Some of the highest profile, and highest impact, results from pulsar timing involve probing the high-density physics at the cores of the neutron stars or testing general relativity in new and better ways. These efforts almost always involve the rarest and most exotic of recycled binary systems, including those which formed in unusual ways, or those whose orbits or companions were altered later, as often happens in globular clusters. We report recent results, using timing and search observations from the GBT and Arecibo, on several of these exotic systems. We have new and potentially exciting neutron star mass measurements and new tests of general relativity. And we suggest that it is well worth the efforts involved to uncover and examine these “1%” pulsar systems.

228.03 — Testing General Relativity Using a Pulsar in a Triple System

Anne Archibald; Nina Gusinskaia; Jason Hessels; Adam Deller; David Kaplan; Duncan Lorimer; Ryan S. Lynch; Scott M. Ransom; Ingrid Stairs

University of British Columbia (Vancouver, British Columbia, Canada)

The millisecond pulsar PSR J0337+1715 is in a 1.6-day orbit with an inner white dwarf companion, and the pair is in a 327-day orbit with an outer white dwarf companion. This hierarchical triple provides an excellent laboratory to test a key idea of Einstein’s theory of gravity, the strong equivalence principle (SEP): do all objects, even those with strong gravity like neutron stars, fall the same way in the same gravitational field? Almost all alternative theories of gravity predict violations of the SEP at some level. We have carried out an intensive program of timing this pulsar, and we are able to perform a very sensitive test of the SEP. I will discuss our methods, our result, and its theoretical implications.