Testing General Relativity Using a Pulsar in a Triple System

Publication date
2019

Document Version
Final published version

Published in
American Astronomical Society Meeting

Citation for published version (APA):
https://assets.pubpub.org/qmxqtups/61582749069276.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Some of the highest profile, and highest impact, results from pulsar timing involve probing the high-density physics at the cores of the neutron stars or testing general relativity in new and better ways. These efforts almost always involve the rarest and most exotic of recycled binary systems, including those which formed in unusual ways, or those whose orbits or companions were altered later, as often happens in globular clusters. We report recent results, using timing and search observations from the GBT and Arecibo, on several of these exotic systems. We have new and potentially exciting neutron star mass measurements and new tests of general relativity. And we suggest that it is well worth the efforts involved to uncover and examine these “1%” pulsar systems.

228.03 — Testing General Relativity Using a Pulsar in a Triple System

Anne Archibald1,6; Nina Gusinskaia1; Jason Hessels1,6; Adam Deller7; David Kaplan7; Duncan Lorimer4; Ryan S. Lynch3; Scott M. Ransom3; Ingrid Stairs2

1 Anton Pannekoek Institute, Universiteit van Amsterdam (Amsterdam, Netherlands)
2 University of British Columbia (Vancouver, British Columbia, Canada)
3 NRAO (Charlottesville, Virginia, United States)
4 University of West Virginia (Morgantown, West Virginia, United States)
5 University of Wisconsin-Milwaukee (Milwaukee, Wisconsin, United States)
6 ASTRON (Dwingeloo, Netherlands)
7 Swinburne University of Technology, (Hawthorn, Victoria, Australia)

The millisecond pulsar PSR J0337+1715 is in a 1.6-day orbit with an inner white dwarf companion, and the pair is in a 327-day orbit with an outer white dwarf companion. This hierarchical triple provides an excellent laboratory to test a key idea of Einstein’s theory of gravity, the strong equivalence principle (SEP): do all objects, even those with strong gravity like neutron stars, fall the same way in the same gravitational field? Almost all alternative theories of gravity predict violations of the SEP at some level. We have carried out an intensive program of timing this pulsar, and we are able to perform a very sensitive test of the SEP. I will discuss our methods, our result, and its theoretical implications.

228.05 — Current results and future prospects from PSR J1757-1854, a highly-relativistic double neutron star binary.

Andrew David Cameron1,2; David Champion2; Michael Kramer2,3; Matthew Bailes4,5; Vishnu Balakrishnan2; Ewan Barr2; Cees Basse6; Shivani Bhandari1; Ramesh Bhat2; Marta Burgay3; Sarah Burke-Spolaor9,10; Ralph Eatough2; Chris Flynn4; Paulo Freire2; Andrew Jameson4; Simon Johnston1; Ramesh Karuppusamy2; Michael Keith3; Lina S. Levin1; Duncan Lorimer3; Andrew Lyne3; Maura McLaughlin1; Cherry Ng11; Emily Petroff6; Nihan Pol3; Andrea Possenti8; Alessandro Ridolfi2; Ben Stappers3; Willem van Straten12,4; Thomas Tauris13,2; Caterina Tiburzi14,2; Norbert Wex2

1 CSIRO Astronomy and Space Science (Marsfield, New South Wales, Australia)
2 University of Newcastle (Newcastle, New South Wales, Australia)
3 Department of Physics and Astronomy, West Virginia University (Morgantown, West Virginia, United States)
4 Institute for Radio Astronomy & Space Research, Auckland University of Technology (Auckland, New Zealand)
5 Institute for Radio Astronomy, University of Oregon (Eugene, Oregon, United States)
6 Dwingeloo Institute (Dwingeloo, Netherlands)
7 Institut fuer Radioastronomie, Institut fuer Theoretische Physik, Universitaet Bonn (Bonn, NRW, Germany)
8 Physical Institute, University of Bern (Bern, Switzerland)
9 Department of Physics and Astronomy, West Virginia University (Morgantown, West Virginia, United States)
10 Center for Gravitational Waves and Cosmology, West Virginia University (Morgantown, West Virginia, United States)
11 Dunlap Institute, University of Toronto (Toronto, Ontario, Canada)
12 Institute for Radio Astronomy & Space Research, Auckland University of Technology (Auckland, New Zealand)
13 Argelander-Institut fuer Astronomie, Universitaet Bonn (Bonn, NRW, Germany)
14 Fachhochschule fuer Physik, Universitaet Bielefeld (Bielefeld, NRW, Germany)