Well-Defined Dinuclear Gold Complexes for Preorganization-Induced Selective Dual Gold Catalysis

DOI
10.1002/ange.201603938
10.1002/anie.201603938

Publication date
2016

Document Version
Final published version

Published in
Angewandte Chemie

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Gold catalysis has flourished over the past 15 years, enabling a wide range of transformations \([1]\). More recently, dual gold catalysis has been developed successfully \([2]\). Whereas “traditional” mono-gold catalysis relies on \(\pi\)-activation of a substrate by a cationic \(\text{Au}^+\) center, dual gold catalysis typically involves both \(\sigma\)- and \(\pi\)-activation (of one or two functionalities, such as \(\text{C} = \text{C}\) bonds) by two gold centers. The prevailing strategy utilizes mononuclear \(\text{Au}^+\) complexes to induce \(\sigma\)-activation with bifunctional substrates. \(\text{Au}^+\) complexes are well-developed \([3,4]\).

The synthesis, coordination chemistry, and catalytic applications of dinuclear \(\text{Au}^+\) complexes are well-developed \([5]\).

The proximity of both gold centers has occasionally been credited to enhance reactivity \([6]\). However, to the best of our knowledge the competence of well-defined dinuclear \(\sigma,\pi\)-alkynide complexes in dual gold catalysis has never been reported, despite the potential benefits of two pre-organized gold centers with respect to chemoselectivity and activity for this type of reaction. Additionally, facile access to dinuclear mixed-valent gold complexes might be an interesting target in the context of cascade and \(\text{Au}^+\)/\(\text{Au}^{II}\) cooperative catalysis \([7]\).

The ditopic tridentate ligand \(\text{PN}^\text{II}^\text{Pr}(\text{L}^\text{H})\) (Scheme 1) displays versatile coordination chemistry with respect to a wide range of transition metals \([8,9]\), including \(\text{Cu}^+\) and \(\text{Ag}^+\). Strikingly, no single complex of gold with this type of ditopic framework is known to date. Furthermore, chemistry related to the redox-active nature \([10]\) of \(\text{L}^\text{H}\) has been well-established in nickel, manganese, and thienium complexes \([11]\), but ligand redox-activity with Group 11 metals is limited to one example with \(\text{Cu}^2+\), leading to dimerization on one of the \(\pi\)-positions of the \(\text{L}\) backbone \([12]\). New avenues for gold coordination chemistry and catalysis may become accessible by developing strategies to preorganize and stabilize multiple gold centers on suitable ligand platforms and to selectively bind and activate bifunctional substrates. To address these challenges, we herein 1) uncover the versatile coordination chemistry of gold using the redox-active ditopic \(\text{PN}^\text{II}^\text{Pr}(\text{L}^\text{H})\) ligand, 2) disclose the interesting ligand and metal-based reactivity of (mixed-valent) dinuclear species, and 3) establish well-defined pre-catalyst systems ideally suited for \(\sigma,\pi\)-activation of alkynes and demonstrate their use in highly selective dual gold catalysis.
The straightforward reaction of PN[P(iPr)]2 with AuCl(SMe)2 in a 1:2 ratio provides white solid 1 (31P NMR: δ 40.9 ppm) with a 1H NMR spectrum suggestive of a C2 symmetric species (Scheme 2). Single crystal X-ray diffraction analysis

determination confirms the sole formation of species 2, with the central deprotonated amido nitrogen coordinating to the square-planar AuII center (Figure 1).

The PNP-ligand backbone in 2 is severely twisted, with a C6-C1-C7-C8 torsion angle of 76.4(8)°. This distortion relates to the upfield shifted aromatic signal in the 1H NMR spectrum, which corresponds to the shielded C(6)-H hydrogen that is positioned on top of the second phenyl ring. The intramolecular Au–Au distance of 4.641 Å excludes an aurophilic dπ–dπ interaction. Cyclic voltammetry does not indicate reversible oxidation of the potentially redox-active ligand scaffold in 2.

A prerequisite for catalysis with a AuX(L) precursor (X is a halide) is the generation of a vacant coordination site by halide abstraction with, for example, Ag+ salts or a suitable Lewis acid. Addition of one equivalent of AgNTf2 (or related silver salts or GaCl3; see the Supporting Information) to 2, which bears multiple chlorido fragments, leads to a mixture of species according to 31P NMR spectroscopy. However, addition of two equivalents results in rapid decoloration of the reaction solution and generation of a single symmetric product (31P NMR: δ 40.4 ppm), suggestive of the presence of only AuI-phosphine fragments. The 1H NMR spectrum shows only one methyl signal for the ditolylamine backbone and chemically identical isopropyl groups at phosphorus. Most notably, only two instead of the anticipated three aromatic hydrogen signals are observed, together with a downfield signal at δ 10.53 ppm. This signal integrates for one hydrogen and is attributed to an -NH fragment. ESI-MS data suggest that the dinuclear complex, bearing only one chlorido ligand, remains intact during this transformation. The structure of complex 3 could be elucidated by X-ray structure determination of single crystals grown from CH3Cl–pentane (Figure 2).

Clearly, halide abstraction by AgNTf2, related silver salts, or GaCl3, induces a highly unusual metal-based reduction of mixed-valent species 2 to yield AuI–AuI species 3.

...
To the best of our knowledge, this is the complex, species. Markovnikov addition to generate. "ortho" C–H positions of the PNP framework within the coordination sphere of any transition metal. The existence of a single chlorido bridgehead between two Au\(^{+}\) centers is relatively rare.\(^{15}\) Notably, no single example exists of an intramolecular Au–Cl–Au bridge stabilized by a single dinitrileating ligand. Reaction of 1 (featuring the "open" ligand) with one equivalent of AgNTf\(_2\) generates tetranuclear bis(chlorido)-bridged complex 4 as a crystalline solid (\(\times\)Au1-C11-Au2 96.78(4)\(^\circ\)). This species is likely in equilibrium with the dinuclear monomer in solution (see the Supporting Information for details about complex 4).

Substitution of the chlorido bridge in these dinuclear gold species might release a masked Au\(^{+}\)-cation. Reaction of 3 with excess phenylacetylene leads to broadening of the \(^{31}\)P NMR signal and appearance of an additional singlet at \(\delta\) 43.3 ppm, which converts to a single product 5 (with complete conversion) upon addition of one equivalent of AgNTf\(_2\) or K\(_2\)CO\(_3\). No signal corresponding to the terminal CH of the alkyne was observed for this species by \(^{1}H\) NMR spectroscopy, suggesting formation of a gold(acetylide) fragment. The overall symmetry of the complex appears to be retained during this transformation, which points to rapid exchange of the phenylacetylide between the two gold centers.\(^{16}\) Single crystal X-ray structure determination corroborates the dual interaction of the \(-C\equiv CPh\) ligand with the Au\(^{+}\)-Au\(^{+}\) complex, that is, \(\sigma\)-coordination of the terminal phenylacetylide carbon C(15) to Au(1) and \(\pi\)-coordination of the triple bond system to Au(2) (Figure 3). This is the first crystallographically characterized intramolecular Au\(_{4}\)(\(\sigma,\pi\)-acetylide) complex with a diphosphine ligand, and serves to illustrate that preorganization of two gold centers may lead to selective substrate coordination. Complex 4 reacts in a similar fashion, leading to the well-defined species 8 that was characterized by NMR spectroscopy and mass spectrometry (see the Supporting Information).

Having established that dinuclear complex 3 engages in well-defined \(\sigma,\pi\)-activation of C–C triple bond systems, the heterocyclization (intramolecular hydroamination) of urea-functionalized alkyne 6 was selected as a proof-of-concept reaction to probe the catalytic competence of this well-defined Au\(_{4}\) species. Markovnikov addition to generate a six-membered ring (8) involves \(\pi\)-activation by a single gold species, whereas dinuclear \(\sigma,\pi\)-activation results in anti-Markovnikov addition to give a five-membered ring (7; Scheme 3).\(^{13}\) Using 2.5 mol % of 3 in DMF at 60°C for five hours leads to full conversion and high regioselectivity for the five-membered indole 7 (85%), in accordance with a selective \(\sigma,\pi\)-acetylide mechanism. External base (such as K\(_2\)CO\(_3\)) inhibits the reactivity, while addition of one equivalent of AgNTf\(_2\) with respect to the catalyst provides slightly higher regioselectivity for 7 (90%); presumably this is due to faster generation of the \(\sigma,\pi\)-acetylide species. In the absence of additives (Ag\(^{+}\) or base), bis(chlorido)-bridged tetranuclear complex 4 displays a similar preference for formation of 7. The high regioselectivity achieved with dinuclear catalysts 3 and 4 is attributed to the ligand-enclosed proximity of both Au\(^{+}\) centers. Stochiometric reaction of 3 and 6 shows sole formation of the \(\sigma,\pi\)-activated substrate by ESI-MS (Supporting Information, Figure S27).

Dilution studies were performed to investigate the effect of decreased catalyst loading on the level of regiocontrol for the conversion of 6 to 7 and 8. The findings clearly validate our hypothesis, as the high regioselectivity for 7 obtained with catalyst 3 is independent of the catalyst concentration (Figure 4). In contrast, dilution experiments with mononuclear AuCl(PBu\(_3\))—reported as the best catalyst to form 7 by \(\sigma,\pi\)-activation\(^{17}\)—result in a sharp drop in selectivity.\(^{18}\) These results demonstrate the benefits of well-defined preorganization of two gold centers to enforce selective \(\sigma,\pi\)-activation and to mediate regioselective dual gold catalysis with functionalized alkynes, even at low catalyst loadings.

In summary, we have demonstrated that the redox-active PNP\(_{3}\)P\(_{3}\) ligand is a suitable framework to preorganize two gold centers for selective \(\sigma,\pi\)-activation of functionalized alkynes. Halide abstraction from mixed-valent Au\(^{+}\)–Au\(^{3+}\) complex 2 using AgNTf\(_2\) results in highly unusual reactivity.
involving two-electron ligand oxidation, generating chlorido-bridged Au\(^{I}\)-Au\(^{III}\) species 3 bearing a highly rigidified carbazolyl backbone. Reaction with phenylacetylene enabled the first crystallographically characterized intramolecular dual gold \(\alpha, \alpha\)-acetylide complex (5) supported by a single diphosphine ligand. The well-defined dinuclear Au\(^{I}\) complexes are excellent precatalysts for dual gold catalysis involving selective \(\alpha, \alpha\)-activation, inducing high regioselectivity in the gold-catalyzed heterocyclization of urea 6, without the need to add base or silver salts. Dilution experiments show that dinuclear catalyst 3 retains high selectivity at decreased catalyst loadings, unlike mononuclear Au\(^{I}\) catalysts typically employed for this reaction. These results illustrate the benefits of preorganization of gold centers to invoke selective substrate activation in dual gold catalysis. The detailed mechanism behind the surprising conversion of 2 into 3 is currently under investigation. This ligand-to-gold two-electron transformation appears to involve several digold intermediates, including the dinuclear “monomer” of complex 4, as well as a unique Au\(^{II}\)–Au\(^{III}\) species supported by one PNP ligand.\(^{[19]}\)

Acknowledgements

This research was funded by the European Research Council (ERC) through Starting Grant 279097 (EuRecat) to J.I.v.d.V.; A.C.H.J. and J.N.H.R. thank the ERC for Advanced Grant 339786. We thank Dr. Marc Devillard for valuable tips and Ed Zuidinga for ESI-MS measurements.

Keywords: \(\alpha, \alpha\)-activation · bridging acetylide · dinuclear gold complexes · dual gold catalysis · redox-active ligand

How to cite: Angew. Chem. Int. Ed. 2016, 55, 10042–10046

Angew. Chem. 2016, 128, 10196–10200

[19] Because of the anticipated complexity associated with this multi-step “cascade” process, which converts 2 into 3, a detailed mechanistic investigation of this transformation is deemed beyond the scope of this study and will be reported elsewhere.