Testing General Relativity Using a Pulsar in a Triple System


Publication date
2019

Document Version
Final published version

Published in
American Astronomical Society Meeting

Citation for published version (APA):
https://assets.pubpub.org/qmxqtups/61582749069276.pdf
Some of the highest profile, and highest impact, results from pulsar timing involve probing the high-density physics at the cores of the neutron stars or testing general relativity in new and better ways. These efforts almost always involve the rarest and most exotic of recycled binary systems, including those which formed in unusual ways, or those whose orbits or companions were altered later, as often happens in globular clusters. We report recent results, using timing and search observations from the GBT and Arecibo, on several of these exotic systems. We have new and potentially exciting neutron star mass measurements and new tests of general relativity. And we suggest that it is well worth the efforts involved to uncover and examine these “1%” pulsar systems.

228.03 — Testing General Relativity Using a Pulsar in a Triple System
Anne Archibald1,6; Nina Gusinskaia1; Jason Hessels1,6; Adam Deller7; David Kaplan7; Duncan Lorimer4; Ryan S. Lynch3; Scott M. Ransom3; Ingrid Stairs2
1 Anton Pannekoek Institute, Universiteit van Amsterdam (Amsterdam, Netherlands)
2 University of British Columbia (Vancouver, British Columbia, Canada)
3 NRAO (Charlottesville, Virginia, United States)
4 University of Wisconsin-Milwaukee (Milwaukee, Wisconsin, United States)
5 University of Wisconsin-Milwaukee (Milwaukee, Wisconsin, United States)
6 ASTRON (Dwingeloo, Netherlands)
7 Swinburne University of Technology, (Hawthorn, Victoria, Australia)

The millisecond pulsar PSR J0337+1715 is in a 1.6-day orbit with an inner white dwarf companion, and the pair is in a 327-day orbit with an outer white dwarf companion. This hierarchical triple provides an excellent laboratory to test a key idea of Einstein’s theory of gravity, the strong equivalence principle (SEP): do all objects, even those with strong gravity like neutron stars, fall the same way in the same gravitational field? Almost all alternative theories of gravity predict violations of the SEP at some level. We have carried out an intensive program of timing this pulsar, and we are able to perform a very sensitive test of the SEP. I will discuss our methods, our result, and its theoretical implications.