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Abstract. A widely studied model for gels or biopolymeric fibrous materials are networks with central force
interactions, such as Hookean springs. Less commonly studied are materials whose mechanics are domi-
nated by non-central force interactions such as bond-bending potentials. Inspired by recent experimental
advancements in designing colloidal gels with tunable interactions, we study the micro- and macroscopic
elasticity of two-dimensional planar graphs with strong bond-bending potentials, in addition to weak cen-
tral forces. We introduce a theoretical framework that allows us to directly investigate the limit in which
the ratio of characteristic central-force to bending stiffnesses vanishes. In this limit we show that a generic
isostatic point exists at zc = 4, coinciding with the isostatic point of frames with central-force interactions
in two dimensions. We further demonstrate the emergence of a stiffening transition when the coordination
is increased towards the isostatic point, which shares similarities with the strain-induced stiffening transi-
tion observed in biopolymeric fibrous materials, and coincides with an auxeticity transition above which
the material’s Poisson’s ratio approaches −1 when bond-bending interactions dominate.

1 Introduction

In 1864 Maxwell spelled out a criterion that frames of
freely hinged struts need to satisfy in order to be mechan-
ically stable [1]: if the average connectivity z is higher
than a threshold value zc ≡ 2d̄ in d̄ spatial dimensions,
the rigidity of the frame is guaranteed, regardless of the
exact way the elements are connected (as long as fluc-
tuations in connectivity are limited, and in the absence
of over-constrained clusters [2]). In frames with z < zc

collective modes exist that are floppy [3–5], which means
that motion associated with these modes will respect the
perfect rigidity of the struts. The gradual disappearance
of such floppy modes as z → zc is known as the jamming
transition [6–8], and has been related to various mechan-
ical and dynamical phenomena such as the divergence of
viscosity in non-Brownian suspensions [9] and the fragility
of chalcogenide glass formers [10].

Most studies of jamming phenomena focus on the role
of steric interactions, often modeled by some form of cen-
tral forces, e.g. Hookean springs [11] or hard-sphere re-
pulsions [12, 13]. In this work we explore the mechanical
properties of a different class of materials: disordered net-
works in which the dominant interaction takes the form of
bond bending. Our focus is motivated by recent advance-
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ments in the fabrication of colloidal gels with tunable in-
teractions; in particular, we were inspired by the work of
Schall et al. [14], who built and controlled nano- and mi-
crometer size superstructures using critical Casimir forces
on patchy colloidal particles. By measuring fluctuations
of the constituent colloids, the authors of [14] established
that the stiffness of bond bending in their superstructures
is much larger than the stiffness of radial interactions, by
up to two orders of magnitude or more [15].

Inspired by these outstanding experiments mentioned
above, we set out to address the following questions: i)
what are the elastic properties of materials whose mechan-
ics are dominated by bond-bending interactions? ii) how
should the micromechanics of this class of materials be
understood from a geometric perspective? and iii) what
sort of jamming phenomenology emerges in this class of
systems?

In this work we consider disordered networks in two
dimensions (2D) of mean coordination z, and introduce
both radial and bond bending interactions, characterized
by stiffnesses kr and kθ, respectively. We consider the ra-
tio μ ≡ kr/kθ between these stiffnesses as a key tunable
parameter of the material (in addition to the coordination
z), and investigate numerically and theoretically the be-
havior of elastic moduli under variations of z and μ. We
show that as the limit μ → 0 is approached, scaling behav-
ior of elastic moduli emerges, as a function of the distance
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between the mean connectivity and the system’s jamming
point, shown in what follows to coincide with the Maxwell
threshold [1] zc = 4 at which the generic, “central-force”
isostatic point occurs.

We take two complementary routes in order to study
theoretically the limit μ → 0 at which the scaling behavior
of elastic moduli emerges. First, we fix kθ and set kr = 0;
this arrangement allows us to understand the scaling be-
havior of elastic moduli in the hyperstatic regime z > zc.
We further put forward a scaling argument supported by
numerical tests that the hyperstatic regime is character-
ized by a diverging length �c ∼ (z − zc)�1/2.

Even more intruiging is the limit μ → 0 obtained by
fixing kr and sending kθ → ∞; this is achieved by consider-
ing the angles formed between bonds that share a common
node to be entirely fixed, i.e. they serve as geometric con-
straints. In this limit, and away from the isostatic point,
hypostatic networks feature elastic moduli ∼ kr. Interest-
ingly, we find that the shear modulus G diverges as z is
made to approach zc from below, while the bulk modulus
K remains regular. We present a theoretical framework
that allows us to predict the divergence of G with zc − z
in this limit, and find good agreement with our numerical
calculations.

Finally, we consider the auxeticity of our model mate-
rial; we find that far into the hypostatic regime the ma-
terial features a positive Poisson’s ratio, of around 0.3,
a value characteristic to many disordered materials [16].
However, ν rapidly decreases as z is increased. Interest-
ingly, in the limit μ → 0 the material approaches perfect
auxeticity ν → −1 as z → zc, and remains perfectly aux-
etic in the entire hyperstatic regime.

Our work is structured as follows; in sect. 2 we spell
out the model ingredients and observables considered in
our study. In sect. 3 we present a numerical investigation
of the elastic properties of our model, as a function of the
two key control parameters, namely the ratio of stiffnesses
μ ≡ kr/kθ and the mean coordination z. In sect. 4 we
explain the occurrence of an isostatic point at zc = 4 in
our model. In sect. 5 we consider the hyperstatic regime,
and study theoretically the limit μ → 0, while sect. 6
presents a theoretical framework that allows us to study
the hypostatic regime in the limit μ → 0. In sect. 7 we
provide scaling arguments and show numerically that a
characteristic lengthscale diverges as the isostatic point
is approached. Section 8 discusses the auxeticity of our
model, and our work is summarized in sect. 9, where we
discuss future research directions.

2 Model and key observables

We consider 2D disordered planar graphs (networks) with
periodic boundary considitions, whose topology is charac-
terized by the mean number of edges per node, denoted
by z. We build these disordered networks by adopting the
contact network of dense packings of soft spheres, and
pruning edges according to a protocol that maintains low
node-to-node fluctuations of connectivity. Our network

Fig. 1. (a) An example of a typical network with a mean coor-
dination of z = 3.95 considered in this work. Our network gen-
eration protocol is described in appendix A. (b) Bond-bending
interactions are defined on pairs of edges that connect to a com-

mon central node. The red arrows represent the field
∂θijk
∂x�

, see

text for details.

generation protocol is described in appendix A, and an
example of a network with z = 3.95 is shown in fig. 1(a).

We introduce the following potential energy U for our
disordered networks:

U =
kθ �̄2

2

�

�i,j,k�

Δθijk
2 +

kr

2

�

�i,j�

Δrij
2, (1)

where kθ and kr denote the bond-bending and central-
force stiffnesses, respectively, and �̄ denotes the micro-
scopic units of length. The first term on the RHS of
eq. (1) represents a sum over all angles θijk formed be-
tween pairs of edges that share a common node, with no
other edges found between the said pair, as illustrated in
fig. 1(b). We define the deviations from the rest-angles
Δθijk ≡ θijk − θ

(0)
ijk with θ

(0)
ijk denoting the initial (ground

state) rest-angles. The second term on the RHS of eq. (1)
represents a sum over the network’s edges, and we define
the deviation from the rest-lengths Δrij ≡ rij −�ij , where
�ij denotes the rest-length of the edge connecting the i, j
pair of nodes. Lengths are expressed in terms of �̄ which
denotes the mean rest-length. Below we will always as-
sume that the networks reside at their respective ground
states, i.e. all of the angles are equal to their rest-angles,
and all edges reside at their rest-lengths, implying that
U = 0 and that there are no stresses in the material.

In what follows we consider simple shear and expan-
sive strains that result from the application of the affine
transformation H(γ, η) on coordinates x as x → H · x.
The transformation H(γ, η) is most conveniently param-
eterized by simple shear and expansive strain parameters
γ and η, respectively, and has the following form in 2D:

H =
�

1 + η γ

0 1 + η

�
. (2)

Using this transformation, the strain tensor ε assumes the
form

ε(γ, η) =
1
2

�
HT · H − I

�
=

1
2

�
2η + η2 γ + γη

γ + γη 2η + η2 + γ2

�
,

(3)
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Fig. 2. Shear modulus G, rescaled by (a) kθ, and (b) kr, vs. the mean coordination z for various values of μ ≡ kr/kθ. In this
representation we see that i) a jamming transition occurs at zc = 4; ii) G ∼ kθ deep in the hyperstatic regime z > zc, and
iii) G ∼ kr deep in the hypostatic regime z < zc. The black circles correspond to the limit μ → 0, discussed in detail separately
for the hyperstatic regime in sect. 5 and for the hypostatic regime in sect. 6.

where I represents the identity tensor. We note that
quadratic terms in the strain parameters η and γ are
kept in the entries of ε since we will be interested in
second-order derivatives with respect to those parameters,
as shown below. Given a strain tensor that describes an
imposed deformation mode, distances rij = √xij · xij be-
tween the coordinates of any two nodes xi, xj vary under
such imposed deformations according to

δrij � xij · ε · xij

rij
− 1

2
(xij · ε · xij)2

r3
ij

, (4)

where xij ≡ xj − xi. We note importantly that in what
follows we only consider either simple shear or expansive
strains, and not combinations of these.

We focus on macroscopic elastic properties as seen in
the athermal shear and bulk moduli, denoted as G and K,
respectively. The athermal shear modulus is defined as

G ≡ 1
V

d2U

dγ2
, (5)

whereas the athermal bulk modulus is given by

K ≡ 1
V

�
1
4

d2U

dη2
− 1

2
dU

dη

�
. (6)

Total dervatives e.g. d/dγ are understood as taken in the
athermal limit, i.e. under the constraints dictated by me-
chanical equilibrium [17].

3 Elastic properties of
bond-bending–dominated networks

We start the presentation of our results with a numer-
ical investigation of the shear modulus variation under
changes of the mean coordination z and the ratio μ of

bond-bending to central-force stiffnesses. In fig. 2 we plot
the sample-to-sample means of the shear modulus aver-
aged over 20 random networks of N = 25600 nodes. The
left panel plots the ratio G/kθ vs. the coordination z; no-
ticeably, z = 4 marks the onset of an underlying jamming
transition, that becomes more pronounced as μ → 0. For
small μ the ratio G/kθ grows by several orders of mag-
nitude as z approaches the critical coordination zc = 4,
in a fashion reminiscent of the strain-stiffening transition
observed upon deformation of biopolymeric fibrous mate-
rials [18–22]. Far above zc the ratio G/kθ becomes roughly
independent of μ, indicating that in this regime G ∼ kθ.

In the right panel of fig. 2 we show the same sample-
to-sample means of the shear modulus, this time rescaled
by kr, to find that deep in the hypostatic regime z < 4,
G ∼ kr. The data pertaining to μ = 0 in fig. 2 will be
discussed in detail in what follows.

In fig. 3 we show a scaling plot for G; here G/kθ is
rescaled by |δz|f and plotted against the ratio kr/|δz|φ
where δz ≡ z − zc denotes the distance to the critical
coordination zc ≡ 4. The best collapse is found using the
exponents f = 1.25 and φ = 2.25. In what follows we will
argue that the mean field exponents are f = 1 and φ = 2,
and discuss the discrepancy we find with the mean field
predictions.

To understand the scaling behavior of the shear modu-
lus as seen in figs. 2 and 3, in the next sections we explain
the occurrence of an isostatic point at zc = 4 in our model,
and consider the limit μ → 0 separately in the hyperstatic
z > zc and the hypostatic z < zc regimes.

4 The angle-preserving isostatic point of 2D
planar networks

In this section we extend the Maxwell-Calladine linear-
algebraic constructions for the rigidity of frames of
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Fig. 3. Scaling collapse of the shear modulus G; here the scal-
ing exponents f = 1.25 and φ = 2.25 give the best collapse.

struts [1,3] to 3-body (bond-bending) geometries, in order
to establish that the angle-preserving isostatic point of 2D
planar networks is zc = 4.

The emergence of an isostatic point in 2D planar net-
works becomes apparent when the limit μ → 0 is consid-
ered, as seen in fig. 2. In the hypostatic regime z ≤ zc

the limit μ → 0 can be obtained by fixing kr and send-
ing kθ → ∞. Under these circumstances the bond-bending
interactions can be treated as geometric constraints; a dis-
placement field u� on the network’s nodes will leave the
angles θijk invariant (to leading order in u�) if it satisfies

∂θijk

∂x�
· u� = 0, (7)

for every angle θijk, where here and in what follows re-
peated node indices are understood to be summed over.
An example of the field ∂θijk

∂x�
is shown in fig. 1(b).

It is useful to define the linear operator

Qijk,� ≡ ∂θijk

∂x�
, (8)

which takes vectors from the space of the nodes’ coordi-
nates to the space defined by the entire set of angles. The
number of rows Q features is equal to the total number
of angles Nz, whereas the number of columns is 2N , each
represented a spatial coordinate of a node. Nontrivial so-
lutions to eq. (7) are expected to exist if the rank of the
operator Q is smaller than the number of degrees of free-
dom 2N available to the displacement field u.

We next argue that the rank of Q becomes exactly
equal to 2N at z = 4; to this aim we define zi to be the
number of edges connected to the i-th node, and we note
that the number of angles that surround each node is equal
to zi. A displacement field that preserves zi −1 angles that
surround a single node must also preserve the zi-th angle
as well, meaning that a single angle for each node can be
selected, and the row of Q corresponding to that particular
angle can be eliminated (it will be expressible as a linear
combination of other rows). This amounts to eliminating
N rows out of the Nz rows of Q.

We finally note that each face of our planar network is
a polygon with m edges, built from m angles; a displace-
ment field that preserves m − 1 angles of a face must also
preserve the m-th angle, further reducing the number of
independent rows of Q by the number F of faces of the
network. The latter is related to the number of nodes N
and the number of edges 1

2 Nz via Euler’s formula for a
planar graph embedded on a torus

F =
1
2

Nz − N. (9)

The total number of independent rows left after the
eliminations described above is thus

rank(Q) = Nz − N −
�

1
2

Nz − N

�
=

1
2

Nz, (10)

which becomes equal to the dimension of configuration
space 2N when the coordination reaches zc = 4. In
these considerations we neglect corrections of order N�1

that arise from collective translations or deformations of
space [23].

We conclude that in our two-dimensional disordered
networks nontrivial displacement fields that preserve the
entire set of angles will exist if z < 4, whereas when z >
4 no such displacements exist. Interestingly, the critical
coordination that separates these two regimes coincides
with the Maxwell threshold zc = 2d̄ of networks of rigid
struts [1,3] discussed intensively in the jamming literature,
see e.g. [7, 8].

Having established that an underlying isostatic point
exists at z = 4, we next turn to discussing the scaling
behavior of elastic moduli as the critical coordination is
approached from above and from below.

5 The hyperstatic regime z > zc

It is illuminating to study the elasticity of our model in the
hyperstatic regime by fixing kθ = 1 and sending kr → 0,
resulting in μ → 0 (see black circles in fig. 2(a)). These
circumstances correspond to eliminating the second sum
on the RHS of eq. (1) for the potential energy, leaving us
with

Ukr=0 =
kθ �̄2

2

�

�i,j,k�

Δθijk
2. (11)

In the remainder of this section we show how in this limit
elastic moduli expressions can be simply expressed via the
geometry of the network, and provide scaling arguments
to moduli’s dependence on coordination for z > zc.

5.1 Elastic moduli in the hyperstatic regime

The microscopic expression for the athermal shear mod-
ulus G for systems governed by a potential energy U
reads [17]

G =
1
V

�
∂2U

∂γ2
− ∂2U

∂γ∂x�
· M�1

�m · ∂2U

∂xm∂γ

�
, (12)
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where

M ≡ ∂2U

∂x∂x
(13)

is known as the dynamical matrix. Recall that our systems
are assumed to have U = 0 (i.e. all of the angles reside
exactly at their rest-angles) before any deformation is im-
posed, leading to a simple form for the dynamical matrix;
it reads

M�m = kθ �̄2
�

�i,j,k�

∂θijk

∂x�

∂θijk

∂xm
. (14)

Working in units such that �̄ = 1 and kθ = 1, employing
eq. (8) and adopting bra-ket and matrix notations, the
dynamical matrix takes the form

M = QT Q, (15)

where here and in what follows we assume that the re-
dundent rows of Q have been eliminated as described in
sect. 4.

We next see that under the circumstances of fixing
kθ = 1 and sending kr to zero

∂2U

∂x�∂γ
=

�

�i,j,k�

∂θijk

∂x�

∂θijk

∂γ
, (16)

which can be expressed using our bra-ket notation as

|∂2
x,γU〉 = QT |∂γθ〉, (17)

where we denoted ∂γ ≡ ∂/∂γ and ∂2
x,γ ≡ ∂2/∂γ∂x. We

note that the space of angles θijk is assumed here to only
consist of those angles that were not eliminated from the
corresponding rows of Q.

Combining now eqs. (12), (15) and (17), we arrive at
a simple expression for the shear modulus:

G =
〈∂γθ|I − Q(QT Q)�1QT |∂γθ〉

V
. (18)

A similar expression was first put forward in [24] for the
case of random networks of relaxed Hookean springs.

5.2 Scaling argument for hyperstatic moduli

We follow a similar line of argumentation as presented
in [24] for elastic moduli of random networks of relaxed
Hookean springs. From general considerations (see e.g. [25]
for a detailed discussion) it can be shown that for z > zc

I − Q(QT Q)�1QT =
�

�

|φ�〉〈φ�|, (19)

where |φ�〉 are the zero-modes of the operator QQT ,
namely they satisfy

QT |φ�〉 = 0. (20)

These objects are akin to the so-called states of self-stress
studied intensively in the context of the jamming tran-
sition [2, 11, 25, 26] and the physics of topological meta-
materials [27, 28]. Simple counting arguments [11, 24, 26]

suggest that in a system of size N with coordination z
there are N(z − zc) orthonormal modes |φ�〉. Assuming
these modes are extended and random objects one expects
〈∂γθ|φ�〉 ∼ O(1), and therefore we predict

G =
1
V

�

�

〈∂γθ|φ�〉2 ∼ z − zc, (21)

in the hyperstatic regime, and in the limits z → z+
c and

μ → 0. This prediction is also in agreement with Effective
Medium calculations, see e.g. [29,30]; it suggests that the
scaling exponent f = 1, cf. fig. 3.

In fig. 4(b) we show our measurements of the shear
modulus for kθ = 1 and kr = 0. We do not find perfect
agreement with the theoretical prediction. However, this
disagreement with the scaling argument and mean field
theory seems not to be unique to our system in which
bending interactions dominate; the shear modulus of ran-
domly diluted hyperstatic spring networks in 2D shows a
similar super linear scaling with δz too, as demonstrated
in previous works [31, 32]. We speculate [33] that dimen-
sionality may be playing a role. Uncovering the origin of
these observed disagreements is left for future work.

As for the bulk modulus, we note that isotropic expan-
sions leave the angles θijk unchanged. As a consequence,
we expect the bulk modulus to trivially scale with kr

throughout the entire coordination range, and to trivially
grow with increasing coordination. In fig. 5 we show that
this is indeed the case.

6 The hypostatic regime z < zc

To study the elasticity of our model in the hypostatic
regime, we fix kr and send kθ → ∞, resulting in μ → 0.
In this route of taking the μ → 0 limit the bond-bending
interactions can be treated as geometrical constraints, as
mentioned in sect. 4.

In what follows we assume z < zc, we fix kr and send
kθ → ∞, resulting in μ → 0. We aim at incorporating the
geometric constraints of fixed angles while deriving micro-
scopic expressions for elastic moduli; a similar derivation
was recently presented in [21] in the context of the nonlin-
ear mechanics of biopolymeric fibrous materials. In what
follows we will consider the angles θijk as being entirely
fixed; the potential energy of the material then reduces to

Uk�=0 =
kr

2

�

�i,j�

Δrij
2, (22)

i.e. we only consider the central-force part of the energy.
We aim at taking the derivative of the energy with respect
to the imposed deformation, under two sets of constraints:
i) the system must remain in mechanical equilibrium along
the deformation, and ii) the geometric constraints of fixed
angles must be satisfied by the total displacements of the
network’s nodes.

In order to satisfy condition i), we introduce Lagrange
multipliers τijk that correspond to clamping torques asso-
ciated with each fixed angle θijk; in terms of these torques
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Fig. 4. The shear modulus G in the μ = 0 limit. (a) In the hypostatic regime, where z < zc, we plot G rescaled by the stiffness
kr, as a function of the distance to the critical coordination δz�. (b) In the hyperstatic regime where z > zc, we plot G rescaled
by the stiffness kθ, as a function of the distance to the critical coordination δz+.

Fig. 5. The bulk modulus K divided by the stiffness kr, as a
function of the coordination z for various values of the stiffness
ratio μ.

and the potential energy given by eq. (22), the net force
experienced by the i-th node must vanish, namely

fm =
�

�i,j,k�

τijk
∂θijk

∂xm
− ∂U

∂xm
= 0. (23)

Condition i) is satisfied by demanding that not only is the
net force zero, but it also does not change under imposed
deformations, namely

dfm

dγ
=

∂fm

∂γ
+

∂fm

∂xn
· yn +

�

�i,j,k�

∂fm

∂τijk

dτijk

dγ
= 0, (24)

where the nonaffine displacements y are additional dis-
placements that the nodes must perform on top of the
imposed deformation, in order to satisfy the mechanical
equilibrium constraints, and leave the angles invariant un-
der the external deformation. The latter requirement can

be expressed as a constraint equation for each angle θijk

that reads

dθijk

dγ
=

∂θijk

∂γ
+

∂θijk

∂xm
· ym = 0. (25)

Setting kr = 1, and defining the linear operator [3]

Sij,k ≡ ∂rij

∂xk
, (26)

we show in appendix B that eqs. (24) and (25) can be
incorporated into a single relation as

�ST S −QT

−Q 0

�� |y〉
|τ̇〉

�
=

�−ST |∂γr〉
|∂γθ〉

�
, (27)

where we have used the notations ∂γrij ≡ ∂rij/∂γ and
∂γθijk ≡ ∂θijk/∂γ. Equation (27) forms a closed linear
system that can be inverted in favor of the nonaffine dis-
placement field y and the torque variations τ̇ .

6.1 Elastic moduli in the hypostatic regime

We are now in the position to derive expressions for elastic
moduli, in the limit μ → 0 obtained by taking kθ → ∞
and kr = 1; the second derivatives of the energy with
respect to deformation reads

d2U

dγ2
=

∂2U

∂γ2
+ 2

∂2U

∂γ∂xk
· yk

+
∂2U

∂xk∂xm
: ykym +

∂U

∂xk
· dyk

dγ
. (28)

Assuming again an unstressed material, namely that all
torques τijk = 0 vanish then following eq. (23)

∂U

∂xk
= 0. (29)
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Notice further that for the simple form of the potential
eq. (22), and by setting kr = 1, one finds

∂2U

∂xk∂x�
=

�

�i,j�

∂rij

∂xk

∂rij

∂x�
↔ ST S, (30)

and
∂2U

∂xk∂γ
=

�

�i,j�

∂rij

∂xk

∂rij

∂γ
↔ ST |∂γr〉. (31)

Combining eqs. (29), (30) and (31) with eq. (28), we arrive
at an expression for elastic moduli in the hypostatic regime
z < zc in the limit μ → 0:

G =
〈∂γr|∂γr〉 + 2〈∂γr|S|y〉 + 〈y|ST S|y〉

V
. (32)

6.2 Scaling arguments for hypostatic moduli

Examining eq. (32) it is clear that if the characteristic
scale of nonaffine displacements y ≡

�
〈y|y〉/N diverges

as z → zc, one expects to observe scaling laws of elastic
moduli with respect to z −zc. To understand the behavior
of the nonaffine velocities, we rearrange eq. (27) in favor
of y as

|y〉=(ST S)�1ST |∂γr〉 − (ST S)�1QT
�

Q(ST S)
�1QT

	�1

·


Q(ST S)

�1ST |∂γr〉 − |∂γθ〉
�

. (33)

We now perform a mean-field approximation, and consider
a potential energy that consists of Hookean springs of unit
stiffness that connect each node to its absolute initial po-
sition x(0), namely

Umf =
�

i

���xi − x(0)
i

���
2

. (34)

In this case the dynamical matrix ∂2Umf/∂x∂x reduces to
the identity tensor I (instead of ST S, as given by eq. (30)),
and the nonaffine displacements assume the simple form

|y〉 = ST |∂γr〉 + QT (QQT )�1(QST |∂γr〉 − |∂γθ〉). (35)

Recall that when z = zc a single solution |φ〉 to the equa-
tion QT |φ〉 = 0 appears. We therefore expect the operator
QQT to posses lower and lower frequency modes as z ap-
proaches zc, that, in turn, give rise to diverging nonaffine
displacements. This is akin to the behavior observed for
the operator SST in floppy networks [5].

We next note that the first term in the right-hand side
(RHS) of eq. (35) is regular, and in appendix C we argue
that the first term in the brackets on the RHS of eq. (35)
(the term involving Q) can be neglected compared to the
second term as z → zc. Therefore, as z → zc, the charac-
teristic scale of nonaffine displacements follows

y2 ≡ 〈y|y〉/N ∼ 〈∂γθ|
�
QQT

��1|∂γθ〉. (36)

Assuming that the operator Q is random, it has been
shown in [34] that the spectrum of concatenations of the
form QQT should depend on the dimensions of the op-
erator Q; in particular, one expects the density of states
(i.e. the distribution of the square root of the eigenvalues)
of QQT to follow the Marchenko-Pastur distribution [34],
which in the small frequency and z → zc limits takes the
form

D(ω) ∼
�

ω2 − ω2
�

ωω2
�

, (37)

with ω� ∼ zc − z. Assuming next that the eigenmodes
of QQT are random, extended objects (similarly to the
arguments made before eq. (21)), we estimate

y2 ∼


D(ω)
ω2

dω ∼


ω�

dω

ω2
∼ 1

ω�
∼ 1

zc − z
. (38)

Finally, following eq. (32) we expect that to leading
order in y, G ∼ y2. We therefore conclude this section
with the prediction

G ∼ 1
zc − z

, (39)

in the hypostatic regime, in the limits z → z�
c and μ → 0.

In fig. 4(a) we plot G vs. δz for our hypostatic systems,
and find excellent agreement with the theoretical predic-
tion eq. (39). We note that similar results were shown for
an elastic system subjected to radial constraints in [21].
Equation (39) implies the scaling relation f − φ = −1; us-
ing the mean-field exponent f = 1 (see sect. 5.2), one ex-
pects φ = 2. However, the best collapse in fig. 3 is achieved
using f = 1.25 and φ = 2.25, consistent with our predicted
scaling relation, and with the direct measurement in the
hyperstatic regime shown in fig. 4.

7 Diverging lengthscale in the hyperstatic
regime

In sects. 5 and 6 we rationalize the scaling of the shear
modulus in the limit μ → 0 both in the hyperstatic and
hypostatic regimes, respectively. Building on the discus-
sions held in both of these sections, we now make a scal-
ing argument that predicts a diverging lengthscale in the
hyperstatic regime, that is expected to follow

�c ∼ 1√
z − zc

. (40)

The argument is made as follows; consider the vibra-
tional spectra of our bending dominated disordered net-
works with μ = 0 and z larger than but close to the critical
coordination zc. As shown in sect. 5.1, for μ = 0 the dy-
namical matrix assumes the form

M = QT Q. (41)

We note that, apart from possible zero modes, the spec-
tra of the concatenations QQT and of QT Q are identi-
cal [34]. We therefore expect the occurrence of a plateau



Page 8 of 11 Eur. Phys. J. E (2019) 42: 114

Fig. 6. Displacement response field δx of two networks of
N = 1 000 000 with coordination (a) z = 4.4 and (b) z = 4.05,
zoomed in on the core of the localized force perturbation.

of disordered vibrational modes above the frequency scale
ω� ∼ z − zc [34], as discussed in sect. 6.2.

On the other hand, our system’s potential energy is
invariant to global translations, and therefore Goldstone
modes are expected to be present at small frequencies. In
particular, the frequency ω̃min of the longest-wavelength
Goldstone mode depends on the system size L and the
shear modulus G as

ω̃min ∼
√

G/L. (42)

Consider now the response to a localized force pertur-
bation in a random bending-dominated network of coordi-
nation z and linear size L; if ω̃min � ω�, we expect the far
field of the response to the local perturbation to exhibit
a continuum-elastic–like structure, whilst if ω̃min  ω�

no continuum-elastic–like response is expected since low-
frequency disordered modes will overwhelm the response.
Since the two frequency scales ω̃min and ω� become com-
parable when L is of the order of 1/

√
z − zc, we expect to

see a signature of a diverging length �c ∼ 1/
√

z − zc in the
spatial structure of the response to point perturbations.

We stress that both in floppy (hypostatic) [5] and in
hyperstatic random networks [35] the length �c was ob-
served, as well in several other previous works. Refer-
ence [25] provides a comprehensive summary of additional
observations of the length �c in the existing literature.

To test our argument, we select randomly an angle θijk,
and impose a localized force perturbation of the form

fm =
∂θijk

∂xm
. (43)

An example of this force can be seen in fig. 1(b). The
linear displacement response to the force fm reads

δx� = M�1
�m · fm = M�1

�m · ∂θijk

∂xm
. (44)

We denote any two angles in the system θ1 and θ2, and
by r12 the distance between the nodes associated with
these angles. In fig. 6 an example of the response field
is visualized for two different coordinations. The growing
length scale is clearly showing. We next define

C(r) =
�

∂θ1

∂xm
· M�1

m� · ∂θ2

∂x�

�

r12

, (45)

where 〈〉r12 denotes the average over all pairs of angles θ1,
θ2 separated by a distance r12. Figure 7 shows the results
of our numerical calculations of C(r): in panel (a) we show
the mean of 50 different force perturbations. In panel (b)
we plot the same data shown in panel (a), this time scaled
by r4δz2.5, and plotted against r

√
δz ∼ r/�c, clearly re-

vealing that the lengthscale governing the transition to
a continuum-like response is �c ∼ 1/

√
z − zc, consistent

with our scaling argument.

8 Auxeticity

In this penultimate section we discuss the auxetic behavior
of our model material. Auxeticity is quantified via the
Poisson ratio ν, defined in 2D as

ν =
K − G

K + G
. (46)

Materials possessing ν = 1/2 are known as incompressible,
whereas materials with ν < 0 are termed auxetic; the
latter are nongeneric, and as such draw attention in the
field of architected metamaterials [36–38].

In fig. 8 we plot the Poisson ratio ν averaged over 20
realizations as a function of the coordination, for various
values of the stiffness ratio μ. We find that our system
becomes auxetic in the entire range of μ explored (μ ≤
10�2), for z roughly larger than 3.5. As expected from
the scaling of G and K discussed previously, in the limit
μ → 0 we find a transition to perfect auxeticity μ = −1
at the isostatic point zc = 4. From the scaling behavior of
G discussed in sect. 6 we expect ν + 1 ∼ zc − z as z → zc,
as supported by our data shown in fig. 8.

9 Summary and discussion

In this work we explored the elastic properties of a model
system that represents a material whose mechanics is
dominated by bond-bending interactions, rather than the
commonly studied steric or radial interactions. Our study
was motivated by recent intriguing experimental work by
Schall and coworkers [14], who fabricated colloidal super-
structures using critical Casimir forces [39], in which bond-
bending interactions between the constituent patchy col-
loidal particles were shown to be much stiffer than radial
ones.

In our model system we observe numerically and ra-
tionalize theoretically the existence of an angle-preserving
isostatic point zc = 4 that governs an underlying jam-
ming transition observed when the ratio of stretching to
bending stiffnesses of the interactions vanishes. The jam-
ming behavior we observe as the coordination is made to
approach the critical coordination from below is reminis-
cent of the strain stiffening transition observed in fibrous
biological materials [19–22].

Our theoretical arguments for the scaling of elastic
moduli in the limits μ → 0, z → z+

c (the hyperstatic
regime) and z → z�

c (the hypostatic regime) follow closely



Eur. Phys. J. E (2019) 42: 114 Page 9 of 11

Fig. 7. Amplitude of the response fields to a local perturbation (see definition in eq. (45)), as a function of the distance r to the
local imposed forcing. The signal is averaged over 50 responses to different pertubations, calculated in networks of N = 1 000 000
nodes and with varying coordinations in the hyperstatic regime as indicated by the legend. The far fields show a r�4 decay, in
agreement with similar analyses shown in [25,35].

Fig. 8. The Poisson ratio ν as a function of the coordination
z for various values of the ratio of stiffnesses μ.

two previous theoretical approaches to the jamming [24]
and the strain-stiffening [21] transitions in random net-
works, respectively. In the hyperstatic regime, the argu-
ments put forward by Wyart [24] using the operator S (see
eq. (26)) —that represents the constraints associated with
radial interactions— were applied here using the operator
Q that represents constraints associated with conserving
the angles of our networks. In the hypostatic regime, our
argumentation echos the framework and reasoning pre-
sented in [21], where again the role of the operator S
in [21] is played by the operator Q in the present work. The
applicability of these approaches establishes their gener-
ality, and highlights the key physical ingredient govern-
ing the mechanics near jamming and stiffening transitions
—the interplay between interactions-induced constraints
and configurational degrees of freedom.
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Appendix A. Network generation protocol

The protocol for generating homogeneous networks con-
sists of a two-step process. In the first step, a packing of
soft disks is compressed up to a certain pressure. Using a
bidisperse distribution of radii we prevent crystallization
and ensures a disordered realization. A contact is assigned
to each overlapping disc. We then distillate the contact
network to obtain a highly coordinated network of edges
and nodes, with an average of between 5 and 6 edges per
node.

The second step is a biased bond dilution protocol that
aims at maintaining homogeneity of the network, which is
typically lost in a truely random dilution. The network
with N nodes and a set of edges E . An edge eij ∈ E con-
nects between a pair of neighboring nodes i, j, with ranks
zi and zj respectively. For every edge eij we define the
sum of ranks sij = zi + zj and the absolute difference
dij = |zi − zj |. The edges with largest value for sij and
than smallest value of dij , will remove fluctuations in co-
ordination of the network when removed. This min-max






