Synthesis and Reactivity of the Phosphorus Analogues of Cyclopentadienone, Tricyclopentanone, and Housene

Krachko, T.; Ehlers, A.W.; Nieger, M.; Lutz, M.; Slootweg, J.C.

DOI
10.1002/ange.201711838
10.1002/anie.201711838

Publication date
2018

Document Version
Final published version

Published in
Angewandte Chemie

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):
Synthesis and Reactivity of the Phosphorus Analogues of Cyclopentadienone, Tricyclopentanone, and Housene
Tetiana Krachko, Andreas W. Ehlers, Martin Nieger, Martin Lutz, and J. Chris Slootweg*

Abstract: The phosphorus analogues of cyclopentadienone, tricyclopentanone, and housene were accessed from bis(cyclopropenyl)diphosphene 4, which was prepared by mixing 1,2,3-tris-tert-butycyclopropenium tetrafluoroborate (1) and sodium phosphaethynolate [Na(OCP)(dioxane)]. While photolysis of 3 results in decarbonylation, yielding bis(cyclopropenyl)diphosphene 4 and after rearrangement diphosphahousene 5, thermolysis of 3 leads to phosphatricyclo[2.1.0]pentanone. Metal-mediated valence isomerization of 7 and subsequent demetalation provides access to phosphacyclopentadienone 12.

Pericyclic reactions are a powerful, atom-economical tool to provide access to strained ring systems with interesting topology. A striking example is the photoisomerization of tetra-tert-butycyclopentadienone A (R, R' = tBu; Scheme 1)\(^{[1]}\) a key cooperative ligand in Shvo's catalyst.\(^{[12]}\)

Upon excitation (254 nm) A exclusively gives tricyclo[2.1.0.0\(^{2,5}\)]pentan-3-one B, which either converts into cyclopropenylketene C or releases carbon monoxide to afford the highly strained tetrahehedral D. On the other hand, irradiation of tris-tert-butyl-substituted dienone A (R = tBu, R' = H) yields the thermally unstable housene E (X = CO) that provides the antiaromatic cyclobutadiene F via CO elimination.\(^{[3]}\)

To date, only one thermally stable, all-carbon housene E (X = CH\(_2\), R = tBu, R' = CO\(_2\)Bu)\(^{[4-5]}\) has been reported. Incorporation of heteroatoms such as phosphorus into these molecules is appealing owing to their propensity to accommodate small angles and at the same time provide a coordinate site. So far, studies on the phosphorus analogues of A–F are scarce,\(^{[6]}\) and only Cowley's diphosphatricyclopentanone G.\(^{[7]}\) Nixon's triphospha analogue of housene H,\(^{[8]}\) and Sekiguchi's monophosphahousene I\(^{[9]}\) have been reported.

We anticipated the phosphorus analogue of C (cyclopropenylphosphaketene 2; Scheme 2)\(^{[10]}\) to be an ideal entry point into this chemistry, as both the required cyclopropenium cations and the phosphaethynolate anion (OCP)\(^{[11]}\) are nowadays readily available. In this study, we focus on 1,2,3-tris-tert-butycyclopentadienonium tetrafluoroborate (1)\(^{[12]}\). Addition of toluene to a mixture of [Na(OCP)(dioxane)] (n = 2.5–2.8) and I at −78°C gave a 1:1 mixture of 2 (δ\(^{1}P[H] = −231.7 \text{ ppm}\)) and 3 (δ\(^{31}P[H] = 119.0 \text{ ppm}; \text{Scheme } 2)\(^{[13]}\) that within 18 hours at 20°C fully converts into 1,3-diphosphatene-2,4-dione 3, which was isolated as a yellow powder in 97% yield (δ\(^{31}P[H] = 119.0 \text{ ppm}; δ\(^{31}C[H] = 224.8 \text{ ppm}; \text{Scheme } 2)\(^{[13]}\). Evidently, intermediate 2, which we attribute to the phosphorus analogue of C,\(^{[14]}\) dimerizes via a facile head-to-tail [2+2] cycloaddition of the P=O bonds to yield 3,\(^{[15]}\) which is also supported by DFT

\[\text{Scheme 1. Illustrative examples of strained ring systems.}\]

\[\text{Scheme 2. Synthesis of 1,3-diphosphatene-2,4-dione 3.}\]

\(^{[1]}\) T. Krachko, Dr. A. W. Ehlers, Prof. Dr. J. C. Slootweg
Van ‘t Hoff Institute for Molecular Sciences
University of Amsterdam, Science Park 904
PO Box 94157, 1090 GD Amsterdam (The Netherlands)
E-mail: j.c.slootweg@uva.nl

Dr. A. W. Ehlers
Department of Chemistry, Science Faculty
University of Johannesburg
PO Box 254, Auckland Park, Johannesburg (South Africa)

Dr. M. Nieger
Department of Chemistry University of Helsinki
A. I. Virtasen aukio 1, PO Box 55, Helsinki (Finland)

Dr. M. Lutz
Crystal and Structural Chemistry
Bjøøet Center for Biomolecular Research, Utrecht University
Padaualaan 8, 3584 CH Utrecht (The Netherlands)

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.201711838.
Diphosphatetanedione 3 is stable under an inert atmosphere, but is light-sensitive. In daylight, it slowly releases CO, while irradiation with a xenon lamp quantitatively converts a bright yellow toluene solution of 3 into the orange diphosphene 4 (3 h, RT), which was isolated after removal of all volatiles in 99% yield (Scheme 3; \(\delta^{31}\text{P}[\text{H}]=585.3\text{ ppm}\)\[16,17\]). The molecular structure of 4, determined by a single-crystal X-ray structure determination (Figure 1, top left),\[18\] reveals a centrosymmetric diphosphene with typical P1–P1a (2.0210(6) Å) and P1–C1 (1.8778(12) Å) bond lengths and a syn conformation (P1a-P1-C1-C4 171.67(4)) of the cyclopropenyl groups and the P=P double bond. Note that the related bis(pentamethylcyclopentadienyl)diphosphene (Cp*P=P=CP*) has the cyclopentadienyl rings and P=P bond positioned anti to each other.\[19\] \(\delta^{31}\text{P}[\text{H}]=8.0\text{ kcal mol}^{-1} \), while the anti conformer is favored for the corresponding methyl-C1 analogue (\(\Delta \delta^{31}\text{P}[\text{H}]=-1.1\text{ kcal mol}^{-1} \)).\[13\]

Next, we studied the thermal stability of 4 and discovered a rare pericyclic rearrangement for a diphosphene.\[20\] Heating 4 for 20 hours in refluxing toluene afforded 5, which displays two different \(\delta^{31}\text{P}[\text{H}]=53.5\) (P1), -169.1 ppm (P2), \(J_{PP}=171.0\) Hz. Single-crystal X-ray structure determination provided unequivocally the molecular structure of 5 (Figure 1, top right),\[13\] which displays a diphosphahousene motif with a dihedral angle of 99.7° between the three-membered diphosphirane and the almost planar 4-membered phosphacyclobutene moiety (C3-P2-C1-C2 136(10)). Although diphosphahousene 5 (P=H) bears six inequivalent tert-butyl groups, only 4 different \(\delta^{1}\text{H} \) and \(\delta^{13}\text{C}[\text{H}] \) NMR resonances were found at room temperature. Upon cooling to -80°C, the expected 6 sets of \(\delta^{3}\text{Bu} \) signals were observed, indicating that 5 is dynamic at room temperature and undergoes a facile degenerate \([1,3]\) sigmatropic shift (see Scheme 3),\[21\] which was supported by theory (\(\Delta \delta^{31}\text{P}[\text{H}]=17.5\text{ kcal mol}^{-1} \) at \(\delta^{31}\text{P}[\text{H}]=1.1\text{ kcal mol}^{-1} \) to \(\delta^{31}\text{P}[\text{H}]=8.0\text{ kcal mol}^{-1} \)).

To gain more insight into the mechanism of the unusual 4→5 rearrangement, we resorted again to DFT calculations\[13\] and found that 4 undergoes a [2+2] cycloaddition between the P=P and C=C bonds affording P-bridged phosphahyphorcycle[1.1.0]butane 9 as intermediate (\(\Delta \delta=2.7\text{ kcal mol}^{-1} \), \(\Delta \delta^{*}=31.4\text{ kcal mol}^{-1} \), Scheme 4). Compound 9 cannot undergo the classical bicyclo[1.1.0]butane-butaediene rearrangement to give diphosphacyclopentadiene 10 owing to geometrical constraints\[23\] but affords 5 instead via an unprecedented tricyclopropene-housene rearrangement\[24\] affording 10 (\(\Delta \delta=7.2\text{ kcal mol}^{-1} \), \(\Delta \delta^{*}=38.8\text{ kcal mol}^{-1} \)).
followed by an electrocyclic ring closure ($\Delta E^* = 36.6$ kcal mol$^{-1};$ Scheme 4), but this is a higher energy process.

Next, we explored the thermal stability of diphospheta-

dione 3 as a promising route to obtain the P analogues of A and B (Scheme 1). Heating 3 in the dark for 20 hours in refluxing toluene results in the formation of 7 ($8\text{P}^\text{H} = -384.1$ ppm, $\nu(\text{CO}) = 1722$ cm$^{-1};$ 85 %), 8 ($6\text{P}^\text{H} = 134.5$ (P1), 153.9 ppm (P2), $J_{PP} = 4.8$ Hz; 12 %; Scheme 3) and an unidentified minor product ($9\text{P}^\text{H} = -170.0$ ppm; 3 %; Supporting Information, Figures S9, S10). Major product 7 was isolated as colorless crystals in 55 % yield by recrystal-

ization of the crude from Et$_2$O at -78°C and was charac-

terized crystallographically (Figure 1, bottom left). The molecular structure of 7 reveals a 1-phosphatricyclo-

[2.1.0]pentan-3-one framework (P1-B) with a remarkably small sum of angles at phosphorus (163.95(9)°), highlighting the tetrahedrane-type geometry. The transannular P1-C3 bond (1.8081(12) Å) of the bicyclobutane core is considerably shorter than the other two P-C bonds (P1-C2 1.9198(12), P1-C4 1.9293(13) Å), which points to a strongly bent o-bond that was also reported for the all-carbon tricyclopentanones B$^{[29]}$ oB97X-D/6-31G(d,p) calculations$^{[30]}$ provided insight into the formation of 7 and revealed that phosphaketene 2 is an intermediate, that was also detected spectroscopically during the reaction (Supporting Information, Figures S7, S8), which forms 2-phosphatricylo-pentan-3-one 6 via a [2+2] cycloaddition ($\Delta E = -11.8$ kcal mol$^{-1}$, $\Delta E^* = 25.9$ kcal mol$^{-1}$; Scheme 3). Subsequently, transient 6 undergoes a type 1 dyotropic rearrangement$^{[20]}$ to alleviate steric strain of the three neighboring tert-butyl groups providing 7 ($\Delta E = -23.5$ kcal mol$^{-1}$, $\Delta E^* = 30.4$ kcal mol$^{-1}$). After separating 7 from the product mixture, column chromatography of the residue under an inert atmosphere afforded 2-oxa-1,4-

diphasphacyclo[3.2.0]hepta-3,6-diene 8 as a yellow crystal-

linal solid in 7% yield (Scheme 3; Figure 1, bottom right)$^{[30]}$ which formally results from a [2+3] cycloaddition of the putative phosphacylobutadiene$^{[27]}$ and the rearranged phosphaketene 2, in analogy to the chemistry of (phosphanyl)-phosphaketenes recently reported by Grützmacher, Bertrand, and co-workers.$^{[19]}$

To access the P$_2$A, we targeted the metal-mediated valence isomerization of phosphatricyclopentadione 7$^{[29]}$ Satisfyingly, treatment of 7 with 1.0 equivalent of RhCl[(triphos)$_2$], in refluxing dichloromethane afforded rhodium complex 11, which was isolated as brown crystals in 55 % yield by recrystallization from Et$_2$O at -78°C (8P^H: 32.9 (dd, $J_{PP} = 171.2$ Hz, $J_{PP} = 11.0$ Hz; P2), -24.9 (dd, $J_{PP} = 30.3$ Hz, $J_{PP} = 11.0$ Hz; P1), $\nu(\text{CO}) = 1644$ cm$^{-1}$; Scheme 5). The molecular structure of 11 (Figure 2, left)$^{[30]}$ revealed the formation of a unique (η^1-

phosphacyclopentadienone)rhodium(I) complex, which is the phosphorus analogue of [[Ph,C(=C)O)]MCl(triphos)]Cl (M = Rh, Ir), a key pre-catalyst for the acceptorless dehydrogenation by metal–ligand cooperation.$^{[30]}$ The PPh$_3$ ligand in 11 shows a strong trans-influence (P2-Rh1-C4 169.20(5)°), which leads to elongation of the Rh1-C4 bond (2.2595(16) Å) versus the shorter Rh1-C2 bond (2.2011(17) Å) and Rh1-C5 bond (2.1773(17) Å).

Finally, we focused on the demetallation of 11. Addition of 1.1,1-tris(diphenylphosphinomethyl)ethane (triphos) to a dichloromethane solution of 11 at room temperature afforded within minutes selectively phosphacyclopenta-

dione 12 ($8\text{P} = 303.1$ ppm; δ^{13}C = 195.4 ppm (P = C), $J_{PP} = 31.4$ Hz; Scheme 5) together with a mixture of [Rh(triphos),]Cl and PPh$_3$, as confirmed by 31^P, H, and 13^C NMR spectroscopy (Supporting Information, Figures S11–S13). Upon removal of the solvent, 12 rapidly dimerizes$^{[31]}$ to bis(phosphole)-3,7-dione 13 as a single (endo) stereoisomer, which was isolated after column chromatography as a yellow solid in 42 % yield ($8\text{P} = -13.4$ ppm; Scheme 5) and characterized crystallographically (Figure 2, right).$^{[30]}$ The facile head-to-tail [2+2] dimerization of 12 was supported by DFT calculations, again at the oB97X-D/6-

31G(d,p) level of theory, which revealed endo-13 to be thermodynamically and kinetically favored over exo-13 ($\Delta E = -50.8$ versus -36.3 kcal mol$^{-1}$; $\Delta E^* = 21.9$ versus 25.2 kcal mol$^{-1}$), which can be attributed to secondary orbital interactions in the transition state leading to the endo adduct.$^{[13]}$

In summary, cyclopropenylphosphaketene 2 and its dimer 1,3-diphasphetane-2,4-dione 3 grant access to the phosphorus
analouges of houseine, tricyclopentanone, and cyclopentadie-one, all of which display intriguing pericyclic reactions. Currently, we are developing decarbonylation strategies for phosphatricyclopentanone \[\text{7}^{(9)}\] ultimately leading to the elusive phosphacyclobutadiene and phosphatetrahedran.

Acknowledgements

This work was supported by the European Union (Marie Curie ITN SusPhos, Grant Agreement No. 317404) and the Council for Chemical Sciences of The Netherlands Organization for Scientific Research (NWO/CW) by a VIDI grant (J.C.S.). Prof. Dr. Hansjörg Grützmacher and Dr. Riccardo Suter are gratefully acknowledged for providing [Na(OCP)-(dioxane)].

Conflict of interest

The authors declare no conflict of interest.

Keywords: main-group elements - pericyclic reactions - phosphorus - small ring systems - valence isomerisation

How to cite: Angew. Chem. Int. Ed. 2018, 57, 1683–1687
Angew. Chem. 2018, 130, 1699–1703

The full “walk” of the P$_3$(t-Bu)$_3$ moiety over the phosphacyclobutadiene ring in 5 is prohibited, since the [1,3] sigmatropic shift from P$_2$ to C$_2$ is endothermic ($\Delta E = 23.0$ kcal mol$^{-1}$) due to the formation of an intermediate with a P=C instead of a C=C bond.

