Variational Graph Auto-Encoders

Kipf, T.N.; Welling, M.

Publication date
2016

Document Version
Final published version

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
1 A latent variable model for graph-structured data

We introduce the variational graph auto-encoder (VGAE), a framework for unsupervised learning on graph-structured data based on the variational auto-encoder (VAE) [2, 3]. This model makes use of latent variables and is capable of learning interpretable latent representations for undirected graphs (see Figure 1).

We demonstrate this model using a graph convolutional network (GCN) [4] encoder and a simple inner product decoder. Our model achieves competitive results on a link prediction task in citation networks. In contrast to most existing models for unsupervised learning on graph-structured data and link prediction [5, 6, 7, 8], our model can naturally incorporate node features, which significantly improves predictive performance on a number of benchmark datasets.

Definitions

We are given an undirected, unweighted graph \(G = (\mathcal{V}, \mathcal{E}) \) with \(N = |\mathcal{V}| \) nodes. We introduce an adjacency matrix \(A \) of \(G \) (we assume diagonal elements set to 1, i.e. every node is connected to itself) and its degree matrix \(D \). We further introduce stochastic latent variables \(z_i \), summarized in an \(N \times F \) matrix \(Z \). Node features are summarized in an \(N \times D \) matrix \(X \).

Inference model

We take a simple inference model parameterized by a two-layer GCN:

\[
q(Z | X, A) = \prod_{i=1}^{N} q(z_i | X, A), \quad \text{with} \quad q(z_i | X, A) = \mathcal{N}(z_i | \mu_i, \text{diag}(\sigma_i^2)).
\]

(1)

Here, \(\mu = \text{GCN}_\mu(X, A) \) is the matrix of mean vectors \(\mu_i \); similarly \(\sigma = \text{GCN}_\sigma(X, A) \).

The two-layer GCN is defined as \(\text{GCN}(X, A) = \tilde{A} \text{ReLU}(\tilde{A} X W_0) W_1 \), with weight matrices \(W_i \). \(\text{GCN}_\mu(X, A) \) and \(\text{GCN}_\sigma(X, A) \) share first-layer parameters \(W_0 \). \(\text{ReLU}(\cdot) = \max(0, \cdot) \) and \(\tilde{A} = D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \) is the symmetrically normalized adjacency matrix.

Generative model

Our generative model is given by an inner product between latent variables:

\[
p(A | Z) = \prod_{i=1}^{N} \prod_{j=1}^{N} p(A_{ij} | z_i, z_j), \quad \text{with} \quad p(A_{ij} = 1 | z_i, z_j) = \sigma(z_i^T z_j),
\]

(2)

where \(A_{ij} \) are the elements of \(A \) and \(\sigma(\cdot) \) is the logistic sigmoid function.

Learning

We optimize the variational lower bound \(\mathcal{L} \) w.r.t. the variational parameters \(W_i \):

\[
\mathcal{L} = \mathbb{E}_{q(Z|X,A)} \left[\log p(A | Z) \right] - \text{KL}[q(Z | X, A) || p(Z)],
\]

(3)
where $KL(q(\cdot)\|p(\cdot))$ is the Kullback-Leibler divergence between $q(\cdot)$ and $p(\cdot)$. We further take a Gaussian prior $p(Z) = \prod_i p(z_i) = \prod_i \mathcal{N}(z_i | 0, I)$. For very sparse A, it can be beneficial to re-weight terms with $A_{ij} = 1$ in \mathcal{L} or alternatively sub-sample terms with $A_{ij} = 0$. We choose the former for the following experiments. We perform full-batch gradient descent and make use of the reparameterization trick [2] for training. For a featureless approach, we simply drop the dependence on X and replace X with the identity matrix in the GCN.

Non-probabilistic graph auto-encoder (GAE) model For a non-probabilistic variant of the VGAE model, we calculate embeddings Z and the reconstructed adjacency matrix \hat{A} as follows:

$$\hat{A} = \sigma(ZZ^\top), \text{ with } Z = \text{GCN}(X, A).$$

2 Experiments on link prediction

We demonstrate the ability of the VGAE and GAE models to learn meaningful latent embeddings on a link prediction task on several popular citation network datasets [1]. The models are trained on an incomplete version of these datasets where parts of the citation links (edges) have been removed, while all node features are kept. We form validation and test sets from previously removed edges and the same number of randomly sampled pairs of unconnected nodes (non-edges).

We compare models based on their ability to correctly classify edges and non-edges. The validation and test sets contain 5% and 10% of citation links, respectively. The validation set is used for optimization of hyperparameters. We compare against two popular baselines: *spectral clustering* (SC) [5] and *DeepWalk* (DW) [6]. Both SC and DW provide node embeddings Z. We use Eq. [4] (left side) to calculate scores for elements of the reconstructed adjacency matrix. We omit recent variants of DW [7] due to comparable performance. Both SC and DW do not support input features.

For VGAE and GAE, we initialize weights as described in [9]. We train for 200 iterations using Adam [10] with a learning rate of 0.01. We use a 32-dim hidden layer and 16-dim latent variables in all experiments. For SC, we use the implementation from [11] with an embedding dimension of 128. For DW, we use the implementation provided by the authors of [8] with standard settings used in their paper, i.e. embedding dimension of 128, 10 random walks of length 80 per node and a context size of 10, trained for a single epoch.

Discussion Results for the link prediction task in citation networks are summarized in Table [1]. GAE* and VGAE* denote experiments without using input features, GAE and VGAE use input features. We report *area under the ROC curve* (AUC) and *average precision* (AP) scores for each model on the test set. Numbers show mean results and standard error for 10 runs with random initializations on fixed dataset splits.

<table>
<thead>
<tr>
<th>Method</th>
<th>Cora AUC</th>
<th>Cora AP</th>
<th>Citeseer AUC</th>
<th>Citeseer AP</th>
<th>Pubmed AUC</th>
<th>Pubmed AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC [5]</td>
<td>84.6 ± 0.01</td>
<td>88.5 ± 0.00</td>
<td>80.5 ± 0.01</td>
<td>85.0 ± 0.01</td>
<td>84.2 ± 0.02</td>
<td>87.8 ± 0.01</td>
</tr>
<tr>
<td>DW [6]</td>
<td>83.1 ± 0.01</td>
<td>85.0 ± 0.00</td>
<td>80.5 ± 0.02</td>
<td>83.6 ± 0.01</td>
<td>84.4 ± 0.00</td>
<td>84.1 ± 0.00</td>
</tr>
<tr>
<td>GAE*</td>
<td>84.3 ± 0.02</td>
<td>88.1 ± 0.01</td>
<td>78.7 ± 0.02</td>
<td>84.1 ± 0.02</td>
<td>82.2 ± 0.01</td>
<td>87.4 ± 0.00</td>
</tr>
<tr>
<td>VGAE*</td>
<td>84.0 ± 0.02</td>
<td>87.7 ± 0.01</td>
<td>78.9 ± 0.03</td>
<td>84.1 ± 0.02</td>
<td>82.7 ± 0.01</td>
<td>87.5 ± 0.01</td>
</tr>
<tr>
<td>GAE</td>
<td>91.0 ± 0.02</td>
<td>92.0 ± 0.03</td>
<td>89.5 ± 0.04</td>
<td>89.9 ± 0.05</td>
<td>96.4 ± 0.00</td>
<td>96.5 ± 0.00</td>
</tr>
<tr>
<td>VGAE</td>
<td>91.4 ± 0.01</td>
<td>92.6 ± 0.01</td>
<td>90.8 ± 0.02</td>
<td>92.0 ± 0.02</td>
<td>94.4 ± 0.02</td>
<td>94.7 ± 0.02</td>
</tr>
</tbody>
</table>

Both VGAE and GAE achieve competitive results on the featureless task. Adding input features significantly improves predictive performance across datasets. A Gaussian prior is potentially a poor choice in combination with an inner product decoder, as the latter tries to push embeddings away from the zero-center (see Figure [1]). Nevertheless, the VGAE model achieves higher predictive performance on both the Cora and the Citeseer dataset.

Future work will investigate better-suited prior distributions, more flexible generative models and the application of a stochastic gradient descent algorithm for improved scalability.
Acknowledgments

We would like to thank Christos Louizos, Mart van Baalen, Taco Cohen, Dave Herman, Pramod Sinha and Abdul-Saboor Sheikh for insightful discussions. This project was funded by SAP Innovation Center Network.

References

