C-H Activation of Benzene by a Photoactivated NiII(azide): Formation of a Transient Nickel Nitrido Complex

Vreeken, V.; Siegler, M.A.; de Bruin, B.; Reek, J.N.H.; Lutz, M.; van der Vlugt, J.I.

DOI
10.1002/ange.201501437
10.1002/anie.201501437

Publication date
2015

Document Version
Final published version

Published in
Angewandte Chemie

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):
C–H Activation of Benzene by a Photoactivated NiII(azide): Formation of a Transient Nickel Nitrido Complex**

Vincent Vreeken, Maxime A. Siegler, Bas de Bruin, Joost N. H. Reek, Martin Lutz, and Jarl Ivar van der Vlugt*

In memory of Greg Hillhouse

Abstract: Photochemical activation of nickel-azido complex 2 [Ni(N₃)₃(PNP)] (PNP = 2,2′-di(isopropylphosphino)-4,4′-ditylamine) in neat benzene produces dianionic complex 3 [Ni(Ph)(PNP)₃], which is crystallographically characterized. DFT calculations support photoinitiated N₃-loss of the azido complex to generate a rare, transient NiII nitrido species, which bears significant nitridyl radical character. Subsequent trapping of this nitrido through insertion into the Ni–P bond generates a coordinatively unsaturated NiII imidophosphorane P=N donor. This species shows unprecedented reactivity toward 1,2-addition of a C–H bond of benzene to form 3. The structurally characterized chlorido complex 4 [Ni(Cl)(PNP)₃] is generated by reaction of 3 with HCl or by direct photolysis of 2 in chlorobenzene. This is the first report of aromatic C–H bond activation by a trapped transient nitrido species of a late transition metal.

Transition metal complexes with terminal multiple bonds to main-group elements (e.g. C, O, N) play critical roles in various chemical and biological processes, including but not limited to nitrogen fixation, water splitting, and metathesis. However, ligands based on multiple-bonded heteroatoms (e.g. imido or nitrido) typically exhibit strong π-donor character. For stable multiple bonding to occur between a transition metal and a strong π-donor main-group element, one or more empty metal d-orbitals of suitable symmetry and matching energy levels should be available on the metal center to accommodate the additional π-electron density.[2] Hence, complexes with Group 9–11 metals featuring multiple-bonded E-fragments are either rare or elusive, a situation sometimes referred to as “the oxo-wall dilemma.”[3] Notwithstanding the challenges associated with the preparation of these species, their potential application in for example, C–N bond formation[4] or as intermediates in alternative routes for N₂ fixation warrants continued investigation, even when using “abiological” non-Group 8 metals.

Metal azides offer access to the interesting chemistry of nitrido complexes, as thermal, photolytic, or oxidative activation may result in the expulsion of N₂. Progress in the generation of Group 9 nitriles and open-shell nitrilid radical analogues demonstrate the feasibility of this approach.[5] However, these studies are dominated by the use of the second- and third-row transition metals. Only very recently the first low-temperature characterization of a cobalt nitrilo intermediate was reported, which highlights the potential for late first-row transition metal nitrido chemistry.[5]

Studies on the activation of terminal metal azides to generate M≡N species with Group 10 metals are very scarce, particularly for nickel[7–9] and no bona fide (transient) nickel nitrilo has been reported to date. Photo-, thermal, or redox-induced release of N₂ would convert the mononionic azido ligand into a trivalent nitrilo (N=⁺) ligand, which raises the formal oxidation state of the metal platform by two (Figure 1). Hence, stabilization of such (transient) species could potentially benefit from electron-donating or redox-active ligands. Terminal nitrilo ligands on Group 9 metals are often too reactive to be isolated, and “trapping” these sought-after transient species by insertion into ligand C–H[10] or

**Research funded by the European Research Council (ERC Starting Grant 279097 to J.I.v.d.V.). We thank Ed Zuidinga (MS), Jan-Meine Ernsting (¹⁵N NMR), Dr. Wojciech Dzik and Esther Schippers for experimental assistance and EU COST Network CARISMA CM1205 members for scientific discussions.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201501437.

Figure 1. Strategies toward and reactivity with “trapped” transient nitrido species of Group 9 (previous work) and Group 10 metals (Ni, this work; aren C–H).
metal–ligand bonds is an attractive strategy. However, to the best of our knowledge, well-defined reactivity of a “trapped” nitrido species toward intermolecular arene C–H bond activation has not been reported to date. As part of our ongoing program to utilize reactive ligands with (first-row) late transition metals for bond activation, activation has not been reported to date.

We set out to explore this chemistry with Group 10 congeners. Herein, we report on the photolytic activation of a Ni(N₃)(PNP) complex, which results in a transient nitrido species that is trapped as parent imidophosphorane by an intramolecular insertion reaction. This species facilitates unexpected follow-up aromatic C–H bond activation of benzene. DFT calculations on the mechanism and reactivity of the photolysis product are presented. The combined data provide insight into the chemical reactivity of a transient Ni-bound “nitrido” ligand.

Our starting point was the previously reported chlorido complex Ni(Cl)(PNP) (1; PNP = 2,2’-di(isopropylphosphino)-4,4’-ditolylamide). This species cleanly reacted through salt metathesis with excess NaN₃ in THF to generate azido complex Ni(N₃)(PNP) (2, Scheme 1) in high yield, as confirmed by multinuclear NMR spectroscopy. Multinuclear NMR spectroscopy suggested the quantitative formation of one well-defined diamagnetic species. The H NMR spectrum (Figure 2) showed complete preservation of all hydrogen atoms within the ligand scaffold, hence excluding ligand-based intramolecular C–H activation as a potential reaction pathway. Furthermore, complete loss of the C₂ symmetry is observed, with two signals for the -CH₃ groups of the ditolylamine backbone and eight non-equivalent -CH₃ signals from the PhPr groups present. Notably, the ³¹P NMR spectrum contains two doublets at δ 45.9 and 48.5 with a small coupling constant Jₚₚ of 6.4 Hz, excluding a direct trans-coordination of the P moieties. Irradiation of the corresponding ¹⁵N-labeled isotopomer of 2 resulted in two new doublets-of-doublets in the ¹⁵P NMR spectrum. Remarkably, both Jₚₚ coupling constants are almost identical at 29.2 and 30.5 Hz, whereas the Jₚₚ coupling is 6.5 Hz. This confirmed the presence of the azide N₃-atom and suggested that the two P-atoms are chemically inequivalent, but both couple to the ¹⁵N nucleus. Further analysis of the species by cold-spray ionization (CSI) MS spectrometry revealed the presence of a perdeuterophenyl fragment in the generated complex.

Scheme 1. Synthesis and reactivity of complex 2, (PNP)Ni(N₃), including reaction with CO to generate A, photolytic activation to species 3, and subsequent reaction with HCl to product 4.

Figure 2. ¹H NMR spectra before (top), after irradiation of 2 in C₆D₆ (middle), and after irradiation in C₆H₆ (bottom). The insert is showing an additional (-NH) doublet at 0.22 ppm for the irradiation in C₆H₆.
Based on the latter observation, we decided to switch to
C2H5OH as the solvent for the photolysis reaction. In line with the
MS data, this resulted in the appearance of additional
aromatic signals in the 1H NMR spectrum and, markedly,
also a doublet at δ 0.22, coupled to a 13P nucleus (confirmed
by selective 13P decoupling of the 1H NMR spectrum). The
15N-enriched material gave an additional splitting of the
doublet with a large coupling constant (JNPI 73.2 Hz), which
suggests a direct bond between a hydrogen of the activated
benzene and a nitrogen originating from the decomposed
azide group. The existence of an N–H fragment was addi-
tionally confirmed by the appearance of a weak N–H
vibration (ν 3365 cm⁻¹) in the IR spectrum. Close inspection
of the IR spectrum of 30 (product from photolysis in C2D6)
revealed the presence of an N–D vibration at ν 2493 cm⁻¹. In
the corresponding 15N HSQC NMR spectrum a triplet was
observed at δ –365.

Yellow-colored single crystals, suitable for X-ray diffraction,
were obtained by slow evaporation of a dichloromethane/cyclopentane mixture. The X-ray structure of square-
planar NiII-complex 3 (Figure 3) confirms the formal insertion
of an -NH fragment into the NiII–P bond, thus creating a
parent iminophosphorane, with a P–N–C bond length of
1.597(20) Å, which is typical for a P=N double bond.17 The
angles α,N2-NiI–N1 (93.98(8)° vs. 83.83(4)° for α,N2-NiI-P1 in
2) and α,N2-NiI-P1 (177.48(7)° vs. 167.38(1)° for α,N2-NiI-P1 in
2) illustrate the expanded coordination sphere around Ni
upon transformation of the PNP-donor into a 5,6-chelating
PNPNn donor in 3. Furthermore, C–H bond activation of
benzene has resulted in the introduction of a phenyl ligand,
with hydrogen transfer to the nitrogen originating from the
azide precursor.18 Variable temperature NMR studies sug-

gest that the phenyl ligand exhibits hindered rotation at room
temperature, causing the broadening of the ortho- and meta-
H signals in the 1H NMR spectrum (Figure 2). Decreasing the
temperature of a sample in [D2]toluene to –20°C gave rise to splitting of these
broade signals into four well-defined peaks. Species 3 still displays well-
behaved redox chemistry, as illustrated by cyclic voltammetry, with a
reversible one-electron oxidation event occurring at Eo/2 = –0.34 V, which
is significantly more negative (∆E = –0.41 V) than that for azide 2.

To gain more insight into the mechanism of the formation of
complex 3, DFT calculations were performed. For computational ease,
a simplified model of complex 2 was used, with phenyl instead of tolyl
rings for the backbone and Me-substituents at the phosphorus atoms. We investigated routes at different
(excited-state) spin states, both at the hybrid b3-lyp level (Scheme 2)
and the pure GGA BP86 DFT functional (Scheme S3, SI). Open-shell singlet

![Scheme 2. Proposed pathway for the formation of 3 upon irradiation of 2 in C2H5OH based on DFT calculations (b3-lyp, def2-TZVP). Energies in kcal mol⁻¹ relative to CSS state of compound A.](image-url)
The spin density predominantly resides on the N-atom (b3-lyp: 89 %, BP86: 81 %), resulting in significant nitridyl radical character (Figure 4), similar to previously reported systems. The unusual electronic structure of B is perhaps best described with contributions from the following resonance structures: NiII(N3–)\textright{}NiII(N2–)\textright{}NiII(N1–). The CSS and the OSS configurations of singlet B collapse via a virtually barrierless transition state TS2 to the coordinatively unsaturated NiII(PNP2N2) intermediate C, featuring two anionic N-donor atoms (i.e., the PNP-nitrogen and the “nitrido” nitrogen). In fact, the barrier from B to C at the closed-shell singlet BP86 configuration is so low that B converges spontaneously to C. Conversion of B to C on the triplet surface also has quite a low barrier (both at the BP86 and the b3-lyp level) and thus might well proceed thermally (although photoexcitation to the singlet surface cannot be excluded).

The relative spin-state energies of intermediate C at the CSS, OSS, and triplet surface are quite similar. While the triplet configuration of C is most stable at the b3-lyp level, the CSS configuration of C is most stable at the BP86 level. The reaction from C via TS3 to D may follow a thermal or photochemical pathway. Thermal conversion at the triplet surface has a prohibitively high barrier at room temperature, but spin cross-over from the triplet to the CSS surface might facilitate the overall process. A pathway involving H-atom abstraction from benzene followed by a radical rebound reaction was found to be less likely, due to a higher energy barrier. At the CSS and OSS surfaces, direct thermal conversion from C to D is energetically possible at room temperature. The alternative scenarios of outer-sphere C–H activation prior to the N-insertion step, with formation of the nickel · nitridyl radical, were also investigated but found to be less favorable.

Based on these computational data, several attempts to trap the postulated intermediate B were undertaken. Photolysis of 2 in benzene in the presence of Me\textsubscript{3}NO, 50 equiv PMe\textsubscript{3}, or in pure 1,4-cyclohexadiene did not generate Ni(NO)(PNP), Ni(N=PMe\textsubscript{3})(PNP), or Ni(NH\textsubscript{2})(PNP), respectively, based on IR and NMR spectroscopic analysis. The use of H\textsubscript{2} as trapping agent did not lead to the parent Ni-amido species, but instead the known Ni(H)(PNP) complex was observed. NH\textsubscript{3} was detected by 15N NMR spectroscopy and spectrophotometric assay analysis (SI). Use of D\textsubscript{2} resulted in ND\textsubscript{3}. The NH\textsubscript{3} and the Ni-hydride may originate from reaction of H\textsubscript{2} with the transient nitrido, but other pathways for their formation cannot be excluded at this point.

Initial experiments to broaden the reactivity “scope” of the trapped nitrido species C were also performed. Photolysis of 2 in toluene led to four sets of doublets by in situ 31P NMR spectroscopy, suggesting that C\textsubscript{N–}H and C\textsubscript{N–}H bond activation may be competitive processes. Photolysis of 2 in neat cyclohexane or heptane resulted in a myriad of unidentified species in the 31P NMR spectrum. Photolysis in 1,3,5-trideuterobenzene was thwarted by trace amounts of chlorobenzene (detected by MS), culminating in the presence of two doublets at \textgreek{d} 46.8 and 45.3 in the 31P NMR spectrum, attributed to be the chlorido derivative of 3, NiCl(PNP2N2). Complex 4 was also prepared independently by reaction of 3 with HCl (Scheme 1) and fully characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography (see Figure 3 for X-ray structure). The structural parameters for 4 are very similar to those observed for 3 (Figure 3).

Deprotonation of 4 with lithium disopropylamide (LDA) in the presence of benzene did not result in aren C–H activation. We are currently exploring the reactivity of 3 and 4, both to understand the unique structural features of these species and to deduce whether the parent iminophosphorane P=NH unit shows promising ligand reactivity.

In summary, we herein report the first example of a trapped transient nickel nitrido species, making use of a well-defined NiII(PNP) platform. Irradiation of the nickel-azido precursor generates a nickel nitrido, which has significant nitridyl radical character, that is efficiently trapped by insertion of the nitrogen into a Ni–P bond. This trapped intermediate undergoes follow-up intermolecular C–H bond activation of aromatic solvent, with the activated exogenous phenyl fragment incorporated in the final complex 3, which bears a unique tridentate phosphino-amido-iminophosphorane PNP2N2 ligand in the coordination sphere of NiII. DFT calculations support the intermediacy of a rare transient formal Ni3 nitrido species and subsequent 1,2-addition of the C–H bond. Substitution of the Ph-ligand for Cl is facile, generating 4, which is likely amenable to follow-up chemistry.

Keywords: azides · C–H activation · iminophosphoranes · nickel · nitridyl radical

How to cite: Angew. Chem. Int. Ed. 2015, 54, 7055–7059
Angew. Chem. 2015, 127, 7161–7165

The groups of Hillhouse and Warren have described a number of irradiation of a tetrahedral Ni(II)(PMe₃)₂ complex gave no reaction, whereas thermolysis led to a myriad of products. N-atom transfer using dbahb (dbahb = 2,3,5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene) was also not successful. See: C. E. MacBeth, J. C. Thomas, T. A. Betley, J. C. Peters. "Inorg. Chem. 2004, 43, 4645–4662.

Received: February 13, 2015
Revised: March 27, 2015
Published online: April 29, 2015