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ABSTRACT

We present a survey for neutral atomic-carbon (C i) along gamma-ray burst (GRB) sightlines, which probes the shielded neutral gas-
phase in the interstellar medium (ISM) of GRB host galaxies at high redshift. We compile a sample of 29 medium- to high-resolution
GRB optical afterglow spectra spanning a redshift range through most of cosmic time from 1 < z < 6. We find that seven (≈25%) of
the GRBs entering our statistical sample have C i detected in absorption. It is evident that there is a strong excess of cold gas in GRB
hosts compared to absorbers in quasar sightlines. We investigate the dust properties of the GRB C i absorbers and find that the amount
of neutral carbon is positively correlated with the visual extinction, AV, and the strength of the 2175 Å dust extinction feature, Abump.
GRBs with C i detected in absorption are all observed above a certain threshold of logN(H i)/cm−2 + [X/H] > 20.7 and a dust-phase
iron column density of logN(Fe)dust/cm−2 > 16.2. In contrast to the SED-derived dust properties, the strength of the C i absorption
does not correlate with the depletion-derived dust properties. This indicates that the GRB C i absorbers trace dusty systems where
the dust composition is dominated by carbon-rich dust grains. The observed higher metal and dust column densities of the GRB
C i absorbers compared to H2- and C i-bearing quasar absorbers is mainly a consequence of how the two absorber populations are
selected, but is also required in the presence of intense UV radiation fields in actively star-forming galaxies.

Key words. gamma-ray burst: general – galaxies: ISM – galaxies: high-redshift – dust, extinction

1. Introduction

Long-duration gamma-ray bursts (GRBs) are the most energetic
class of cosmic explosions and are believed to originate from the
deaths of massive stars (e.g. Woosley & Bloom 2006). Their im-
mense brightness makes them detectable even out to the epoch
of reionization at z & 8 (Salvaterra et al. 2009; Tanvir et al.
2009, 2018; Cucchiara et al. 2011). Since GRBs are expected to
probe star formation (Wijers et al. 1998; Christensen et al. 2004;
Jakobsson et al. 2005; Kistler et al. 2009; Robertson & Ellis
2012; Greiner et al. 2015) and star-formation rates are driven
by the availability of dense gas, GRBs offer a potentially ideal
probe of the physical conditions in the cold, neutral gas-phase of
the interstellar medium (ISM) in star-forming galaxies through
most of cosmic time.

It is even possible to detect absorption by molecular hy-
drogen in the host directly by the presence of Lyman–Werner
bands. However, to date, only four GRB afterglow spectra have
a robust detection of H2 in absorption (Prochaska et al. 2009;
D’Elia et al. 2014; Krühler et al. 2013; Friis et al. 2015). One
explanation for the dearth of molecular hydrogen in GRB host
galaxies could be that the H2 molecules are photodissociated by
the GRB event itself. The intense prompt γ-ray flash and after-
glow emission will, however, only impact gas in the vicinity of
the GRB (out to . 10 pc; Draine & Hao 2002). The gas produc-
ing absorption lines in GRB optical spectra is typically found
to be located several hundred parsecs from the GRB explosition
site (D’Elia et al. 2007; Prochaska et al. 2006; Vreeswijk et al.
2007, 2011). If there is a lack of detection of cold and molecular
gas, it should be intrinsic to the GRB host galaxy properties.

Article published by EDP Sciences A20, page 1 of 13

https://doi.org/10.1051/0004-6361/201834246
https://www.aanda.org
http://www.edpsciences.org


A&A 621, A20 (2019)

While quasar selection is subject to a significant bias
excluding sightlines with intervening dusty and therefore also
metal-rich foreground galaxies (Fall & Pei 1993; Boissé et al.
1998; Vladilo & Péroux 2005; Pontzen & Pettini 2009;
Fynbo et al. 2013, 2017; Krogager et al. 2015, 2016a,b;
Heintz et al. 2018a), the high-energy emission from GRBs
on the other hand is unaffected by dust. The spectroscopic
follow-up observations of GRB afterglows are, however,
still much less likely to be successful for the most dust-
obscured sightlines, the so-called “dark” bursts (Fynbo et al.
2001, 2009; Jakobsson et al. 2004; van der Horst et al. 2009;
Perley et al. 2009, 2013; Greiner et al. 2011; Krühler et al.
2011; Watson & Jakobsson 2012) since observations with
high-resolution spectrographs and good signal-to-noise ratios
(due to the transient nature of GRBs) are only obtained for the
brightest afterglows (Ledoux et al. 2009).

It is still unclear whether the apparent lack of molecular gas in
GRB host galaxies is an intrinsic property or simply due to obser-
vational limitations (though an effort has recently been made by
Bolmer et al. 2018b to quantify this). The absorption signatures of
H2 are the Lyman and Werner bands which are located bluewards
of the Lyman-α (Lyα) absorption line and in the Lyα forest. High-
resolution spectra are therefore helpful to disentangle the H2 tran-
sitions from the Lyα forest and to derive reliable H2 column densi-
ties. As stated above, such samples will suffer from a bias against
themostmetal-richanddust-obscuredbursts (Ledoux et al.2009).
Thesehostgalaxypropertiesare,however, found tobeessential for
the detection probability of H2 (Ledoux et al. 2003; Petitjean et al.
2006; Noterdaeme et al. 2008, 2015; Krühler et al. 2013). In ad-
dition, due to the UV-steep extinction curves typically observed
in GRB sightlines (Zafar et al. 2018c), the observed flux in the
Lyman–Werner bands will be attenuated much more strongly than
the visual extinction, AV. The sightlines most likely to exhibit H2
absorption are therefore also the most difficult to observe due to
the faintness of the afterglows.

The absorption signatures from neutral atomic-carbon (C i)
are another probe of the shielded gas-phase and can be used to
study the cold, neutral medium in the ISM. Ledoux et al. (2015)
searched for the absorption features of C i in a large sample of
quasar spectra from the Sloan Digital Sky Survey (SDSS). Neu-
tral carbon is typically observed to be coincident with H2 in
quasar DLAs (Srianand et al. 2005) and is found to be the opti-
mal tracer of molecular gas in low-metallicity, star-forming galax-
ies (Glover & Clark 2016) based on numerical simulations. This
is likely related to the ionization potential of C i (11.26 eV) be-
ing similar to the energy range of Lyman–Werner photons that can
photodissociate H2 (11.2–13.6 eV). The C i λλ 1560,1656 transi-
tions are also located far from the Lyα forest and can be identified
even in low- to medium-resolution spectroscopy. The feasibility
of this approach was verified by the spectroscopic follow-up cam-
paign of the C i-selected quasar absorbers, where H2 was detected
in absorption in all cases (Noterdaeme et al. 2018). This sample
also shows a constant C i to CO ratio, suggesting that neutral car-
bon actually probes a deeper, more shielded regime of the ISM
than the diffuse atomic and molecular gas-phases (see also e.g.
Snow & McCall 2006).

In this paper, we follow a similar approach to Ledoux et al.
(2015) but survey C i absorption in GRB optical afterglow spec-
tra. We compile a list of z > 1 GRB afterglows, spanning over
a decade of optical and near-infrared (NIR) spectroscopic ob-
servations, by combining the sample presented by Fynbo et al.
(2009) and the GRB afterglow legacy survey by Selsing et al.
(2018). Our goal is to investigate the environments of GRB hosts
with neutral carbon detected in absorption (henceforth simply

referred to as GRB C i absorbers or C i systems) in terms of their
dust properties and chemical abundances. Since it is only possi-
ble to observe the Lyα transition from the ground and thus derive
gas-phase abundances at z & 1.7, we rely on the GRBs in this
redshift range to examine the chemical abundances of the GRB
C i absorbers, whereas the dust properties can be studied at all
redshifts. This survey also opens a potential route to test whether
the proposed lack of molecular gas in GRB host galaxies is an
intrinsic property or simply a consequence of observational lim-
itations. In this paper, we present the results of this survey and
the basic properties of GRB C i absorbers. These are compared
to GRB host absorption systems without the presence of C i and
to other types of “cold gas” absorbers (i.e. with H2 and/or C i
detected in absorption) in quasar sightlines.

The paper is structured as follows. In Sect. 2 we present
our sample and describe the observations and selection criteria,
where Sect. 3 is dedicated to discuss the sample properties and
completeness. In Sect. 4 we show our results, with specific fo-
cus on the properties of GRB host galaxies with C i absorption
compared to those without. For our discussion, we compare the
sample of GRBs with prominent amounts of cold, neutral gas
to similar samples of cold gas absorbers in quasar sightlines in
Sect. 5. Finally, in Sect. 6 we conclude on our work.

Throughout the paper, errors denote the 1σ confidence
level and magnitudes are reported in the AB system. We as-
sume a standard flat cosmology with H0 = 67.8 km s−1 Mpc−1,
Ωm = 0.308 and ΩΛ = 0.692 (Planck Collaboration XIII
2016). Gas-phase abundances are expressed relative to the So-
lar abundance values from Asplund et al. (2009), where [X/Y] =
log N(X)/N(Y) − log N(X)�/N(Y)�.

2. The GRB sample

The sample of GRBs studied here was built by extracting
all bursts from the VLT/X-shooter GRB (XS-GRB) afterglow
legacy survey (Selsing et al. 2018), combined with the GRB af-
terglow sample of Fynbo et al. (2009, hereafter F09). We also
include the recent discovery of a strong C i absorber towards
GRB 180325A, which also shows a prominent 2175 Å dust ex-
tinction feature (Zafar et al. 2018a). We subsequently imposed
additional observational selection criteria to exclude late-time
host galaxy observations and afterglow spectra with poor spec-
tral quality or low spectral resolution. In this section we detail
the GRB afterglow observations (Sect. 2.1) and selection criteria
(Sect. 2.2). In Sect. 3 we present the properties of our final sam-
ple in terms of C i rest-frame equivalent width (Sect. 3.1) and
dust extinction, AV (Sect. 3.2). An overview of the full sample is
provided in Table 1.

2.1. Observations and sample compilation

The majority of the GRB afterglows in our sample were detected
by the Burst Alert Telescope (BAT) mounted on the Neil Gehrels
Swift Observatory (Swift; Gehrels et al. 2004). The few excep-
tions were detected by the Fermi Gamma-Ray Space Telescope
(Atwood et al. 2009; Meegan et al. 2009) or by the INTEGRAL
satellite (Winkler et al. 2003).

The GRB afterglows from the F09 sample were observed
using a range of low- to high-resolution spectrographs (R ≈
300−45 000), but we only include GRBs observed with R >
2000 (see below). The more recent GRB afterglow sample
by Selsing et al. (2018) was obtained homogenously with the
VLT/X-shooter spectrograph (Vernet et al. 2011), covering a
broad spectral range (300–2480 nm) in a single exposure by
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Table 1. GRB afterglow sample properties.

GRB zGRB log N(H i) Wr (λ 1560) Wr (λ 1656) [X/H] Ion AV Refs.
(cm−2) (Å) (Å) (mag)

F09 sample
050730 3.9693 22.10 ± 0.10 <0.03 <0.03 −2.18 ± 0.11 S 0.12 ± 0.02 (1, 2)
050820A 2.6147 21.05 ± 0.10 <0.12 <0.13 −0.39 ± 0.10 Zn 0.27 ± 0.04 (3, 4)
050922C 2.1995 21.55 ± 0.10 <0.03 <0.03 −1.82 ± 0.11 S 0.09 ± 0.03 (3, 5)
060210 3.9133 21.55 ± 0.15 0.78 ± 0.03 · · · > − 0.83 Si 0.57 ± 0.08 (6, 5)
060607A 3.0749 16.95 ± 0.03 <0.05 <0.07 · · · · · · 0.08 ± 0.08 (7, 8)
061121 1.3145 · · · 0.49 ± 0.04 0.25 ± 0.04 · · · · · · 0.55 ± 0.10 (5)
070802b 2.4511 21.50 ± 0.20 0.70 ± 0.35 1.36 ± 0.32 −0.46 ± 0.63 Zn 1.19 ± 0.15 (9, 2)
071031 2.6918 22.15 ± 0.05 <0.03 <0.03 −1.73 ± 0.05 Zn <0.07 (3, 2)
080310 2.4274 18.70 ± 0.10 <0.11 <0.14 −1.20 ± 0.20 Si 0.19 ± 0.05 (10, 8)
080413A 2.4330 21.85 ± 0.15 <0.03 <0.03 −1.60 ± 0.16 Zn <0.59 (3, 11)
080605b 1.6403 · · · 0.64 ± 0.23 0.38 ± 0.15 · · · · · · 0.50 ± 0.13 (12)
080607a,b 3.0368 22.70 ± 0.15 2.17 ± 0.08 2.03 ± 0.04 > − 0.20 O 2.33 ± 0.46 (13, 2)
X-shooter sample
090926A 2.1069 21.60 ± 0.07 <0.05 <0.06 −1.85 ± 0.10 S <0.04 (14, 15)
100814A 1.4390 · · · <0.06 <0.06 · · · · · · <0.07 (15)
120119A 1.7288 22.44 ± 0.12 0.51 ± 0.05 0.77 ± 0.06 −0.96 ± 0.28 Zn 1.02 ± 0.11 (16, 15)
120327Aa 2.8148 22.01 ± 0.09 <0.03 <0.03 −1.17 ± 0.11 Zn <0.03 (17)
120815Aa 2.3581 21.95 ± 0.10 (0.12 ± 0.08)c (0.21 ± 0.05)c −1.15 ± 0.12 Zn 0.19 ± 0.04 (18, 15)
121024Aa 2.3024 21.88 ± 0.10 (0.08 ± 0.05)c (0.11 ± 0.07)c −0.70 ± 0.10 Zn 0.26 ± 0.07 (19, 15)
130408A 3.7579 21.70 ± 0.10 <0.05 <0.06 −1.24 ± 0.12 S 0.21 ± 0.05 (6, 20)
130606A 5.9129 19.91 ± 0.02 <0.10 <0.10 −1.30 ± 0.08 Si <0.07 (21, 15)
141028A 2.3334 20.55 ± 0.07 <0.14 <0.21 −0.73 ± 0.34 Zn 0.13 ± 0.09 (16)
141109A 2.9944 22.10 ± 0.20 <0.11 <0.11 −1.40 ± 0.22 Zn 0.11 ± 0.03d (22, 23)
150403A 2.0571 21.80 ± 0.20 0.34 ± 0.03 0.50 ± 0.04 −0.80 ± 0.35 S 0.12 ± 0.02d (22, 23)
151021A 2.3299 22.20 ± 0.20 <0.17 <0.28 −1.11 ± 0.20 Si 0.20 ± 0.03d (22, 23)
151027B 4.0647 20.50 ± 0.20 <0.09 <0.09 −1.62 ± 0.24 Si 0.10 ± 0.05 (22, 23, 20)
160203A 3.5185 21.75 ± 0.10 <0.03 <0.03 −1.26 ± 0.11 S <0.10d (24)
161023A 2.7106 20.97 ± 0.01 <0.03 <0.03 −1.11 ± 0.07 Zn 0.09 ± 0.03 (25)
170202A 3.6450 21.55 ± 0.10 <0.10 <0.08 −1.15 ± 0.13 S <0.12 (22, 23, 20)
180325Ab 2.2486 22.30 ± 0.14 0.58 ± 0.05 0.85 ± 0.05 > − 0.98 Zn 1.58 ± 0.12 (26)

Notes. All GRB afterglows with spectral coverage of the C i λλ 1560,1656 line transitions listed here are selected within a completeness limit of
Wr(λ 1560) > 0.2 Å. GRB 180325A is listed separately since it is not part of the F09 or XS–GRB sample papers. (a)GRB afterglows where a detec-
tion of H2 in absorption has been reported in the literature. (b)Bursts with a prominent detection of the 2175 Å dust extinction feature. (c)Tentative
detection of C i below the imposed detection threshold. (d)AV measurements from this work.
References. The H i column densities, metallicities and visual extinctions are from: (1) D’Elia et al. (2007); (2) Zafar et al. (2011a);
(3) Ledoux et al. (2009); (4) Schady et al. (2012); (5) Covino et al. (2013); (6) Cucchiara et al. (2015); (7) Fynbo et al. (2009); (8) Kann et al.
(2010); (9) Elíasdóttir et al. (2009); (10) De Cia et al. (2012); (11) Zafar & Watson (2013); (12) Zafar et al. (2012); (13) Prochaska et al. (2009);
(14) D’Elia et al. (2010); (15) Zafar et al. (2018c); (16) Wiseman et al. (2017); (17) D’Elia et al. (2014); (18) Krühler et al. (2013); (19) Friis et al.
(2015); (20) Zafar et al. (2018b); (21) Hartoog et al. (2015); (22) Selsing et al. (2018); (23) Thöne et al. (in prep.); (24) Pugliese et al. (in prep.);
(25) de Ugarte Postigo et al. (2018); (26) Zafar et al. (2018a).

splitting the light into three spectroscopic arms (called the UVB,
VIS and NIR ams). We refer the reader to the sample papers
for a description of the observational details and the specifics
of the data reduction. All the spectra used in our analysis have
been corrected for the foreground Galactic extinction using the
dust maps of Schlegel et al. (1998) and Schlafly & Finkbeiner
(2011). All wavelengths throughout the paper are reported in
vacuum and are shifted to the heliocentric reference frame.

2.2. Selection criteria and C i line identification

We only include GRBs from the F09 and the XS-GRB sam-
ple for which there is spectral coverage of the C i λλ 1560,1656
line transitions. To exclude afterglow spectra that are host domi-
nated and have poor signal-to-noise ratios (S/N) we imposed the

following observational and brightness contraints for the GRB
follow-up observations
1. The GRB was observed within 24 h after the trigger.
2. The brightness measured from the acquisition image is

brighter than ≤21.0 mag.
3. The rest-frame detection limit of C i λ 1560 is 0.2 Å (at 3σ).
4. The spectral resolution R is higher than 2000.

The third criterion is defined such that we exlude bursts for
which the upper limit on Wr(λ 1560) cannot be constrained
within 0.2 Å. We thus define this as our completeness limit and
only consider GRB C i absorbers with Wr(λ 1560) > 0.2 Å in
our statistical sample. The fourth criterion is only relevant for
the F09 afterglow sample and is imposed to exclude the large
fraction of bursts with R ≈ 300 for which C i is practically im-
possible to detect even at large S/N. We adopt the C i line de-
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tections and equivalent width measurements from the F09 paper,
but measure the upper limits on C i for the rest of the GRBs en-
tering our sample. Most bursts from F09 included in our sample
already have derived upper limits on the column density of C i
down to deep limits by Ledoux et al. (2009), but we report them
in terms of equivalent widths here for consistency.

Since we require the spectral regions of the C i λλ 1560,1656
transitions to be covered, this effectively results in a redshift
lower limit of zmin = λmin/1560 − 1 ≈ 1.0−1.2 for a spectral
cut-off, λmin, of 300–350 nm. For typical optical spectrographs,
where observations up to around 900 nm is possible, the redshift
upper limit is zmax ≈ 5.8, whereas for the VLT/X-shooter spec-
trograph, both C i line transitions can in principle be observed
up to zmax ≈ 15 (though with gaps due to the atmospheric trans-
parency in the NIR). We are therefore able to probe a much
larger redshift range than is possible for e.g. C i absorbers to-
ward quasars observed as part of the SDSS survey (Ledoux et al.
2015). To measure the chemical abundances of the GRB host
galaxies (such as the neutral hydrogen column density, metal-
licity and dust depletion), however, requires that the GRBs are
located at z & 1.7 for the spectra to encompass the wavelength
region where the Lyα absorption line can be observed from the
ground.

3. Data analysis and sample properties

In the final GRB afterglow sample, a total of 29 bursts (12/17
from the F09 and the XS–GRB samples, respectively) fulfill our
imposed selection criteria and thus constitute our parent sam-
ple. Below we detail our measurements of the C i λλ 1560,1656
equivalent widths for the detections and tentative detections in
the XS–GRB sample (see Fynbo et al. 2009, for the C i line de-
tections and measurements from their sample). We also include
GRB 060210 from the F09 sample as a C i absorber in our sam-
ple even though C i λ 1656 is not detected, due to its wavelength
region being outside the spectral coverage, since the other tran-
sitions C i λλλ 1260,1277,1328 are detected. We report the full
set of C i λλ 1560,1656 equivalent width measurements and the
derived 3σ upper limits for the GRBs with non-detections of C i
in Table 1.

3.1. Equivalent width of C i

For all GRBs we provide the total rest-frame equivalent widths
of the C i λλ 1560,1656 absorption lines and list them in Table 1.
We attribute all the absorption to the ground-state of C i, even
though the fine-structure transitions C i* and C i** also con-
tribute (Srianand et al. 2005; Noterdaeme et al. 2017). This is,
however, to be consistent with the measurements from the F09
sample and to directly compare our results to the sample of
quasar C i absorbers from Ledoux et al. (2015). We determine
the rest-frame equivalent widths of the C i λλ 1560,1656 absorp-
tion features by fitting the continuum around each of the lines
and then integrate the absorption profile contained below the nor-
malized flux level which encompasses all the C i λλ 1560,1656
ground-state and fine-structure transitions.

3.1.1. GRB 120119A

The spectrum of GRB 120119A at z = 1.7288 is presented
in the work by Wiseman et al. (2017). We adopt the H i col-
umn density of log N(H i/cm−2) = 22.44 ± 0.12 and the derived
metallicity [Zn/H] = −0.96 ± 0.28 from their work. Zafar et al.
(2018c) measured a visual extinction of AV = 1.02 ± 0.11 mag

   

0.0

0.5

1.0

1.5
GRB 120119A

   

0.0

0.5

1.0

1.5

CI 1560

CI CI*
CI**CI*

CI**v1 v2

-500 0 500
Relative velocity  [km s-1 ]

0.0

0.5

1.0

1.5

CI 1656

CICI*
CI**

CI* CI*
CI**

v1 v2

N
or

m
al

iz
ed

 fl
ux

Fig. 1. VLT/X-shooter spectrum of the GRB 120119A in velocity space,
centred on the ground-state of the C i λλ 1560,1656 absorption lines at
z = 1.7291. The black solid line shows the spectrum and the associated
error is shown in blue. The spectrum has been binned by a factor of two.
The ground-state and fine-structure lines of the C i λλ 1560,1656 tran-
sitions are marked above each of the absorption profiles. The profiles
have been integrated over the velocity range indicated by the dashed
red lines from ν1 to ν2 to measure the equivalent widths. C i is detected
above the completeness limit in this system.

and found no evidence for the presence of the 2175 Å dust
extinction feature. In Fig. 1, we show a part of the spectrum
centred on the C i λλ 1560,1656 line transitions. The absorption
profiles have been integrated over the velocity range indicated
by the dashed red lines from ν1 to ν2 to measure the equivalent
widths and include the ground-state and fine-structure lines. We
measure total C i rest-frame equivalent widths of Wr(λ 1560) =

0.51 ± 0.05 Å and Wr(λ 1656) = 0.77 ± 0.06 Å.

3.1.2. GRB 120815A

The spectrum of GRB 120815A at z = 2.3581 is presented in
the work by Krühler et al. (2013). We adopt the H i column den-
sity of log N(H i/cm2) = 21.95 ± 0.10 and the derived metallic-
ity [Zn/H] = −1.15 ± 0.12 from their work. They also detect ab-
sorption lines from H2 with a column density of log N(H2/cm2) =
20.54±0.13, which yields a molecular gas fraction of log f (H2) =
−1.14 ± 0.15, and C i with a column density of log N(C i/cm2) =
13.41 ± 0.11. Zafar et al. (2018c) measured a visual extinction
of AV = 0.19 ± 0.04 mag and found no evidence for the pres-
ence of the 2175 Å dust extinction feature. We measure equiva-
lent widths of Wr(λ 1560) = 0.12 ± 0.08 Å and Wr(λ 1656) =
0.21±0.05 Å (shown in Fig. 2). The equivalent width of C i λ 1560
is below the detection threshold of W lim

r = 0.2 Å, however, and we
therefore only report the C i in this system as a tentative detection.
To verify the detection we compared the velocity components seen
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Fig. 2. Same as Fig. 1 but for GRB 120815A, centred on z = 2.3581.
Consistent absorption profiles are also detected in C i λ 1277 and
C i λ 1328. Overplotted in red are the best-fit Voigt profiles. C i is de-
tected below the completeness limit in this system.

for theC i λλ 1560,1656lines to thenormalizedfluxat theregionof
the C i λλ 1277,1328 line transitions and found consistent results.
Based on these four sets of C iground-state and fine-structure lines
wefitVoigtprofiles toallcomponentsandline transitions tofurther
demonstrate the robustness of the detection. The best fit is shown
in Fig. 2 as the red solid line. We then also measured the equivalent
widths directly from the Voigt-profile model and found consistent
results.

3.1.3. GRB 121024A

The spectrum of GRB 121024A at z = 2.3024 is presented in
the work by Friis et al. (2015). We adopt the H i column den-
sity of log N(H i/cm2) = 21.88± 0.10 and the derived metallicity
[Zn/H] = −0.70 ± 0.10 from their work. They also detect absorp-
tion lines from H2 with a column density of log N(H2/cm2) ≈
19.8, which yields a molecular gas fraction of log f (H2) ≈ −1.4.
They do not report a detection of C i, but after re-examing
the spectrum we identify the ground-state and fine-structure
lines belonging to the C i λλ 1560,1656 transitions (see Fig. 3).
Zafar et al. (2018c) measured a visual extinction of AV = 0.19 ±
0.04 mag for this GRB and found no evidence for the pres-
ence of the 2175 Å dust extinction feature. We measure equiv-
alent widths of Wr(λ 1560) = 0.08 ± 0.05 Å and Wr(λ 1656) =
0.11 ± 0.07 Å. The equivalent width of C i λ 1560 is below the
detection threshold of W lim

r = 0.2 Å, however, and we therefore
only report the C i in this system as a tentative detection.

3.1.4. GRB 150403A

The spectrum of GRB 150403A at z = 2.0571 is presented in
the work by Selsing et al. (2018) from which we adopt the H i
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Fig. 3. Same as Fig. 1 but for GRB 121024A, centred on z = 2.3021. C i
is detected below the completeness limit in this system.

column density of log N(H i/cm2) = 21.80 ± 0.20. Detailed mea-
surements of the gas-phase abundances for this burst will be
presented in the work by Thöne et al. (in prep.), but see also
Heintz et al. (2018b) where they report [S/H] = −0.80 ± 0.35.
In this work we measure a visual extinction of AV = 0.20 ±
0.03 mag (see below), and find no evidence for the presence
of the 2175 Å dust extinction feature. The C i λλ 1560,1656 line
transitions are readily detected in the spectrum (see Fig. 4) and
we measure equivalent widths of Wr(λ 1560) = 0.34±0.03 Å and
Wr(λ 1656) = 0.50 ± 0.04 Å.

3.1.5. GRB 180325A

The spectrum of GRB 180325A at z = 2.2486 is presented in the
work by Zafar et al. (2018a). We adopt the H i column density of
log N(H i/cm2) = 22.30 ± 0.14, the derived metallicity [Zn/H] =
> −0.98, the measured visual extinction, AV = 1.58 ± 0.12 mag,
and the measured C i equivalent widths Wr(λ 1560) = 0.58 ±
0.05 Å and Wr(λ 1656) = 0.85±0.05 Å from their work (see also
Fig. 5). They also detect a strong 2175 Å dust extinction feature,
the strength of which follow the correlation expected from the
C i equivalent widths (Ma et al. 2018).

3.2. Dust extinction

Due to their immense luminosity and well-known intrinsic
power-law spectra, GRBs are an ideal probe of dust in star
forming galaxies and in the line of sight out to high red-
shifts (Zafar et al. 2011a,b; Greiner et al. 2011; Covino et al.
2013; Bolmer et al. 2018a). GRB extinction curves can typi-
cally be described by similar prescriptions as that of the Small
Magellanic Cloud (SMC), but can in rare cases also show a
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Fig. 4. Same as Fig. 1 but for GRB 150403A, where the ground-state
transitions are centred on z = 2.0569. C i is detected above the com-
pleteness limit in this system.

prominent 2175 Å extinction bump known locally from sight-
lines in the Milky Way (MW) and towards the Large Mag-
ellanic Cloud (LMC; e.g. Krühler et al. 2008; Elíasdóttir et al.
2009; Prochaska et al. 2009; Perley et al. 2011; Zafar et al.
2012, 2018a). GRB afterglows have recently been found to
show slightly steeper extinction curves on average than that of
e.g. the SMC (Zafar et al. 2018c). Even more unusual extinc-
tion features have also been observed, such as flat or “grey”
(Savaglio & Fall 2004; Perley et al. 2008; Friis et al. 2015) or
very steep (Fynbo et al. 2014; Heintz et al. 2017) reddening
curves. By utilizing the simple and smooth intrinsic power-law
spectra of GRBs, the specific extinction curves can be well-
constrained and provide a measure of the visual extinction, AV,
in the line of sight to the GRB, in addition to the overall dust
composition and grain size distribution.

The majority of the GRB afterglows in our parent sample al-
ready have published measurements of the extinction. Here we
provide values of AV for four additional bursts (GRBs 141109A,
150403A, 151021A, and 160203A) observed with VLT/
X-shooter (see Table 1) using the approach detailed in the sec-
tions below. Our procedure is similar to previous determinations
of AV’s in GRBs from the literature, although we do not rely
on multi-epoch photometry to normalize the X-ray to the optical
spectra. We find consistent results using our approach, compared
to already published values of AV in GRB sightlines.

3.2.1. Intrinsic afterglow SED

The continuum emission from a GRB afterglow is believed to
be dominated by synchrotron radiation described by a single or
broken power-law (Sari et al. 1998). It has also been verified ob-
servationally that the intrinsic X-ray spectrum derived from the
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Fig. 5. Same as Fig. 1 but for GRB 180325A, where the ground-state tran-
sitions are centred on z = 2.2494. C i is detected above the completeness
limit in this system. The spectrum has been binned by a factor of two.

Swift/XRT can be used as proxy for the intrinsic optical spec-
trum, typically with a cooling break of ∆β = 0.5 (Zafar et al.
2011a). The X-ray spectral slope in photon units, Γ, is given by a
fit to the Swift/XRT spectrum in the dedicated repository1. From
the photon index, the prescription for the intrinsic optical spec-
tral slope as a function of wavelength is given as

Fλ = F0 λ
(Γ−∆β−3) , (1)

or as a function of frequency, Fν = F0 ν
(Γ−∆β−2). In the follow-

ing analysis we will use the photon index from the Swift/XRT
database to derive the intrinsic spectral slope and allow for the
slope change due to the cooling break to take a value to take a
value of ∆β = 0.0 or 0.5.

Ideally, the optical/NIR and X-ray spectral energy distribu-
tions (SEDs) should be fit together to get an estimate of the
intrinsic slope (see e.g. Watson et al. 2006; Greiner et al. 2011;
Schady et al. 2012; Japelj et al. 2015; Bolmer et al. 2018a). To
do so, however, requires that multiple photometric data points
are available to normalize the optical and X-ray spectra to the
same epoch using their respective lightcurves. A subset of the
GRBs observed with VLT/X-shooter that have coinciding multi-
epoch photometry have already been published by Japelj et al.
(2015) and Zafar et al. (2018c). Using Eq. (1) we can estimate
the AV in an alternative way, not relying on near-simultaneous
photometric observations. To improve the absolute flux calibra-
tion of the VLT/X-shooter spectra, although not particularly im-
portant for our approach, we rescale the VIS arm to the measured
acquisition magnitude (typically R-band). The flux of the GRB
in the UVB and NIR arms are then scaled to match the VIS arm
spectrum.
1 http://www.swift.ac.uk/xrt_spectra/

A20, page 6 of 13

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834246&pdf_id=4
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834246&pdf_id=5
http://www.swift.ac.uk/xrt_spectra/


K. E. Heintz et al.: C i absorption in GRB afterglows

3.2.2. Dust-extinction model

The observed optical/NIR flux from the GRB afterglow is extin-
guished due to absorption or scattering by dust particles located
in the line of sight to the burst. In the majority of cases the dom-
inant contribution is from dust in the GRB host galaxy (after
correcting for the Galactic extinction). The observed afterglow
spectrum can therefore be described as

Fobs
λ = Fλ × 10−0.4 Aλ , (2)

where Aλ is the extinction as a function of wavelength, λ, in the
GRB host galaxy. The visual extinction, AV, can then be esti-
mated assuming a given dust-extinction model when knowing
the redshift of the GRB and using the intrinsic spectral shape as
measured from the X-ray spectrum.

We fit the combined X-shooter spectrum with the
dust-extinction model of Fitzpatrick & Massa (1990) which
parametrizes the extinction curve through a set of eight parame-
ters. The extinction curve is defined as

Aλ =
AV

RV
(k(λ − V) + 1) , (3)

where the relative reddening, k(λ − V), is given as
k(λ − V) = c1 + c2x + c3D(x, x0, γ) + c4F(x), (4)
with

F(x) =

(
0.539(x − 5.9)2 + 0.056(x − 5.9)3 for x ≥ 5.9
0 for x < 5.9

, (5)

and the Lorentzian-like Drude profile representing the
2175 Å extinction bump, observed locally in some sight-
lines in the MW and the LMC, is described as

D(x, x0, γ) =
x2

(x2 − x2
0)2 + x2γ2

, (6)

where x = (1 µm)/λ. Basically, this dust-extinction model con-
tains two components, one describing the linear UV part of the
spectrum via the components c1 (intercept), c2 (slope) and the
term c4F(x) describing the far-UV curvature. The second com-
ponent is the Drude profile, controlled by the parameters c3
(bump strength), x0 (central wavelength) and γ (width of the
bump). The last two parameters are the visual extinction, AV,
and the total-to-selective reddening, RV. The advantage of such
a parametrization of the dust-extinction model is that it allows
for, e.g., the strength and width of the 2175 Å bump to be fitted
independently (Jiang et al. 2010; Ledoux et al. 2015; Ma et al.
2017; Noterdaeme et al. 2017) and to model extinction curves
with no local analogs (Fynbo et al. 2014; Amanullah et al. 2014;
Heintz et al. 2017). We do not observe any evidence for the
2175 Å extinction bump or an unusual steep (or flat) reddening
curve in the four GRBs examined in this work.

We derive the rest-frame visual extinction, AV, by normaliz-
ing the intrinsic power-law spectrum to the flux in the NIR arm
in the wavelength region of a typical K-band. We then fit the ob-
served spectrum using three different reddening laws: SMC and
LMC as parametrized by Gordon et al. (2003) and the slightly
steeper reddening law inferred for the average GRB afterglow
derived by Zafar et al. (2018c), all using the Fitzpatrick & Massa
(1990) prescription. We fix the redshift of the dust component
to zGRB and then only vary AV. In Fig. 6 we show an example
of one of the fits for GRB 151021A. In this case we measure
AV = 0.20 ± 0.03 mag and find that the extinction is best fit
with the SMC reddening law. To verify our approach we also fit
the XS–GRBs for which the visual extinction has already been
measured and find consistent results. Our derived AV values are
provided in Table 1.

Fig. 6. Fit of the dust extinction, AV, to the spectrum of GRB 151021A.
The grey and black lines show the full raw and binned X-shooter spec-
trum, respectively. The corresponding raw error spectrum is shown as
the bottom dark grey line. The spectrum was normalized to the acquisi-
tion magnitude overplotted as the orange square. The intrinsic afterglow
spectrum derived from the Swift/XRT spectrum with a slope change of
∆β = 0.5 is shown as the blue solid line with the errors on the power-
law slope shown as the blue, dashed lines. An extinction curve with the
best fit value of AV = 0.20±0.03 mag is shown as the red, solid line and
the error on the fit is shown by the red, dashed lines.

3.3. Sample properties

The C i detections are reported in Table 1. It is detected robustly
(i.e. with Wr(λ 1560) > 0.2 Å) in eight GRBs, five from the F09
sample (GRBs 060210, 060607A, 061121, 080605, and 080607)
and three from the XS–GRB sample (GRBs 120119A, 150403A,
and 180325A). We do not include GRB 180325A in the following
statistical analysis since it is not part of the two sample papers and
was added specifically because of its detection of C i. In the statis-
tical sample, seven of the GRB afterglows (≈25%) thus have C i
detected in absorption, with an approximately 40% detection rate
in the F09 sample and ≈15% in the XS–GRB sample. The reason
for the larger detection in the F09 sample is likely due to most
of the afterglows have been obtained with more sensitive, low-
resolution spectrographs compared to the bursts observed with the
VLT/X-shooter instrument. Due to the usage of more sensitive,
low-resolution spectrographs pre-X-shooter, a larger fraction of
faint bursts that are potentially more obscured due to larger dust
columns entered the F09 sample. As a consequence, this sample
will contain more dust obscured afterglows, and therefore a higher
detection probability of C i is expected. This is also evident from
Table 1, showing that the bursts from the F09 sample have on av-
erage higher values of AV (with a mean of AV = 0.54 mag) than
those from the XS-GRB sample (mean of AV = 0.18 mag). Fur-
thermore, the two fractions are even consistent within ≈1σwhen
taking into account the low number statistics (Cameron 2011). We
also identify absorption from C i in GRBs 120815A and 121024A
but below the sample completeness limit and we therefore do not
include them in the statistical sample.

Our full sample spans a redshift range of z = 1−6 with C i ab-
sorption detected up to z ≈ 4 in GRB 060210. C i is also detected
in all GRBs where H2 has previously been reported in absorption
via the Lyman–Werner bands, except for GRB 120327A (which
has a low molecular fraction) for which we place upper limits of
Wr(λ 1560) < 0.03 Å and Wr(λ 1656) < 0.03 Å. This GRB is ob-
served to have an insignificant amount of dust (AV < 0.03 mag,
D’Elia et al. 2014), however, which would be consistent with the
non-detection of C i (see Sect. 4).
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Fig. 7. Redshift distribution as a function of GRB brightness at the time
of observation (middle panel) and dust extinction, AV (bottom panel).
Blue filled circles denote the GRBs in our statistical sample with C i de-
tected in absorption. Black empty circles mark the GRBs in our sample
without C i, where triangles represent upper limits on AV. In the middle
and bottom panels, the dashed lines show the mean acquisition magni-
tudes and AV values for the GRBs without (black) and with (blue) C i
detected in absorption in different bins: 1 < z < 2, 2 < z < 3, 3 < z < 4,
and z > 4. In the top panel the fraction of GRB C i absorbers is shown in
the same redshift interval. The GRBs with C i detected below the com-
pleteness limit are shown by the blue empty circles, and are not included
in the analysis.

In general, there is a strong excess of cold gas in GRB hosts
compared to absorbers in quasar sightlines (Ledoux et al. 2015),
where about one percent of intervening C i absorbers were found
with a completeness of around 40% at W lim

r = 0.2 Å. The strong
excess of cold gas is not unexpected since GRBs probe more
central regions of their host galaxies whereas quasars probe ran-
dom sightlines through intervening absorbers. Due to higher
ISM pressure, the covering fraction of the cold, neutral gas is
also expected to be higher closer to the galactic centre.

In the top panel of Fig. 7 we show the fraction of GRB
C i absorbers as a function of redshift, binned by ∆z = 1 from
z = 1−4 (where the errors are calculated assuming small number
statistics, see Cameron 2011). The GRB C i absorber fraction is
high at 1 < z < 2 with ≈75%, where for z > 2 the fraction ranges

from ≈20%−30%. Here we only consider the C i detections
from the statistical sample, thereby excluding GRBs 120815A,
121024A, and 180325A (but include them in the figure as empty
blue circles). In the middle panel of Fig. 7, the redshift distri-
bution is shown as a function of the observed acquisition mag-
nitude (typically in the R-band). We observe that the GRB af-
terglows with C i detected in absorption on average have fainter
magnitudes. In the bottom panel of Fig. 7 the redshift distribu-
tion is shown as a function of the visual extinction, AV, for each
burst. In general, the GRB C i absorbers are found to be the most
dust-reddened systems at all redshifts, shown by the curves rep-
resenting the mean of the two populations.

In our full sample of GRB C i absorbers, only four after-
glows (GRBs 070802, 080605, 080607, and 180325A) have a
robust detection of the 2175 Å dust extinction feature. All four
have considerable visual extinctions (AV > 0.5 mag, Zafar et al.
2012, 2018a) and strong C i equivalent widths of Wr(λ 1560) &
0.6 Å. Only three other GRBs with C i absorption in our full
sample, namely GRBs 060210, 061121 and 120119A, have
AV > 0.5 mag as well, but do not show any indication of
the 2175 Å dust extinction feature. For the GRBs 060210 and
061121, Covino et al. (2013) found a best fit with an SMC-
like extinction curve, though only based on its broad-band pho-
tometry. Initially, Japelj et al. (2015) found a best fit with an
LMC-like extinction curve for GRB 120119A but Zafar et al.
(2018c) argue that it was a false detection based on the unbinned
X-shooter spectrum and found a best fit with an SMC-like ex-
tinction curve instead. In the statistical sample of GRB C i ab-
sorbers, about 40% thus show the presence of the 2175 Å dust
extinction feature (consistent with the quasar C i absorber sam-
ple; Ledoux et al. 2015).

4. Results

The left panel of Fig. 8 shows the C i equivalent width as a func-
tion of the visual extinction, AV, for the GRB C i absorbers. We
also overplot the quasar C i absorbers from Ledoux et al. (2015)
and the 2175 Å dust extinction feature absorbers, all with C i de-
tected in absorption as well, from Ma et al. (2017, 2018). We
find a strong linear correlation (with Pearson correlation coeffi-
cients of r = 0.80 and p = 0.02) between AV and Wr(λ 1560) for
the GRB C i absorbers. We also note that C i is only detected in
systems with AV & 0.1 mag, classifying the GRB C i systems as
translucent interstellar clouds (see e.g. Snow & McCall 2006).

In the right panel of Fig. 8 we again show the C i equivalent
widths but as a function of the strength of the 2175 Å dust ex-
tinction feature, Abump, defined as Abump = π c3/(2 γRV) × AV.
Only in five GRB absorbers to date has the 2175 Å dust extinc-
tion feature been unambiguously observed (Krühler et al. 2008;
Elíasdóttir et al. 2009; Prochaska et al. 2009; Perley et al. 2011;
Zafar et al. 2012, 2018a), where C i is detected in four of them
(the non-detection in the last afterglow, GRB 080805, is poorly
constrained due to low S/N, however, see Zafar et al. 2012).
Here, we plot the four GRB C i absorbers with a clear presence
of the 2175 Å dust extinction feature (see Table 1), where we
have extracted the bump parameters for the four cases from the
literature (Zafar et al. 2011a, 2018a) and thus extend the anal-
ysis of Zafar et al. (2012). We also include the upper limits on
the bump strength as measured for the other GRB C i absorber
assuming the smooth SMC bar prescription by Gordon et al.
(2003). We find evidence for a positive correlation between the
amount of neutral carbon and the bump strength for the GRB C i
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Fig. 8. C i λ 1560 rest-frame equivalent width as a function of dust extinction, AV (left panel) and 2175 Å bump strength, Abump (right panel). The
blue filled circles denote the GRBs with C i detected in absorption (empty blue circles show the GRBs with C i detected below the completeness
limit), where the filled blue left-pointing triangles in the right panel represent the upper limit on Abump derived for the other GRB C i absorbers
(assuming an SMC bar extinction curve). The yellow squares show the quasar C i absorbers from Ledoux et al. (2015) and the green diamond
symbols represent the quasar 2175 Å dust extinction feature absorbers from Ma et al. (2018). The dashed lines mark the Wr(λ 1560) detection limit
and maximum AV and Abump for the GRBs with non-detections of C i.

absorbers. With only four detections of the 2175 Å dust extinc-
tion feature in GRB C i absorbers, however, we are still limited
by low number statistics. This relation has already been estab-
lished by Ledoux et al. (2015) and Ma et al. (2018) for a larger
number of quasar C i absorbers, but the addition of the small
sample of GRB C i systems support this correlation and verify it
at Abump > 1 mag as well.

The fact that C i absorbers are associated with significant
dust columns is now firmly established (Ledoux et al. 2015;
Ma et al. 2018). This could be related to larger dust columns
more effectively shielding the neutral carbon or simply that
C i scales with the overall amount of carbon which is domi-
nant in the dust-phase. Nevertheless, it is established that in
the cold neutral gas-phase, the amount of shielded gas and
dust are connected. We note that among the quasar C i ab-
sorbers, some systems have large Wr(λ 1560) but low extinc-
tion values which might indicate that these absorbers are metal-
rich but with low gas content. The fact that no quasar C i ab-
sorbers with AV > 1 mag have been detected might be due
to a more severe dust bias in quasar DLA samples than for
GRB afterglows (e.g. Heintz et al. 2018a). However, it could
also simply be related to the fact that quasar DLAs are rarely
observed with large N(H i) whereas GRB absorbers typically
probe dense, central-galactic environments. We also find that the
2175 Å dust extinction feature is only detected in GRBs with sig-
nificant extinctions of AV > 0.5 mag and strong C i absorption of
Wr(λ 1560) > 0.6 Å.

In Fig. 9 we show the relation between AV and the column
density of neutral hydrogen (H i) for the GRBs at z & 1.7 in our
sample and again compare them to the quasar C i absorbers from
Ledoux et al. (2015) and the 2175 Å dust extinction feature ab-
sorbers from Ma et al. (2017, 2018). For reference, the average
dust-to-gas ratios from specific Galactic sightlines and toward
the SMC bar, the mean LMC and the LMC2 supershell from
Gordon et al. (2003) are shown as well. In general, the GRB C i
systems (and also the general sample of GRB absorbers) seem

to have lower dust-to-gas ratios than the average Milky Way
sightline, with a median value of AV/N(H i) = 7.92 × 10−23 mag
cm−2. In the different regimes of H i covered by GRBs and the
quasar absorbers, it is evident that the dust-to-gas ratio is sig-
nificantly lower for the GRB C i systems than what is observed
for the quasar C i absorbers. This is likely a consequence of the
on average lower metallicities of the GRB host absorption sys-
tems (Zafar et al. 2011a) and the fact that the dust-to-metals ra-
tio decrease with decreasing metallicity (e.g. De Cia et al. 2013;
Wiseman et al. 2017).

For the majority of the GRBs at z & 1.7, we also obtained
values for the metallicity, [X/H], from the literature (see Table 1).
This, together with the H i column density, yields the metal col-
umn density of the GRB absorbers, related to the dust column
density (Vladilo et al. 2006; Zafar & Watson 2013). In the left
panel of Fig. 10 we show the metallicity as a function of H i col-
umn density for the GRBs in our parent sample. While the full
sample spans a large range of 18.7 < log N(H i)/cm−2 < 22.7
and −2.2 < [X/H] < −0.2, it is clear that the GRB C i ab-
sorbers are all located above the threshold log N(H i)/cm−2 +
[X/H] > 20.7 (marked as the dashed line). Bolmer et al. (2018b)
also found consistent results for H2-bearing GRB absorbers,
though extended to lower metallicities. We note that in the
study of Ledoux et al. (2009), none of the GRBs in their sample
have log N(H i)/cm−2 + [X/H] > 20.7. This threshold discovered
here would then explain the non-detections of H2 and C i ab-
sorption features in their high-resolution sample (as speculated;
Ledoux et al. 2009; Krühler et al. 2013).

To investigate more directly the influence of dust on
the detection of C i, we derive the column density of
iron locked into the dust-phase, defined as N(Fe)dust =
(1−10−[X/Fe]) N(X) (Fe/X)� (e.g. Vladilo et al. 2006). This
quantity has been identified as the primary driver of the de-
tection of H2 molecules in quasar absorbers (Noterdaeme et al.
2008). Only for a subset of the GRB afterglows in our sample at
z & 1.7, has the dust depletion, [X/Fe], been measured. Here it
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Fig. 9. Column density of neutral hydrogen (H i) as a function of dust
extinction, AV, i.e. the dust-to-gas ratio. Blue filled circles again denote
the GRBs with C i detected in absorption (empty blue circles show the
GRBs with C i detected below the completeness limit). Black empty cir-
cles mark the GRBs in our sample without C i, where triangles represent
bursts with upper limits on AV. The yellow squares show the quasar
C i absorbers from Ledoux et al. (2015) and the green diamond sym-
bols represent the quasar 2175 Å dust extinction feature absorbers from
Ma et al. (2018). Overplotted are the average dust-to-gas ratios from
specific sightlines in the Local Group (MW, LMC, LMC2 and SMC)
from Gordon et al. (2003).

is assumed that X is a non-refractory element (typically Zn or S,
but see e.g. Jenkins 2009; De Cia et al. 2016) and that the intrin-
sic ratio is Solar. In the right panel of Fig. 10 we again show the
metallicity but as a function of N(Fe)dust for a subset of the GRB
afterglow sample. We again observe a clear detection threshold
of log N(Fe)dust/cm−2 > 16.2, above which all the GRB C i ab-
sorbers are located.

We find no correlation between the metal or dust column
density and the amount of neutral carbon. That is, a certain
amount of metals is necessary to form dust and characterize
absorbers with detected C i. However, the strength of Wr(λ 1560)
is found to be positively correlated only with the dust-reddening,
AV. Moreover, since the GRB C i absorbers are linked to the
2175 Å dust extinction feature and also exclusively found at high
N(Fe)dust, they must trace both carbon- and iron-rich dust, but the
dust composition is likely predominantly carbon-rich since the
amount of visual extinction, AV, and the detection probability of
the 2175 Å dust extinction feature are found to be correlated with
the amount of neutral carbon.

Above the detection thresholds of log N(H i)/cm−2 + [X/H]
> 20.7 and log N(Fe)dust/cm−2 > 16.2 two more GRBs
(120815A and 121024A) are also observed with C i detected be-
low the completeness limits. Two other bursts (GRBs 120327A
and 151021A) are observed in this region as well but without C i
detected in absorption down to limits of Wr(λ 1560) < 0.03 Å
and Wr(λ 1560) < 0.17 Å, respectively. GRB 120327A has a re-
ported detection of H2, although with a low molecular fraction
and dust extinction (D’Elia et al. 2014).

5. The diversity of cold gas absorbers

The presence of cold and molecular gas is regulated by the
amount of dust in the ISM, that both serves to enhance the for-
mation of molecular hydrogen onto dust grains but also lower
the photo-dissociation rate by dust- and self-shielding. The de-
tection probability of H2 in quasar absorption systems is specif-
ically found to be a function of metallicity and/or dust depletion
(Ledoux et al. 2003; Srianand et al. 2005; Petitjean et al. 2006;
Noterdaeme et al. 2008). In Fig. 11 we again plot the metallic-
ity as a function of H i column density (similar to Fig. 10) but
now we focus on various types of absorption systems in which
C i or H2 (or both) have been detected. This is to investigate
the diversity of the different types of these cold gas absorbers.
We include the GRB C i absorbers from this study, the quasar
C i absorbers from Ledoux et al. (2015) with existing metallici-
ties from Zou et al. (2018), and the quasar absorbers selected on
the basis of the 2175 Å dust extinction feature, all showing the
presence of C i, from Ma et al. (2017, 2018). For the compari-
son, we only include the systems with Wr(λ 1560) > 0.2 Å from
the quasar absorber samples to match our completeness limit.
We also include the quasar absorbers with H2 detections from
the high-resolution VLT/UVES sample by Noterdaeme et al.
(2008).

We observe a notable difference between the GRB and
quasar absorber populations: quasar absorbers with C i or H2
detected in absorption are observed at significantly lower metal
column densities than that of the GRB C i absorbers. In Fig. 11
we mark the lower limit in the H i-metallicity plane for which
C i and H2 has been detected in quasar absorbers as the bot-
tom dashed line (at log N(H i)/cm−2 + [X/H] ≈ 19.5). As can be
seen from the figure, the cold neutral gas-phase is only observed
in GRB hosts with metal column density ∼10 times larger than
typically observed for quasar absorbers selected on the basis of
C i within the same completeness limit of Wr(λ 1560) > 0.2 Å.
We caution that Fig. 11 mainly demonstrates the various se-
lections from which these cold gas absorbers have been identi-
fied. GRB sightlines are expected to probe systematically higher
metal column densities than quasar absorbers and the reason for
the GRB C i absorbers to not be detected at lower metal col-
umn densities could simply be related to the small sample size
not properly sampling the lower end of the parameter space.
We emphasize, however, that the GRB afterglows observed with
UVES as part of the F09 sample have log N(H i)/cm−2 + [X/H]
in the same range (log N(H i)/cm−2 + [X/H] = 19.7−20.7), but
show non-detections of C i (and H2) down to similar deep lim-
its as derived for the quasar H2 absorbers. The non-detections
in the GRB UVES sample could also be a consequence of the
low sample size. However, while the general fraction of ab-
sorbers with cold gas in quasar sightlines is small (5–10% esti-
mated for H2-bearing quasar absorbers; Noterdaeme et al. 2008;
Balashev et al. 2014; Balashev & Noterdaeme 2018), the frac-
tion increases significantly at log N(H i)/cm−2 + [X/H] > 20
(to &60%; Noterdaeme et al. 2015) and it would therefore be
surprising that we do not detect C i in the GRB UVES sam-
ple solely due to the small sample size. A more plausible cause
for the non-detection of C i in the GRB UVES sample is that
it only consists of the brightest afterglows and therefore as
a consequence is biased against dusty and metal-rich GRBs
(Ledoux et al. 2009).

The quasar absorbers selected on the basis of the 2175 Å dust
extinction feature appear mostly above the same threshold of
log N(H i)/cm−2 + [X/H] > 20.7 as the GRB C i absorbers,
though at higher metallicities and lower H i column densities.
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Fig. 10. Metallicity distribution as a function of H i column density (left panel) and dust-phase iron column density, N(Fe)dust (right panel). Only
the subsets of the full GRB sample with both a metallicity and N(H i) measurements (left) and depletion values (right) are shown. Blue filled
circles again denote the GRBs with C i detected in absorption (empty blue circles show the GRBs with C i detected below the completeness limit).
Black empty circles mark the GRBs in our sample without C i, where triangles represent bursts with lower limits on [X/H]. In the left panel, the
dashed line corresponds to log N(H i)/cm−2 + [X/H] = 20.7, above which all the observed systems with detected C i are located and in the right
panel the dashed line mark log N(Fe)dust/cm−2 = 16.2. At the top of both panels there are histograms of H i column density (left) and dust-phase
iron column density (right) of the GRB absorbers with (filled blue) and without (black line) C i detected in absorption.

Among the quasar absorbers, the C i-selected systems appear
to follow the same trend as the H2-bearing absorbers, but
are predominantly more metal-rich (as expected). On aver-
age, the GRB C i absorbers are the most gas-rich sightlines,
with metal column densities comparable only to the quasar ab-
sorbers selected on the presence of the 2175 Å dust extinction
feature.

In Fig. 12 we compare the same samples examined above
but study different dust indicators as a function of the metal
column density. Here, we again include the GRBs in which
C i is not detected. First, we show that the metal column den-
sity is not correlated with the amount of neutral carbon repre-
sented by Wr(λ 1560) in any of the samples. Then, we investigate
the detection probability of C i in GRB afterglows as a func-
tion of dust depletion, [X/Fe], in the middle panel of Fig. 12.
This is motivated by the study of Ledoux et al. (2003), who
found that the detection probability of H2 in quasar absorbers
is connected to the level of [X/Fe]. One burst, GRB 070802,
with C i detected in absorption, has a modest depletion value
([X/Fe] = 0.46) and the remaining GRB C i systems have [X/Fe]
> 0.7. However, there are several other GRBs without the pres-
ence of C i absorption features observed with similar high de-
pletion values. This suggests that the presence of C i in GRB
hosts is not particularly related to the amount of dust derived
from the gas-phase depletion level. Following Ledoux et al.
(2003) we instead examine the dependence on the dust-to-gas
ratio determined from the depletion level, described as κX =
10[X/H](1 − 10−[X/Fe]). They found that quasar H2 absorbers
were only detected at log κX & −1.5, so this quantity could be
more directly related to the presence of cold and molecular gas.

Contrary to the dust depletion, we find a more distinct threshold
for GRB C i absorbers to appear only above a certain depletion-
derived dust-to-gas ratio of log κX & −1 (see the bottom panel
of Fig. 12). Only two of the GRB absorbers with non-detections
of C i (GRBs 050820A and 141028A) show the same depletion-
derived dust-to-gas ratios. We note from Fig. 12, that κX is
higher on average for the quasar H2 absorbers compared to the
GRBs with non-detections of C i. This could possibly explain
why cold gas is detected in these particular quasar absorbers
and not in the GRB absorbers with comparable metal column
densities.

We therefore argue that the detection threshold of C i is pri-
marily a function of the metal and dust column density. The
fact that the cold neutral gas-phase in GRB hosts is only ob-
served at metal and dust column densities more than an order
of magnitude larger than for typical quasar absorbers is likely
due to how these two absorber populations are selected. How-
ever, it could also be evidence of denser environments or more
intense UV fields in the ISM of the star-forming GRB host
galaxies (as speculated; Tumlinson et al. 2007; Whalen et al.
2008). Finally, we note from Fig. 11 that C i or H2-bearing
quasar absorbers with high metal column densities are scarse.
This deficit is likely not physical, however, but instead re-
lated to selection bias in quasar samples, systematically evad-
ing foreground absorbers rich in metals, dust and molecules
(Krogager et al. 2016b; Fynbo et al. 2017; Heintz et al. 2018a).
Such a bias might also exist to a lesser extent in GRB afterglow
samples. This bias will not affect the results of this paper, how-
ever, only underestimate the underlying population of GRB C i
absorbers.
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Fig. 11. Comparison of the metallicity distribution as a function of H i
column density for quasar and GRB absorbers with C i or H2 detec-
tions. Blue filled circles again denote the GRBs with C i detected in
absorption (empty blue circles show the GRBs with C i detected below
the completeness limit). Overplotted are the quasar absorbers with H2
detections from the VLT/UVES sample (dark red squares), quasar ab-
sorbers selected for the presence of the 2175 Å dust extinction feature
(green diamonds) and quasar absorbers selected for the presence of C i
absorption (yellow squares). Only systems with Wr(λ 1560) > 0.2 Å
from each of the C i samples are shown. The dashed lines mark constant
values of log N(H i)/cm−2 + [X/H] as indicated at each line.

6. Conclusions

In this work we presented a survey for neutral atomic-carbon
(C i) in a sample of 29 medium- to high-resolution GRB af-
terglow spectra. We detected the absorption features of the
C i λλ 1560,1656 line transitions in seven bursts (≈25%) in our
statistical sample at redshifts ranging from 1 < z < 4. These
GRB C i absorbers probe the shielded cold, neutral gas-phase of
the ISM in their host galaxies and previous studies found the de-
tection of C i to be directly linked to the presence of molecular
hydrogen (Srianand et al. 2005; Noterdaeme et al. 2018).

Our goals were to characterize the dust properties (such as
the amount of extinction and the strength of the 2175 Å dust
extinction feature) and the chemical abundances of these GRB
C i absorbers. We found that the amount of neutral carbon is
positively correlated with the visual extinction, AV, and the
strength of the 2175 Å dust extinction feature (as also observed
for quasar C i absorbers; Ledoux et al. 2015; Ma et al. 2018).
These relations support a scenario where it is predominantly
carbonaceous dust grains that produce the characteristic bump
(Henning & Salama 1998; Draine 2003). The average dust-to-
gas ratio of the GRB C i absorbers was found to be signifi-
cantly smaller than observed for quasar C i absorbers and in
typical Milky Way sightlines, with a median value of
AV/N(H i) = 7.92 × 10−23 mag cm−2. We showed that C i is only
observed in GRB host absorption systems above a certain thresh-
old of log N(H i)/cm−2 + [X/H] and dust-phase iron column den-
sities of log N(Fe)dust/cm−2 > 16.2. The connection of the GRB
C i systems to the 2175 Å dust extinction feature and the large
values of N(Fe)dust indicate that the C i absorbers trace dusty

     

0.0

0.5

1.0

1.5

     

0.0

0.5

1.0

1.5

W
r 1

56
0 

 [Å
]

GRB CI absorbers
Lower limits on [X/H]
Tent. GRB CI absorbers
GRB CI non-detections

QSO H2 detections (Noterdaeme+08)
QSO 2175Å absorbers (Ma+18)
QSO CI absorbers (Zou+18)

19.5 20.0 20.5 21.0 21.5
log N(HI)/cm-2  + [X/H]

-3

-2

-1

0

1

lo
g 

k X

     
 

0.0

0.5

1.0

1.5

2.0

D
us

t d
ep

le
tio

n 
 [X

/F
e]

Fig. 12. log N(H i)/cm−2 + [X/H], as a function of Wr(λ 1560) (top
panel), dust depletion, [X/Fe], (middle panel) and depletion-derived
dust-to-gas ratio, κX, (bottom panel) for quasar and GRB absorbers with
C i or H2 detections. The same symbols are used as in Fig. 11, but here
we also include the GRB afterglows with non-detections of C i (marked
by the dashed lines in the top panel and as black empty circles in the
bottom panels).

systems with a dust composition that both consist of carbon- and
iron-rich dust grains, but is dominated by the carbon-rich dust.

The fact that the metal and dust column densities of the GRB
C i absorbers are higher than observed for C i- and H2-bearing
quasar absorbers is primarily a consequence of how these two
absorber populations are selected, but is also consistent with
a scenario where GRB hosts have more intense galactic UV
fields than the galaxy counterparts of the quasar absorbers. We
also investigated the detection probability of C i as a function of
other dust tracers such as the gas-phase depletion, [X/Fe], and
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the depletion-derived dust-to-gas ratio, κX. We found that the
metal and dust column densities are the primary driver for the
presence of C i in GRB hosts, although the amount of neutral
carbon is not correlated with either. Instead, the amount of neu-
tral carbon is positively correlated with the visual extinction,
AV, but is detected down to relatively small visual extinctions
of AV ≈ 0.1 mag.

We argue that C i has a number of advantages as a tracer of
the cold neutral medium in GRB hosts due to the observational
limitations of identifying H2 absorption features in the major-
ity of GRB afterglow spectra. A more detailed analysis of the
relations between H2, C i and CO column densities in GRB ab-
sorbers is needed to better constrain the physical properties of
the cold gas. Follow-up observations of the host galaxies of the
GRB C i absorbers identified here at millimetre wavelengths with
e.g. ALMA would also be interesting to pursue in the future.
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