4), 131.1 (s; o-C6H4), 127.0 (s; m-C6H4), 124.1 (s; p-C6H4), 61.7 (s; NC6H5), 37.6 (d; 1JCH = -25.6 Hz; PCH3-B), 28.7 (d; 1JCH = 2.7 Hz; 18H; PCH3), 6.7 ppm (only observed in the HSQC spectrum; 1JCH coupling with PCH3-B); 13C NMR (120.2 MHz, [D8]THF, 293 K): δ = 95.5 ppm (s); 19F NMR (118.4 MHz, [D8]THF, 294 K): δ = 2.9 ppm (s); HR ESI-MS: calcd for C9H6B3N5P (M+) 424.3047, found 424.3044; calcd for C9H8B3N4 (M+K) 462.2606, found 462.2611.

Synthesis of 3max: Mesitylazide (0.133 g, 0.823 mmol; 1.1 equiv) was added to a solution of BArFeC6H4PPh3 (1; 0.267 g, 0.823 mmol, 1.0 equiv) in THF (12 mL) at 0 °C. After addition, the reaction mixture was allowed to warm to room temperature after which it was stirred for 6 days. Removal of the solvent in vacuo gave 5 as a colorless solid (0.271 g, 89%). If necessary, the product was washed with cold pentane (0-5 °C) to remove impurities. X-ray quality crystals were grown by cooling a saturated solution of 5 in n-pentane to −20 °C. M.p. (nitrogen, sealed capillary): 94 °C (decomp); 1H NMR (400.1 MHz, [D8]THF, 293 K): δ = 7.36 (d, 1JCH = 7.3 Hz, 4H; o-C6H4), 7.02 (t, 1JCH = 7.4 Hz, 4H; m-C6H4), 6.91 (t, 1JCH = 7.2 Hz, 2H; p-C6H4), 1.52 (d, 1JCH = 11.7 Hz, 2H; PCH3-B), 1.33 ppm (d, 1JCH = 14.3 Hz, 18H; PCH3), 0.23 (s; 9H; Si(CH3)3); 13C NMR (100.6 MHz, [D8]THF, 293 K): δ = 156.1 (only observed in the HMBC spectrum; 1JCH coupling with o-C6H4), 131.2 (s; o-C6H4), 126.5 (s; m-C6H4), 124.5 (s; p-C6H4), 38.0 (d; 1JCH = 33.1 Hz; PCH3-B), 28.2 (d; 1JCH = 2.7 Hz; PCH3), 10.3 (only observed in the HSQC spectrum; 1JCH coupling with PCH3-B; PCH3), 5.1 ppm (s; Si(CH3)3); 19F NMR (162.0 MHz, [D8]THF, 293 K): δ = 84.3 ppm (s); 19B NMR (118.4 MHz, [D8]THF, 294 K): δ = 3.2 ppm (s); HR ESI-MS: calcd for C9H8B3N5P3Si (M+H) 412.2755, found 412.2786.

Synthesis of 4: A solution of HCl (2.1 in EtOAc, 0.26 mL, 0.52 mmol, 1.0 equiv) was added dropwise to a solution of 5 in THF (8 mL) at −78 °C. After addition, the mixture was stirred for 5 minutes at −78 °C and was subsequently warmed to room temperature. The solvent was removed in vacuo to afford a colorless solid that was washed with n-pentane (3 x 4 mL) and subsequently dried in vacuo to yield 6 as a colorless solid (0.189 g, 81%). M.p. (nitrogen, sealed capillary): 93 °C (decomp); 1H NMR (400.1 MHz, CDCl3, 298 K): δ = 7.46 (d, 1JCH = 7.5 Hz, 4H; o-C6H4), 7.16 (t, 1JCH = 7.4 Hz, 4H; m-C6H4), 7.05 (t, 1JCH = 7.2 Hz, 2H; p-C6H4), 4.68 (d, 1JCH = 12.7 Hz, 1H; NH), 1.86 (d, 1JCH = 11.1 Hz, 2H; PCH3), 1.23 (d, 1JCH = 14.7 Hz, 18H; PCH3), 0.28 ppm (s; 9H; Si(CH3)3); 13C NMR (100.6 MHz, CDCl3, 298 K): δ = 133.2 (s; o-C6H4), 127.1 (s; m-C6H4), 125.1 (s; p-C6H4), 36.5 (d; 1JCH = 49.0 Hz; PCH3-B), 27.6 ppm (s; PCH3), 14.8 ppm (only observed in the HSQC spectrum; 1JCH coupling with PCH3-B; PCH3), 2.27 ppm (d, 1JCH = 1.4 Hz; Si(CH3)3), the signal for pso-C6H4 is unresolved; 19F NMR (162.0 MHz, CDCl3, 298 K): δ = 78.1 ppm (s); 19B NMR (118.4 MHz, CDCl3, 299 K): δ = 2.4 ppm (s); HR LiFDI-MS: calcd for C9H8B3N5P3Si (M−Cl) 412.2755, found 412.2750.
and subsequent washing with n-pentane (3 × 8 mL) gave 7 as a white solid, which was subsequently washed with benzene (3 × 8 mL) to afford 7 as a pure, colorless solid (0.178 g, 73%). X-ray quality crystals were grown at room temperature from a solution of 7 in THF layered with n-pentane. M.p. (nitrogen, sealed capillary): 118 °C (decomposing). 1H NMR (400.1 MHz, CDCl3, 298 K): δ = 7.57 (d, JHH = 6.9 Hz, 4H; o-C6H4), 7.08 (t, JHH = 7.3 Hz, 4H; m-C6H4), 6.90 (t, JHH = 7.2 Hz, 2H; p-C6H5), 1.31–1.19 (m, 2H; CH2P=O), 1.11 (d, JHH = 12.6 Hz, 18H; PC6H15), –0.18 ppm (s, 9H; Si(OMe)3); 13C{1H} NMR (100.6 MHz, CDCl3, 298 K): δ = 132.2 (d, JHH = 6.7 Hz; O-C6H4), 126.7 (s; m-C6H4), 123.2 (s; p-C6H5), 36.2 (d, JHH = 60.3 Hz; PC6H15) 28.2 (m; PC6H15); 22.9 (only observed in the HSO4 spectrum, JHH coupling with PCH3; PCH3), 4.9 ppm (s; Si(OMe)3), the signal for ipso-C6H4 is unresolved; 31P{1H} NMR (160.2 MHz, CDCl3, 298 K): δ = –38.2 ppm (s); 39B{1H} NMR (128.4 MHz, CDCl3, 299 K): δ = 2.4 ppm (d, JHH = 48.6 Hz); 19F NMR (282.4 MHz, CDCl3, 299 K): δ = –191.7 ppm (br. s); HR ESI-MS: calc for C29H28BF3PSi (M+Me3N) 430.2672, found 430.2673.

Synthesis of 8 and 9: PhNCO (2.78 g, 25.4 mL, 23.39 mmol, 1.44 equiv) was added to a solution of 5 (0.673 g, 1.636 mmol, 1.0 equiv) in THF (45 mL) at room temperature. After addition, the reaction mixture was warmed to 60 °C and stirred for 3 days at this temperature. The solvent and excess PhNCO were removed in vacuo to afford a pale white solid, which was washed at 0 °C with n-pentane (3 × 8 mL). Subsequent drying in vacuo afforded a pale white solid that consists of a mixture of the product (8) and phenyl isocyanurate (9) in 55:45 ratio (0.967 g). Compound 8: 1H NMR (400.1 MHz, CDCl3, 298 K): δ = 7.33 (d, JHH = 7.1 Hz, 4H; o-B2H2C3), 7.06 (t, JHH = 7.4 Hz, 4H; m-B2H2C3), 6.96 (t, JHH = 7.2 Hz, 2H; p-B2H2C3), 6.88–6.08 (br. m, 4H; o-NC2H5), 6.77–6.71 (m, 1H; p-NC2H5), 1.61 (d, JHH = 10.9 Hz, 2H; PCH3), 1.16 (d, JHH = 14.2 Hz, 18H; PC6H15), 0.26 ppm (s, 9H; Si(OMe)3); 13C{1H} NMR (100.6 MHz, CDCl3, 299 K): δ = 146.4 (s; ipso-NC2H5), 134.4 (s; o-BC3H2), 128.0 and 127.0 (s; o-NC2H5 and m-NC2H5), 126.8 (s; m-BC3H2), 124.4 (s; p-BC3H2), 123.5 (s; p-NC2H5), 35.8 (d, JHH = 57.3 Hz; PC6H15), 26.8 (s; PC6H15); 14.6 only (only observed in the HSO4 spectrum, JHH coupling with PCH3; PCH3), 0.71 ppm (s; Si(OMe)3), the signals for ipso-BC3H2 and NCO are unresolved; 31P{1H} NMR (160.2 MHz, CDCl3, 298 K): δ = –56.5 ppm (s); 39B{1H} NMR (128.4 MHz, CDCl3, 298 K): δ = –3.4 ppm (s); HR ESI-MS: calc for C29H28BF2PSi (M+H) 531.3126, found 531.3142. Compound 9: 1H NMR (400.1 MHz, CDCl3, 299 K): δ = 7.58–7.47 (m, 9H; mp-C6H4), 7.41 ppm (d, JHH = 7.6 Hz, 6H; o-C6H4), 6.7 Hz; 1H NMR (100.6 MHz, CDCl3, 299 K): δ = 149.1 (s; ipso-C6H4), 134.4 (s; CO), 129.84 (s; m-C6H4), 129.79 (s; p-C6H4), 128.9 ppm (s; o-C6H4).

X-ray crystal structure determinations

The single-crystal X-ray diffraction studies were carried out on a Bruker D8 Venture diffractometer with Photon100 detector at 123(2) K using Cu-Kα radiation (λ = 1.54178 Å) or Bruker D8 Venture diffractometer with Photon100 detector at 123(2) K using Mo-Kα radiation (λ = 0.71073 Å) (3min, 4min, 5min). Direct Methods (SHELXS-97)[46] (for 2min, 3min, 4min, 5min) and Dual Space methods (SHELXT)[47] (for 7) were used for structure solution and refinement was carried out using SHELXT-2013/4 (full-matrix least-squares on F2)[48]. Hydrogen atoms were localized by difference electron density determination and refined using a riding model. Semi-empirical absorption corrections were applied. 2min and 7 were refined as an inversion twin, for 3min the absolute structure was determined.[49] For 3min and 4min an extinction correction was applied. In 7 one Me2N+ cation is disordered (see cif-file for details).[50]

2min: colorless crystals, C27H29BNi2P, M = 443.36, crystal size 0.20 x 0.10 x 0.06 mm, orthorhombic, space group P212121, a = 20.3505(5) Å, b = 18.6862(5) Å, c = 12.8093(2) Å, V = 4918.5(2) Å3, Z = 8, R = 1.197 Mg m–1, μ(Cu-Kα) = 1.12 mm–1, F(000) = 1904, 2θmax = 144.0°, 36741 reflections, of which 9434 were independent (Rint = 0.039), 578 parameters, 1 restraint, R1 = 0.034 (for 8901 I > 2σ(I)), wR2 = 0.086 (all data), S = 1.03, largest diff. peak/hole = 0.30/–0.22 e Å–3, x = 0.452(17).

3min: colorless crystals, C27H29BNi2P, M = 423.37, crystal size 0.22 x 0.08 x 0.06 mm, monoclinic, space group P21/c, a = 8.83816(6), b = 14.9452(9), c = 19.3839(12) Å, β = 102.622(2)°, V = 2984.9 (3) Å3, Z = 4, ρ = 1.126 Mg m–1, μ(Mo-Kα) = 0.13 mm–1, F(000) = 920, 2θmax = 55.2°, 49835 reflections, of which 5768 were independent (Rint = 0.040), 227 parameters, R1 = 0.045 (for 4845 I > 2σ(I)), wR2 = 0.113 (all data), S = 1.05, largest diff. peak/ hole = 0.89/–0.38 e Å–3.

4min: colorless crystals, C27H29BNi2P, M = 485.44, crystal size 0.40 x 0.20 x 0.06 mm, orthorhombic, space group Cmc21, a = 16.5487(6), b = 8.6092(4), c = 19.6231(8) Å, V = 2795.72(5) Å3, Z = 4, ρ = 1.153 Mg m–1, μ(Mo-Kα) = 0.12 mm–1, F(000) = 10484, 2θmax = 55.0°, 30510 reflections, of which 3318 were independent (Rint = 0.033), 174 parameters, 1 restraint, R1 = 0.027 (for 3209 I > 2σ(I)), wR2 = 0.071 (all data), S = 1.05, largest diff. peak/ hole = 0.23/–0.20 e Å–3, x = 0.022(19).

Acknowledgements

This work was supported by the Council for Chemical Sciences of The Netherlands Organization for Scientific Research (NWO/ CW) by a VIDI grant (J.C.S.) and a VENI grant (A.R.B.). We gratefully acknowledge Ed Zuidinga for mass spectrometric analyses.

Conflict of interest

The authors declare no conflict of interest.
Keywords: azides · density functional calculations · frustrated Lewis pairs · heterocycles · isocyanates

[13] A broad 29Si NMR signal was observed for 3MeO at room temperature (δ = 235 Hz), which upon cooling to 22 K split into two signals at δ = +98.6 and +8.9 ppm in a 93:7 ratio. The structure of these isomers is still to be determined. For comparison, see Ref. [12a].

[14] Note that the geometry of the phenyl analogue of INT2 (INT2p) could not be optimized without constraints. For more information see the Supporting Information.

[15] The computational details for all mechanisms with Ph-N=, Ph-N=N, Ph-N=C=, and Ph-N=C=N must be found in the Supporting Information.

[16] See the Supporting Information.

Only one other example of an iminophosphorane Lewis base in FLP chemistry is reported, see: C. Jiang, D. W. Stephan, *Dalton Trans.* 2013, 42, 630–637.

[CCDC 1896718, 1896719, 1896720, 1896721, 1896722, and 1896723 contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.]