Soil organic matter in the Peruvian Andes

Unravelling factors controlling soil organic carbon distribution and the underlying organic matter stabilization mechanisms

Yang, S.

Publication date
2020

Document Version
Other version

License
Other

Citation for published version (APA):
Summary

Soil contains the largest terrestrial carbon (C) pool and plays an important role in global C dynamics. Alpine grasslands of the Neotropical Peruvian Andes have large soil organic carbon (SOC) stocks, which are crucial to food production and water provision for the surrounding areas. With regard to the high vulnerability of the grasslands under climate change, it is important to have insight into the persistence and vulnerability of the SOC stocks and the underlying stabilization mechanisms. However, alpine grassland soils in the Peruvian Andes are less-studied with regard to SOC stocks, and especially with regard to the mechanisms controlling SOC storage and Soil Organic Matter (SOM) composition at the molecular level. The objectives of this thesis were: (1) to quantify the SOC stocks and to find key factors controlling the SOC spatial patterns, (2) to have insights into the underlying mechanisms of soil organic matter stabilization, (3) to investigate SOM stabilization controlled by soil aggregation as affected by lithology and precipitation, and (4) to investigate potential relationships between SOM molecular composition and SOM stabilization in the studied alpine grasslands of the Peruvian Andes.

Chapter 1 provides the background of the research topic and general information of the sampling sites in the alpine grasslands of the Peruvian Andes. Briefly, in this chapter we summarized recent research progress in SOM stabilization mechanisms and proposed how to apply the knowledge of SOM stabilization for the soils of the Peruvian Andes under the background of global change.

In Chapter 2 the spatial distribution of SOC stocks was investigated over a variety of different bedrocks, land use types, grazing intensities and topographical positions. Soil samples were collected from 69 plots to estimate the SOC stocks of the entire soil profiles for the study area near Cajamarca (the wet site). In addition, multiple linear models were applied to identify significant soil formation and environmental factors controlling the distribution of SOC. The SOC stocks of the studied area were 215±21 Mg ha⁻¹, which is higher compared to the global average level but lower compared to comparable ecosystems in the Ecuadorian Andes. The spatial variation of the total SOC stocks was predicted by soil depth and soil moisture. When soil depth and soil moisture were controlled as conditional variables, lithology was the key factor controlling the distribution of...
SOC stocks. Different from the total SOC stocks, SOC stocks of the upper 10 cm were predicted by soil moisture, lithology, grazing intensity and altitude. Most studies estimate SOC stocks by sampling to a limited constant depth. However, our results suggest that SOC stocks should be estimated using the entire soil profiles, because sampling to a limited constant depth results in underestimations of SOC stocks and overestimations of the effects of soil formation and environmental factors on the SOC stock distribution.

In Chapter 3 the effects of lithology on SOC stocks and SOM stabilization were investigated. Samples were collected from limestone soils (LSs) and acid igneous rock soils (ASs) in the wet site. SOM stabilization mechanisms were investigated using a selective extraction method to isolate active Fe, Al and Ca fractions. The results showed that the LSs had significantly higher SOC stocks than the ASs. In both LSs and ASs, SOM was stabilized by complexation with and/or adsorption on Fe- and Al-oxides. Exclusively in the LSs, the formation of Ca$^{2+}$ bridges between OM and mineral surfaces also contributed to SOM stabilization. The Ca-induced SOM stabilization gives a potential explanation for the higher SOC stocks in the LSs. In contrast, no evidence was found that OM stabilization was controlled by crystalline Fe oxides, clay contents, allophones, Al toxicity or aggregate stability. The results suggest a shift in SOM stabilization dominated by Fe- and Al- oxides to that with the presence of Ca$^{2+}$ bridges with increasing pH values driven by lithology.

In Chapter 4 the effects of precipitation and lithology on soil aggregate-size distribution and SOC stability were investigated. A wet-sieving method was applied to determine aggregate-size distribution, whereas a 76-day incubation of intact and crushed soil aggregates was applied to estimate SOC stability and aggregate-controlled SOM stabilization. Aggregate-size distribution was mainly controlled by lithology rather than precipitation, as indicated by larger aggregates for the LSs compared to the ASs. SOC stability declined with precipitation in the LSs, but had no significant change in the ASs. SOM occluded in aggregates played a limited role in SOM stabilization, as indicated by: (1) limited changes in SOC mineralization rates between intact and crushed aggregates, and (2) inconsistent patterns of aggregate-size distribution and patterns of SOC mineralization. Thus, SOM adsorption on mineral surfaces was the major stabilization mechanism. The results suggest that SOC stability was controlled by the interaction between lithology and precipitation, which is further controlled by
soil mineralogy in relation to SOM input.

In Chapter 5 the molecular composition of SOM in relation to its stability against decomposition was investigated. For this, pyrolysis-gas chromatography/mass spectrometry (GC/MS) analyses assisted by tetramethylammonium hydroxide (TMAH) were applied using samples from the 76-day soil incubation with aggregates intact and crushed as described in Chapter 4. Potential changes in SOM molecular composition before and after incubation were used to estimate SOM stability and the microbial transformation of SOM molecules. Differences in SOM molecular composition after the incubation between intact and crushed aggregates were used to estimate the SOM protected by occlusion in aggregates. The results showed large relative abundances of compounds derived from fatty acids (FAs), with a major contribution of free FAs. The presence of double bonds (unsaturated vs. saturated FAs) and carbon chain length were key factors controlling the FA stability. Unsaturated FAs were more depleted after the incubation compared to saturated FAs and positively associated with soil organic carbon mineralization rates. The depletion of unsaturated FAs is likely to be explained by their easier degradation compared to saturated FAs and further attributed to their less stabilization controlled by association with mineral surfaces and/or chemical properties. Instead, it is unlikely explained by the stabilization controlled by occlusion in aggregates. Long-chain FAs were more depleted than short-chain FAs after the incubation and a possible explanation for this is that short-chain FAs received more protection by occluded in aggregate. Although we observed the microbial transformation of FAs during the incubation, it had limited effects on the prediction of FA stability using double bonds and carbon chain length. Finally, soil types and horizons also influenced the effects of double bonds and carbon chain length on FA stability. This suggests that more studies are required before generalizing our findings to other soils. The results give the evidence to show that the inherent properties of soil FAs control their interactions with the soil matrix and indirectly govern their stabilization and persistence in the Peruvian Andean soils under study.

Chapter 6 gives a synthesis of the major findings in this Thesis. The major findings were that: (1) Lithology is the key factor controlling SOC stocks and stability; (2) SOM stabilization is controlled by Fe- and Al-oxides in the wet-ASs, and is promoted by Ca$^{2+}$ bridges in addition to the Fe- and Al-oxides in the wet-LSs; (3) SOC stability decreases with precipitation in the LSs but has limited
differences in the ASs, which can be explained by soil mineralogy in relation to SOM input; and (4) the presence of double bonds and carbon chain length control the stability of fatty acids through the interactions with the soil matrix.

Implications of the findings were also discussed in Chapter 6. With regard to the SOM molecular composition, the results agree with the studies that found lipid-rich and lignin-depleted soils in the Andean grasslands of Ecuador. However, this is not common in soils from other areas. Further studies can focus on the underlying mechanisms of the large lipid fraction. With regard to SOM stabilization in general, the results gave evidence that SOM chemical composition affects SOM stability and their interactions with the soil matrix. Since the results are insufficient to explain whether the differences in stability between unsaturated and saturated FAs are attributed to chemical recalcitrance or interactions with mineral surfaces, more studies are required to investigate the affinity of unsaturated and saturated fatty acids to absorbed on mineral surfaces against microbial decomposition. With regard to the implications for ecosystem management, the results indicated the importance of the interaction between lithology and precipitation in relation to the OM input. Future research could focus on potential applications of the knowledge highlighted in this thesis to improve soil quality and to sustain ecosystem services of the Andean grasslands.
Samenvatting

De bodem bevat de grootste terrestrische koolstof (C) voorraad en speelt een belangrijke rol in de wereldwijde C-dynamiek. Alpiene graslanden van de Neotropische Peruaanse Andes hebben grote voorraden bodem organische koolstof in de bodem (SOC), die cruciaal zijn voor voedselproductie en watervoorziening van omliggende gebieden. Aangezien deze graslanden zeer gevoelig zijn voor klimaatverandering is het essentieel om inzicht te krijgen in de persistentie en kwetsbaarheid van de SOC-voorraad en de onderliggende stabilisatiemechanismen van SOC. Alpiene graslandgronden in de Peruaanse Andes zijn maar in zeer beperkte mate bestudeerd met betrekking tot hun SOC voorraad, vooral voor wat betreft de controlemechanismen die de SOC voorraad bepalen en daarnaast ook de samenstelling van bodem organische stof (SOM) op moleculair niveau. De doelstellingen van dit proefschrift zijn: (1) om de SOC voorraad te kwantificeren en om sleutelfactoren te vinden die de ruimtelijke SOC patronen bepalen, (2) om inzicht te verkrijgen in de onderliggende mechanismen van bodem organische stof stabilisatie, (3) om de stabilisatie van bodem organische stof door bodemaggregaatvorming onder gecontroleerde omstandigheden te onderzoeken in relatie tot lithologie en neerslag, en (4) om mogelijke relaties tussen de moleculaire samenstelling en de stabilisatie van bodem organische stof in de bestudeerde alpiene graslanden van de Peruaanse Andes nader te onderzoeken.

Hoofdstuk 1 presenteert de achtergrond van het onderzoek en daarnaast ook algemene informatie over de bemonsteringslocaties in de alpiene graslanden van de Peruaanse Andes. Kort samengevat hebben we in dit hoofdstuk de recente wetenschappelijk stand van zaken ten aanzien van SOM samengevat en geven we aan hoe de kennis van SOM-stabilisatie kan worden toegepast voor de bodem van de Peruaanse Andes tegen de achtergrond van ‘global change’.

In hoofdstuk 2 wordt de ruimtelijke verdeling van SOC-voorraad onderzocht in relatie tot gesteente soort, landgebruikttype, begrazingsintensiteit en topografische positie. Bodemmonsters werden verzameld van 69 locaties om de SOC-voorraad, gebaseerd op het complete bodemprofiel, te bepalen voor het studiegebied bij Cajamarca (het “natte” studiegebied). Bovendien werden
meerdere lineaire modellen toegepast om bodemvormings- en omgevingsfactoren te identificeren die de ruimtelijke verdeling van SOC bepalen. De SOC-voorraad van het bestudeerde gebied was $215 \pm 21 \text{ Mg ha}^{-1}$, wat hoger is dan het wereldwijd gemiddelde niveau, maar lager dan in vergelijkbare ecosystemen in de Ecuadoriaanse Andes. De ruimtelijke variatie van de totale SOC-voorraad kon worden voorspeld door bodemdiepte en bodemvocht. Met bodemdiepte en bodemvocht als voorwaardelijke variabelen, wordt lithologie de sleutelfactor die de ruimtelijke verdeling van SOC-voorraad bepaalt. In tegenstelling tot de totale SOC-voorraad, wordt de SOC-voorraad van de bovenste 10 cm voorspeld door bodemvocht, lithologie, begrazingsintensiteit en hoogte. De meeste onderzoeken naar SOC schatten de SOC-voorraad door bemonstering tot een constante, maar beperkte diepte. Onze resultaten laten echter zien dat de SOC-voorraad moet worden bepaald aan de volledige bodemprofielen, omdat bemonstering tot een beperkte constante diepte resulteert in een onderschatting van de SOC-voorraad en een overschatting van de effecten van bodemvorming en omgevingsfactoren op de verdeling van de SOC-voorraad.

In hoofdstuk 4 werden de effecten van neerslag en lithologie op de verdeling van de bodemaggregaatgrootte en SOC-stabiliteit onderzocht. De natte zeefmethode werd toegepast om de aggregaatgrootteverdeling te bepalen, terwijl een 76-daagse incubatie van intacte en gemalen bodemaggregaten werd toegepast om de SOC-stabiliteit en aggregaat-gecontroleerde SOM-stabilisatie te bepalen. De aggregaatgrootteverdeling werd hoofdzakelijk bepaald door de lithologie in plaats van door neerslag, wat te zien is aan grotere aggregaten voor de LS's in vergelijking tot die van de AS's. De SOC-stabiliteit nam af met neerslag in de LS's, maar had geen significante verandering in de AS's. In aggregaten ingesloten SOM speelt een beperkte rol in SOM-stabilisatie, wat zich uit in: (1) beperkte veranderingen in SOC-mineralisatiesnelheden tussen intacte en gemalen aggregaten, en (2) inconsistentie patronen van de aggregaat grootteverdeling, en in de patronen van SOC-mineralisatie. SOM-adsorptie op mineraaloppervlakken was dus het belangrijkste gevonden stabilisatiemechanisme. De resultaten suggereren dat SOC-stabiliteit wordt gecontroleerd door de interactie tussen lithologie en neerslag, die verder wordt geregeld door bodemmineralogie in relatie tot de input van SOM.

In hoofdstuk 5 werd de moleculaire samenstelling van SOM onderzocht in relatie tot zijn stabiliteit ten aanzien van decompositie. Hiervoor werden pyrolyse-gaschromatografie / massaspectrometrie (GC / MS) -analyses met behulp van tetramethylammoniumhydroxide (TMAH) uitgevoerd aan monsters van de 76-daagse bodemincubatie met intacte en vermalen aggregaten zoals beschreven in hoofdstuk 4. Mogelijke veranderingen in moleculaire samenstelling van SOM voor en na incubatie werden gebruikt om de stabiliteit van SOM en de microbiële transformatie van SOM-moleculen te bepalen. Verschillen in moleculaire samenstelling van SOM, na incubatie tussen intacte en gemalen aggregaten werden gebruikt om de door occlusie beschermde SOM in aggregaten te bepalen. De resultaten toonden grote relatieve hoeveelheden verbindingen die afgeleid zijn van vetzuren (FA's), waaronder een belangrijke bijdrage van vrije FA's. De aanwezigheid van dubbele bindingen (onverzadigde versus verzadigde FA's) en koolstofketenlengte waren sleutelfactoren die de FA-stabiliteit bepaalden. Onverzadigde FA's waren na de incubatie minder aanwezig in vergelijking tot verzadigde FA's, en ze waren positief geassocieerd met de mineralisatiegraad van de SOC in de bodem. De verminderde aanwezigheid van onverzadigde FA's
wordt zeer waarschijnlijk verklaard door hun gemakkelijkere afbraak in vergelijking tot verzadigde FA's, en wordt verder toegeschreven aan een verminderde stabilisatie, die wordt bepaald door associatie met mineraal oppervlakken en / of chemische eigenschappen. Het is daarnaast onwaarschijnlijk dat dit verklaard kan worden door occlusie van organische stof in aggregaten. De aanwezigheid van lange-keten FA's was na incubatie sterker verminderd dan die voor korte-keten FA's, en een mogelijke verklaring hiervoor is dat korte-keten FA's beter beschermd waren doordat ze totaal werden afgesloten binnen de aggregaten. Alhoewel we microbiële transformatie van FA's tijdens de incubatie hebben waargenomen, had het een beperkte effect op de voorspelling van de stabiliteit van FA's voor wat betreft dubbele bindingen en koolstofketenlengte. Tenslotte beïnvloedden de bodemsoort en de horizonten ook de effecten van dubbele bindingen en koolstofketenlengte op de stabiliteit van FA's. Dit suggereert dat meer studie nodig is voordat onze bevindingen naar andere bodems kunnen worden gegeneraliseerd. De resultaten tonen aan dat de inherente eigenschappen van FA's in de bodem de interacties met de bodemmatrix beheersen en indirect hun stabilisatie en persistentie regelen in de onderzochte bodems van de Peruaanse Andes.

Hoofdstuk 6 geeft een synthese van de belangrijkste bevindingen in dit proefschrift. De belangrijkste bevindingen waren dat: (1) Lithologie de sleutelfactor is voor het beheersen van de SOC-voorraad en -stabiliteit; (2) Stabilisatie van SOM wordt bepaald door Fe- en Al-oxiden in AS bodems in de natte onderzoekslocatie, en daar in de LS bodems ook wordt bevorderd door Ca²⁺-bruggen naast de Fe- en Al-oxiden; (3) Stabiliteit van SOC neemt af met neerslag in de LS's maar heeft beperkte invloed in de AS's, wat kan worden verklaard door de bodemmineralogie en de input van SOM; en (4) de aanwezigheid van dubbele bindingen en koolstofketenlengte regelen de stabiliteit van vetzuren door de interacties met de bodemmatrix. De implicaties van de bevindingen worden ook besproken in hoofdstuk 6. Met betrekking tot de moleculaire samenstelling van SOM komen de resultaten overeen met studies aan lipide-rijke en lignine-arme bodems in de Andes-graslanden van Ecuador. Dit is echter niet een algemeen voorkomend patroon in bodems uit andere gebieden. Vervolgstudies zouden zich kunnen richten op de onderliggende mechanismen van de stabilisatie van de grote lipidenfractie. Wat betreft de stabilisatie van SOM in het algemeen, gaven de resultaten aan dat de chemische samenstelling van SOM, de stabiliteit van de SOM en de interactie met de bodemmatrix beïnvloedt. Omdat de resultaten niet
kunnen verklaren of de verschillen in stabiliteit tussen onverzadigde en verzadigde FA’s kunnen worden toegeschreven aan chemische recalcitrantie of interacties met mineraaloppervlakken, zijn er meer studies nodig naar de voorkeur van onverzadigde en verzadigde vetzuren voor absorptie aan mineraaloppervlakken, en de bescherming tegen microbiële decompositie. De bevindingen van deze studie voor ecosysteembeheer, wijzen op het belang van de interactie tussen lithologie en neerslag in relatie tot OM-input. Toekomstig onderzoek zou zich kunnen richten op mogelijke toepassingen van de kennis die in dit proefschrift wordt benadrukt om de bodemkwaliteit te verbeteren en de ecosysteemdiensten van de Andes-graslanden in stand te houden.
摘要

土壤作为最大的陆地碳库在全球碳循环中扮演重要角色。位于新热带的秘鲁安第斯高山草原拥有丰富的土壤碳库，并在为周边地区供水及食物生产上起到重要作用。鉴于安第斯高山草原在全球变化背景下的脆弱性，深入研究其土壤有机碳库的稳定性和脆弱性及其相关机制显得尤为重要。目前关于秘鲁安第斯高山草原土壤有机碳储量的研究相对较少，特别是涉及控制有机碳稳定性的机制和在分子水平上分析有机质组成的研究更为缺乏。

因此本文研究目标主要涵盖：(1) 测定与计算秘鲁安第斯高山草原土壤有机碳储量并寻找控制土壤有机碳空间格局的关键因素；(2) 深入研究控制土壤有机质稳定性的机制；(3) 研究降水和成土母质对土壤团聚体控制下有机质稳定性机制的作用；(4) 探究有机质分子结构与其稳定性间的潜在联系。

第一章介绍了研究背景以及研究涉及的秘鲁安第斯高山草原概况。具体而言，本章总结了近年来关于土壤有机质稳定性机制的研究进展，特别是在全球变化的背景下，如何利用土壤有机质稳定机制开展针对秘鲁安第斯高山土壤的研究。

第二章研究了在不同成土母质、土地利用类型、放牧强度及地形因子的条件下，土壤有机碳储量的空间分布格局。土样采自卡哈马卡市附近（湿润样地）的69个样点，并用来计算整个土壤剖面的有机碳储量。研究采用多元线性模型来确定对土壤有机碳空间分布格局有显著影响的环境及成土因子。结果显示研究区域的土壤有机碳总储量为215±21 Mg ha⁻¹，明显高于全球平均水平但低于厄瓜多尔的类似生态系统。土壤深度和含水率是控制有机碳总储量空间格局的关键因素。当土壤深度和含水率作为协变量被控制时，成土母质成为影响有机碳总储量空间分布的关键因素。与有机碳总储量不同，表层有机碳储量（10cm）的控制因素有土壤含水率、成土母质、放牧强度和海拔。目前多数研究仅利用有限的固定深度来估算土壤有机碳储量，本研究表明这样的估算方法会造成对有机碳储量的低估以及环境及成土因子对土壤有机碳储量作用程度的高估。因此，研究结果揭示了利用完整土壤剖面估算土壤有机碳储量空间分布的重要性。

第三章进一步研究了成土母质对土壤有机碳储量及有机质稳定机制的作用。土样采自湿润样地中发育自石灰岩和酸性火成岩的土壤。研究采用选择性
第四章研究了降水和成土母质对土壤团聚体粒径分布和土壤有机碳稳定性的作用。实验采用筛法测定团聚体粒径分布，并通过对比培养 76 天完整团聚体和破碎团聚体的 CO\textsubscript{2} 释放结果来估算有机碳稳定性和其中团聚体控制的部分。团聚体粒径分布的控制因素是成土母质而非降水：石灰岩土的团聚体粒径大于酸性火成岩土。有机碳稳定性在石灰岩土中随降水减少而降低，但在酸性火成岩土中则无明显变化。团聚体包裹对有机质稳定的作用有限，主要由于：(1) 有机碳矿化速率在完整团聚体和破碎团聚体中的差别不明显；(2) 团聚体粒径分布与有机碳矿化速率并不吻合。因此，矿物表面吸附才是促进其稳定的主要原因。结果显示，有机碳稳定性主要受控于降水与成土母质的交互作用，这种交互作用进一步受土壤矿物组成及有机质输入的影响。

第五章探究了有机质分子结构对其稳定性的影响。研究使用添加了氢氧化四甲铵 (TMAH) 的热解气相色谱/质谱技术 (GC/MS)，探究第四章中 76 天培养实验前后完整团聚体和破碎团聚体中有机质分子结构的变化。培养前后分子结构变化用来表征不同分子的稳定性及微生物对有机质分子结构的转化，完整及破碎团聚间的差别用来研究团聚体对有机质分子的保护作用。结果显示热解后的来源于脂肪酸的物质有着较大的相对丰度，其中游离态脂肪酸可能有较大贡献。脂肪酸的稳定性取决于不饱和双键（饱和与不饱和脂肪酸）和碳链长度。不饱和脂肪酸的相对丰度在培养后明显降低，并与土壤有机碳矿化速率显著正相关。微生物分解极可能是不饱和脂肪酸相对丰度降低的原因。不饱和脂肪酸与饱和脂肪酸之间的差别可能是由于矿物表面吸附或分子结构的不同，但不能用与团聚体包裹控制的有机质稳定性机制加以解释。长链脂肪酸相较短链脂肪酸在培养后明显减少，可能的原因是短链脂肪酸可以得到团聚体更有效的保护。
管实验观察到微生物对脂肪酸的转换作用，但这种转化对利用双键和碳链长度对脂肪酸稳定性预测的影响相对有限。此外，双键和碳链长度对脂肪酸稳定性的影响会随土壤类型和土层的不同而改变。因此，在把本章结论推广到其它土壤前需要开展更多的研究。本章结果为在秘鲁安第斯高山草原，土壤脂肪酸的分子结构影响其与土壤基质相互作用并间接影响其稳定性性的假设提供了证据支持。

第六章总结了论文的主要发现：(1) 成土母质是影响土壤有机碳储量及稳定性的主要因素；(2) 在湿润样地，酸性火成岩土中有机碳稳定性主要受控于铁铝（氧化物），石灰岩土中钙离子桥则起到了额外的作用；(3) 石灰岩土中有机碳稳定性随降水减少而降低，酸性火成岩土中降水作用不明显，此过程可能受土壤矿物及有机质输入的作用；(4) 土壤中重要组分脂肪酸的稳定性受不饱和双键及碳链长度影响。

第六章对论文的应用前景展开讨论。对于有机质分子结构，结果显示了大量的脂质（或脂肪酸）组分，而木质素与多糖类物质较少。这样的结果与厄瓜多尔安第斯高山土壤相吻合，但与其余地区一般的不一致。未来研究可深入探究该地区的土壤有机质组成的相关机制。对于有机质稳定机制而言，结果揭示了有机质分子结构会影响其与土壤基质的作用并进一步影响其稳定性。但本论文研究结果不足以解释饱和脂肪酸与不饱和脂肪酸之间的稳定性差异是由于其化学稳定性差异或是与矿物表面亲和性差异，因此进一步研究可关注饱和与不饱和脂肪酸对土壤矿物表面吸附的亲和性及对抗微生物分解存在的潜在差异。在生态系统管理方面，结果揭示了降水与成土母质作用及有机质输入的重要性。此外，未来研究可致力于将此论文的发现应用于为安第斯高山草原提高土壤质量及维持生态系统服务功能的实践中。