STROBE-X
X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

McDonald, M.; Nowak, M.; Phlips, B.F.; Remillard, R.; Stevens, A.L.; Tomsick, J.; Watts, A.;
Wood, K.S.; Zane, S.

Publication date
2019

Document Version
Final published version

Published in
American Astronomical Society Meeting

Citation for published version (APA):
Wilson-Hodge, C. A., Ray, P. S., Maccarone, T. J., Chakrabarty, D., Gendreau, K. C.,
Arzoumanian, Z., Jenke, P., Ballantyne, D., Bozzo, E., Brandt, S., Brenneman, L.,
Christophersen, M., DeRosa, A., Feroci, M., Goldstein, A., Hartmann, D., Hernanz, M.,
McDonald, M., Nowak, M., ... Zane, S. (2019). STROBE-X: X-ray Timing & Spectroscopy on
Dynamical Timescales from Microseconds to Years. American Astronomical Society Meeting,
233, 186. [158.11]. https://assets.pubpub.org/qmxqtups/61582749069276.pdf
by relaxing tolerances and stability requirements; by use of a smaller launch vehicle. The starshade would provide excellent exoplanet science performance, but for a smaller number of detected exoplanets of all types, including exoEarth candidates, and a smaller fraction of exoplanets with measured orbits. The full suite of HabEx observatory science is supported. Our approach uses a non-deployed segmented primary mirror, whose manufacture is within current capabilities.

158.11 — STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

Colleen A. Wilson-Hodge1; Paul S. Ray2; Thomas J. Maccarone3; Deepto Chakrabarty4; Keith C. Gendreau5; Zaven Arzoumanian6; Peter Jerke6; David Ballantyne6; Enrico Bozzo7; Soren Brandt8; Laura Brenneman9; Marc Christophersen2; Alessandra DeRosa10; Marco Feroci11; Adam Goldstein12; Dieter Hartmann13; Margarita Hernanz14; Michael McDonald15; Michael Nowak16; Bernard F. Phelps17; Ronald Remillard18; Abigail L. Stevens; John Tomspick19; Anna Watts20; Kent S. Wood21; Silvia Zane22

1 NASA MSFC (Huntsville, Alabama, United States)
2 SAO (Cambridge, Massachusetts, United States)
3 IAPS/INAF (Rome, Italy)
4 USRA (Huntsville, Alabama, United States)
5 Clemson University (Clemson, South Carolina, United States)
6 Institute of Space Sciences, CSIC-IEEC (Barcelona, Spain)
7 Michigan State University (East Lansing, Michigan, United States)
8 UC Berkeley (Berkeley, California, United States)
9 University of Amsterdam (Amsterdam, Netherlands)
10 Praxis Inc. (resident at NRL) (Washington, District of Columbia, United States)
11 MSSLI/ICL (London, United Kingdom)
12 NRL (Washington, District of Columbia, United States)
13 Texas Tech (Lubbock, Texas, United States)
14 MIT (Cambridge, Massachusetts, United States)
15 NASA GSFC (Greenbelt, Maryland, United States)
16 UAH (Huntsville, Alabama, United States)
17 Georgia Tech (Atlanta, Georgia, United States)
18 University of Geneva (Geneva, Switzerland)
19 DTU Space (Copenhagen, Denmark)

We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) has three key science drivers: (1) measuring the spin distribution of accreting black holes, (2) understanding the equation of state of dense matter, and (3) exploring the properties of the precursors and electromagnetic counterparts of gravitational wave sources. To perform these science investigations, STROBE-X comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments, with effective areas of 2 m² at 1.5 keV and 5 m² at 10 keV, respectively, each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. The STROBE-X mission concept is a rapidly repointable observatory in low-Earth orbit, similar to RXTE or Swift, and will be presented to the 2020 Astrophysics Decadal Survey for consideration as a probe-class mission.

158.12 — Reducing the Athena WFI Background with the Science Products Module: Results from Geant4 Simulations

Eric D. Miller1; Catherine Grant1; Marshall Bautz1; Jonathan Keelan1; David Hall2; Andrew Holland3; Esra Bulbul3; Ralph Kraft3; Paul Nulsen3; David Burrows4; Steven Allen5

1 Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology (Cambridge, Massachusetts, United States)
2 Open University (Milton Keynes, United Kingdom)
3 Harvard-Smithsonian Center for Astrophysics (Cambridge, Massachusetts, United States)
4 The Pennsylvania State University (University Park, Pennsylvania, United States)
5 Stanford University (Stanford, California, United States)

The Wide Field Imager (WFI) on ESA’s Athena X-ray observatory will include the Science Products Module, a secondary CPU that can perform special processing on the science data stream. Our goal is to identify on-board processing algorithms that can reduce WFI charged particle background and improve knowledge of the background to reduce systematics.