C-H Activation of Benzene by a Photoactivated NiII(azide): Formation of a Transient Nickel Nitrido Complex

Vreeken, V.; Siegler, M.A.; de Bruin, B.; Reek, J.N.H.; Lutz, M.; van der Vlugt, J.I.

DOI
10.1002/ange.201501437
10.1002/anie.201501437

Publication date
2015

Document Version
Final published version

Published in
Angewandte Chemie

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):
C–H Activation of Benzene by a Photoactivated NiII(azide): Formation of a Transient Nickel Nitrido Complex**

Vincent Vreeken, Maxime A. Siegler, Bas de Bruin, Joost N. H. Reek, Martin Lutz, and Jarl Ivar van der Vlugt*

In memory of Greg Hillhouse

Abstract: Photochemical activation of nickel-azido complex 2 [Ni(N3)3(PNP)] (PN3P = 2,2’-di(isopropylphosphino)-4,4’-diloylamine) in neat benzene produces diamagnetic complex 3 [Ni(Ph)(PN3P)] which is crystallographically characterized. DFT calculations support photoinitiated N3-loss of the azido complex to generate a rare, transient NiII nitrido species, which bears significant nitridyl radical character. Subsequent trapping of this nitrido through insertion into the Ni–P bond generates a coordinatively unsaturated NiII imidophosphorane P=N donor. This species shows unprecedented reactivity toward 1,2-addition of a C–H bond of benzene to form 3. The structurally characterized chlorido complex 4 [Ni(Cl)]-(PN3P) is generated by reaction of 3 with HCl or by direct photolysis of 2 in chlorobenzene. This is the first report of aromatic C–H bond activation by a trapped transient nitrido species of a late transition metal.

Transition metal complexes with terminal multiple bonds to main-group elements (e.g. C, O, N) play critical roles in various chemical and biological processes, including but not limited to nitrido species of Group 9 metals are often too reactive to be isolated, and “trapping” these sought-after transient species by insertion into ligand C–H would convert the monoanionic azido ligand into a trivalent nitrido (N3−) ligand, which raises the formal oxidation state of the metal platform by two units to MN (Figure 1). Hence, stabilization of such (transient) species could potentially benefit from electron-donating or redox-active ligands. Terminal nitrido ligands on Group 9 metals are often too reactive to be isolated, and “trapping” these sought-after transient species by insertion into ligand C–H[10] or matching energy levels should be available on the metal center to accommodate the additional π-electron density.[12] Hence, complexes with Group 9–11 metals featuring multiple-bonded E-fragments are either rare or elusive, a situation sometimes referred to as “the oxo-wall dilemma.”[3] Notwithstanding the challenges associated with the preparation of these species, their potential application in for example, C–N bond formation[4] or as intermediates in alternative routes for N2 fixation warrants continued investigation, even when using “abiological” non-Group 8 metals.

Metal azides offer access to the interesting chemistry of nitrido complexes, as thermal, photolytic, or oxidative activation may result in the expulsion of N2. Progress in the generation of Group 9 nitrides and open-shell nitridyl radical analogues demonstrate the feasibility of this approach.[5] However, these studies are dominated by the use of the second- and third-row transition metals. Only very recently the first low-temperature characterization of a cobalt nitrido intermediate was reported, which highlights the potential for late first-row transition metal nitrido chemistry.[6]

Studies on the activation of terminal metal azides to generate MN species with Group 10 metals are very scarce, particularly for nickel[7–9] and no bona fide (transient) nickel nitrido has been reported to date. Photo-, thermal, or redox-induced release of N2 would convert the monoanionic azido ligand into a trivalent nitrido (N3−) ligand, which raises the formal oxidation state of the metal platform by two units to MN (Figure 1). Hence, stabilization of such (transient) species could potentially benefit from electron-donating or redox-active ligands. Terminal nitrido ligands on Group 9 metals are often too reactive to be isolated, and “trapping” these sought-after transient species by insertion into ligand C–H[10] or matching energy levels should be available on the metal center to accommodate the additional π-electron density.[12] Hence, complexes with Group 9–11 metals featuring multiple-bonded E-fragments are either rare or elusive, a situation sometimes referred to as “the oxo-wall dilemma.”[3] Notwithstanding the challenges associated with the preparation of these species, their potential application in for example, C–N bond formation[4] or as intermediates in alternative routes for N2 fixation warrants continued investigation, even when using “abiological” non-Group 8 metals.

Metal azides offer access to the interesting chemistry of nitrido complexes, as thermal, photolytic, or oxidative activation may result in the expulsion of N2. Progress in the generation of Group 9 nitrides and open-shell nitridyl radical analogues demonstrate the feasibility of this approach.[5] However, these studies are dominated by the use of the second- and third-row transition metals. Only very recently the first low-temperature characterization of a cobalt nitrido intermediate was reported, which highlights the potential for late first-row transition metal nitrido chemistry.[6]

Studies on the activation of terminal metal azides to generate MN species with Group 10 metals are very scarce, particularly for nickel[7–9] and no bona fide (transient) nickel nitrido has been reported to date. Photo-, thermal, or redox-induced release of N2 would convert the monoanionic azido ligand into a trivalent nitrido (N3−) ligand, which raises the formal oxidation state of the metal platform by two units to MN (Figure 1). Hence, stabilization of such (transient) species could potentially benefit from electron-donating or redox-active ligands. Terminal nitrido ligands on Group 9 metals are often too reactive to be isolated, and “trapping” these sought-after transient species by insertion into ligand C–H[10] or matching energy levels should be available on the metal center to accommodate the additional π-electron density.[12] Hence, complexes with Group 9–11 metals featuring multiple-bonded E-fragments are either rare or elusive, a situation sometimes referred to as “the oxo-wall dilemma.”[3] Notwithstanding the challenges associated with the preparation of these species, their potential application in for example, C–N bond formation[4] or as intermediates in alternative routes for N2 fixation warrants continued investigation, even when using “abiological” non-Group 8 metals.

Metal azides offer access to the interesting chemistry of nitrido complexes, as thermal, photolytic, or oxidative activation may result in the expulsion of N2. Progress in the generation of Group 9 nitrides and open-shell nitridyl radical analogues demonstrate the feasibility of this approach.[5] However, these studies are dominated by the use of the second- and third-row transition metals. Only very recently the first low-temperature characterization of a cobalt nitrido intermediate was reported, which highlights the potential for late first-row transition metal nitrido chemistry.[6]

Studies on the activation of terminal metal azides to generate MN species with Group 10 metals are very scarce, particularly for nickel[7–9] and no bona fide (transient) nickel nitrido has been reported to date. Photo-, thermal, or redox-induced release of N2 would convert the monoanionic azido ligand into a trivalent nitrido (N3−) ligand, which raises the formal oxidation state of the metal platform by two units to MN (Figure 1). Hence, stabilization of such (transient) species could potentially benefit from electron-donating or redox-active ligands. Terminal nitrido ligands on Group 9 metals are often too reactive to be isolated, and “trapping” these sought-after transient species by insertion into ligand C–H[10] or matching energy levels should be available on the metal center to accommodate the additional π-electron density.[12] Hence, complexes with Group 9–11 metals featuring multiple-bonded E-fragments are either rare or elusive, a situation sometimes referred to as “the oxo-wall dilemma.”[3] Notwithstanding the challenges associated with the preparation of these species, their potential application in for example, C–N bond formation[4] or as intermediates in alternative routes for N2 fixation warrants continued investigation, even when using “abiological” non-Group 8 metals.

Metal azides offer access to the interesting chemistry of nitrido complexes, as thermal, photolytic, or oxidative activation may result in the expulsion of N2. Progress in the generation of Group 9 nitrides and open-shell nitridyl radical analogues demonstrate the feasibility of this approach.[5] However, these studies are dominated by the use of the second- and third-row transition metals. Only very recently the first low-temperature characterization of a cobalt nitrido intermediate was reported, which highlights the potential for late first-row transition metal nitrido chemistry.[6]

Studies on the activation of terminal metal azides to generate MN species with Group 10 metals are very scarce, particularly for nickel[7–9] and no bona fide (transient) nickel nitrido has been reported to date. Photo-, thermal, or redox-induced release of N2 would convert the monoanionic azido ligand into a trivalent nitrido (N3−) ligand, which raises the formal oxidation state of the metal platform by two units to MN (Figure 1). Hence, stabilization of such (transient) species could potentially benefit from electron-donating or redox-active ligands. Terminal nitrido ligands on Group 9 metals are often too reactive to be isolated, and “trapping” these sought-after transient species by insertion into ligand C–H[10] or matching energy levels should be available on the metal center to accommodate the additional π-electron density.[12] Hence, complexes with Group 9–11 metals featuring multiple-bonded E-fragments are either rare or elusive, a situation sometimes referred to as “the oxo-wall dilemma.”[3] Notwithstanding the challenges associated with the preparation of these species, their potential application in for example, C–N bond formation[4] or as intermediates in alternative routes for N2 fixation warrants continued investigation, even when using “abiological” non-Group 8 metals.

Metal azides offer access to the interesting chemistry of nitrido complexes, as thermal, photolytic, or oxidative activation may result in the expulsion of N2. Progress in the generation of Group 9 nitrides and open-shell nitridyl radical analogues demonstrate the feasibility of this approach.[5] However, these studies are dominated by the use of the second- and third-row transition metals. Only very recently the first low-temperature characterization of a cobalt nitrido intermediate was reported, which highlights the potential for late first-row transition metal nitrido chemistry.[6]

Studies on the activation of terminal metal azides to generate MN species with Group 10 metals are very scarce, particularly for nickel[7–9] and no bona fide (transient) nickel nitrido has been reported to date. Photo-, thermal, or redox-induced release of N2 would convert the monoanionic azido ligand into a trivalent nitrido (N3−) ligand, which raises the formal oxidation state of the metal platform by two units to MN (Figure 1). Hence, stabilization of such (transient) species could potentially benefit from electron-donating or redox-active ligands. Terminal nitrido ligands on Group 9 metals are often too reactive to be isolated, and “trapping” these sought-after transient species by insertion into ligand C–H[10] or matching energy levels should be available on the metal center to accommodate the additional π-electron density.[12] Hence, complexes with Group 9–11 metals featuring multiple-bonded E-fragments are either rare or elusive, a situation sometimes referred to as “the oxo-wall dilemma.”[3] Notwithstanding the challenges associated with the preparation of these species, their potential application in for example, C–N bond formation[4] or as intermediates in alternative routes for N2 fixation warrants continued investigation, even when using “abiological” non-Group 8 metals.
metal–ligand5,11 bonds is an attractive strategy. However, to the best of our knowledge, well-defined reactivity of a “trapped” nitrido species toward intermolecular arene C–H bond activation has not been reported to date.

As part of our ongoing program to utilize reactive ligands with (first-row) late transition metals for bond activation,12 we became interested in the preparation of nitrido species for nonligand C–H bond functionalization. Inspired by the recent examples with Group 9 metals,5,6 we set out to explore this chemistry with Group 10 congeners. Herein, we report on the photolytic activation of a Ni(N\textsubscript{3})(PNP) complex, which results in a transient nitrido species that is trapped as parent imidophosphorane by an intramolecular insertion reaction. This species facilitates unexpected follow-up aromatic C–H bond functionalization. DFT calculations on the mechanism and reactivity of the photolysis product are presented. The combined data provide insight into the chemical reactivity of a transient Ni-bound “nitrido” ligand.

Our starting point was the previously reported chlorido complex Ni(Cl)(PNP) (1; PNP = 2,2’:di(isopropylphosphino)-4,4’-ditolylamide).13 This species cleanly reacted through salt metathesis with excess NaN\textsubscript{3} in THF to generate azido complex Ni(N\textsubscript{3})(PNP) (2, Scheme 1) in high yield, as confirmed by multinuclear NMR spectroscopy. The X-ray structure of 2 (Figure 2) showed complete conversion of the azide complex, according to IR spectroscopy. Multinuclear NMR spectroscopy suggested the quantitative formation of one well-defined diamagnetic species. The 1H NMR spectrum (Figure 2) showed clear presence of all hydrogen atoms within the ligand scaffold.

![Scheme 1](image1.png)

Scheme 1. Synthesis and reactivity of complex 2, (PNP)Ni(N\textsubscript{3}), including reaction with CO to generate A, photolytic activation to species 3, and subsequent reaction with HCl to product 4.

![Figure 2](image2.png)

Figure 2. 1H NMR spectra before (top), after irradiation of 2 in C\textsubscript{6}D\textsubscript{6} (middle), and after irradiation in C\textsubscript{6}H\textsubscript{6} (bottom). The insert is showing an additional (–NH) doublet at 0.22 ppm for the irradiation in C\textsubscript{6}H\textsubscript{6}.

firmed by multinuclear NMR (13P: singlet δ 36.3) and 1H NMR spectroscopy (ν = 2051 cm-1; 15N-labeled isotopomer: ν = 2040 cm-1). The compound absorbs strongly at λ = 345 nm (ε = 32000 L mol-1 cm-1) and at λ = 316 nm (ε = 24000 L mol-1 cm-1), as deduced from UV/Vis spectroscopy. Complex 2 exhibits local C\textsubscript{2} symmetry according to 1H NMR spectroscopy. The X-ray structure of 2 was determined by X-ray diffraction on single crystals grown from toluene/pentane.

To establish the stability of species 2 and in particular the robustness of the azide group, we conducted a series of experiments. The azide complex exhibited fully reversible one-electron oxidation chemistry in cyclic voltammetry, with a \textit{E}_{1/2} of 0.03 V versus Fe3/Fe2− (in THF). Oxidation of precursor 1 has been shown by DFT calculations to occur predominantly at the nitrogen of the PNP backbone (ΔE = −0.10 V vs. 2), making this a redox-active ligand.14 Chemical oxidation with AgBF\textsubscript{4} in acetonitrile in the blue cationic derivative [Ni(N\textsubscript{3})(PNP)]BF\textsubscript{4} (2') \textsubscript{[P2]}BF\textsubscript{4}, which contained an intact azide fragment as deduced from IR spectroscopy. Surprisingly, the azide band of the oxidized species was found at the same wavenumber as for its neutral analogue (ν = 2051 cm-1). Species 2 also proved thermally stable up to 200°C as a solid and no sign of decomposition was observed after five days in refluxing toluene. The azide fragment cleanly converted to the corresponding isocyanate under five bars of CO, as confirmed by NMR (13P: singlet δ 37.7) and IR spectroscopy (ν = 2240 cm-1) and by independent synthesis of the isocyanate species A [Ni(NCO)(PNP)] (Scheme 1; for details, see the Supporting Information, SI). This reaction occurred both in the absence and presence of light, implying the direct (intramolecular) attack of CO onto the azide with expulsion of N\textsubscript{2}.15 Addition of PMe\textsubscript{3} or PPh\textsubscript{3} to a solution of 2 in THF did not result in any appreciable reactivity.

Interestingly, in contrast to the thermal and oxidative stability of species 2, photolysis of a [D\textsubscript{2}]-benzene solution of 2 (10.4 mm) using a 500 W Hg/Xe lamp with a cut-off filter at 305 nm resulted in a clear color change from green to yellow and complete conversion of the azide complex, according to IR spectroscopy. Multinuclear NMR spectroscopy suggested the quantitative formation of one well-defined diamagnetic species. The 1H NMR spectrum (Figure 2) showed complete preservation of all hydrogen atoms within the ligand scaffold, hence excluding ligand-based intramolecular C–H activation as a potential reaction pathway. Furthermore, complete loss of the C\textsubscript{2} symmetry is observed, with two signals for the -CH\textsubscript{3} groups of the ditolylamine backbone and eight non-equivalent -CH signals from the PNP\textsubscript{2} groups present. Notably, the 31P NMR spectrum contains two doublets at δ 45.9 and 48.5 with a small coupling constant \textit{J}_{PP} of 6.4 Hz, excluding a direct trans-coordination of the P moieties. Irradiation of the corresponding 15N-labeled isotopomer of 2 resulted in two new doublets-of-doublets in the 31P NMR spectrum. Remarkably, both \textit{J}_{PP} coupling constants are almost identical at 29.2 and 30.5 Hz, whereas the \textit{J}_{PP} coupling is 6.5 Hz. This confirmed the presence of the azide N\textsubscript{2} atom and suggested that the two P-atoms are chemically inequivalent, but both coupled to the 15N nucleus. Further analysis of the species by cold-spray ionization (CSI) MS spectrometry revealed the presence of a perdeuterophenyl fragment in the generated complex.
Based on the latter observation, we decided to switch to
\(\text{C}_6\text{H}_6 \) as the solvent for the photolysis reaction. In line with the
MS data, this resulted in the appearance of additional
aromatic signals in the \(^1\text{H}\) NMR spectrum and, markedly,
also a doublet at \(\delta 0.22 \), coupled to a \(^3\text{P}\) nucleus (confirmed
by selective \(^3\text{P}\) decoupling of the \(^1\text{H}\) NMR spectrum). The
\(^{15}\text{N}\)-enriched material gave an additional splitting of the
doublet with a large coupling constant (\(J_{\text{NI}} 73.2 \text{ Hz} \)), which
suggests a direct bond between a hydrogen of the activated
benzene and a nitrogen originating from the decomposed
azide group. The existence of an \(\text{N}–\text{H} \) fragment was addi-
tionally confirmed by the appearance of a weak \(\text{N}–\text{H} \) vibration (\(\nu 3365 \text{ cm}^{-1} \)) in the IR spectrum. Closer inspection
of the IR spectrum of \(^3\text{P} \) (product from photolysis in \(\text{C}_6\text{D}_6 \))
revealed the presence of an \(\text{N}–\text{D} \) vibration at \(\nu 2493 \text{ cm}^{-1} \). In
the corresponding \(^{15}\text{N}\) HSQC NMR spectrum a triplet was
observed at \(\delta –3.65 \).

Yellow-colored single crystals, suitable for X-ray diffraction,
were obtained by slow evaporation of a dichloromethane/cyclopentane mixture. The X-ray structure of square-
planar Ni\(^{II}\)-complex 3 (Figure 3) confirms the formal insertion
of an \(-\text{NH} \) fragment into the \(\text{Ni}–\text{P} \) bond, thus creating a
parent iminophosphorane, with a \(\text{P}–\text{Ni} \) bond length of
1.5970(20) \(\text{Å} \), which is typical for a \(\text{P}–\text{N} \) double bond.\(^{[17]} \) The
angles \(\angle \text{N}_2\text{Ni}–\text{Ni}–\text{P} \) (93.98(8)\(^° \)) vs. (83.83(4)\(^° \)) for \(\angle \text{N}_2\text{Ni}–\text{Ni}–\text{P} \), and
\(\angle \text{N}_2\text{Ni}–\text{Pi}–\text{P} \) (177.48(7)\(^° \)) vs. 167.38(1)\(^° \) for \(\angle \text{P}_2\text{Ni}–\text{Pi}–\text{P} \) in
2 illustrate the expanded coordination sphere around \(\text{Ni} \)
upon transformation of the PNP-donor into a 5,6'-chelating
PNPN\(^{\text{N}} \) donor in 3. Furthermore, \(\text{C}–\text{H} \) bond activation of
benzene has resulted in the introduction of a phenyl ligand,
with hydrogen transfer to the nitrogen originating from the
azide precursor.\(^{[13]} \) Variable temperature NMR studies sug-
gest that the phenyl ligand exhibits hindered rotation at room
temperature, causing the broadening of the \(\text{ortho}–\text{meta}–\text{H} \) signals in the
\(^1\text{H}\) NMR spectrum (Figure 2). Decreasing the
temperature of a sample in \(\text{D}_2\)toluene to
\(-20 °\text{C} \) gave rise to splitting of these
broader signals into four well-defined peaks. Species 3 still displays well-
behaved redox chemistry, as illustrated by cyclic voltammetry, with
a reversible one-electron oxidation event occurring at \(E_{\text{1/2}} \) vs. 0.34 V,
which is significantly more negative (\(\Delta E \)
\(-0.41 \text{ V} \)) than that for azide 2.

To gain more insight into the mechanism of the formation of
complex 3, DFT calculations were performed. For computational ease,
a simplified model of complex 2 was used, with phenyl instead of tolyl
rings for the backbone and Me-sub-
stituents at the phosphorus atoms. We investigated routes at different
(excited-state) spin states, both at the
hybrid b3-lyp level (Scheme 2) and
the pure GGA BP86 DFT functional
(Scheme S3, S1). Open-shell singlet
(OSS) configurations for all investigated stationary points
could only be located at the hybrid b3-lyp level. At the
BP86 level only closed-shell singlet (CSS) configurations were
found. As a starting point the activation of the azide was
investigated. The release of \(\text{N}_2 \) proceeds via a high-energy transition state
TS1 on all calculated surfaces and is therefore considered as
a nonthermal, photochemical step. The reaction
pathway after \(\text{N}_2 \) loss from 2 can either follow photochemical
or thermal steps or a combination thereof. The \(\text{meta}–\text{stable} \)
“\(\text{Ni}^2\text{N}–\text{nitrido} \)” intermediate B is most stable in its triplet
configuration (\(\text{B} \)), both at the BP86 and at the b3-lyp level.

Figure 3. ORTEP plots (50% probability level) for 2 (left), 3 (middle),
and 4 (right). Hydrogen atoms are omitted for clarity, except for
hydrogen on \(\text{N}_2 \) and hydrogens on exogenous phenyl ring.\(^{[20]} \) Selected

bond lengths [\(\AA \)] and angles [\(° \)], for 2: \(\text{Ni}–\text{P} \) 2.1956(4); \(\text{Ni}–\text{N} \)
1.8970(8); \(\text{Ni}–\text{Ni} \) 1.9004(10); \(\text{N}–\text{N} \) 1.1826(17); \(\text{P}–\text{Ni}–\text{P} \)
1.67.37(11); \(\text{P}–\text{Ni}–\text{N} \) 83.82(4); \(\text{P}–\text{Ni}–\text{Ni} \) 96.63(5); \(\text{N}–\text{Ni}–\text{N} \)
177.08(6); \(\text{N}–\text{Ni}–\text{N} \) 120.59(10); \(\text{C}–\text{N}–\text{C} \) 121.97(9). For 3: \(\text{Ni}–\text{N} \)
1.9770(17); \(\text{Ni}–\text{P} \) 2.1259(6); \(\text{Ni}–\text{N} \) 1.8923(18); \(\text{Ni}–\text{C} \) 1.893(2);
\(\text{Ni}–\text{P} \) 1.597(2); \(\text{P}–\text{Ni}–\text{N} \) 177.48(7); \(\text{Ni}–\text{Ni}–\text{P} \) 93.98(8); \(\text{Ni}–\text{Ni}–\text{P} \)
85.92(5); \(\text{N}–\text{Ni}–\text{C} \) 177.74(8); \(\text{N}–\text{Ni}–\text{P} \) 123.39(11); \(\text{C}–\text{N}–\text{C} \)
117.99(17). For 4: \(\text{Ni}–\text{N} \) 1.930(3); \(\text{Ni}–\text{P} \) 2.112(2); \(\text{Ni}–\text{N} \) 1.893(3);
\(\text{N}–\text{C} \) 2.1951(11); \(\text{N}–\text{P} \) 1.587(3); \(\text{P}–\text{Ni}–\text{N} \) 176.80(13); \(\text{N}–\text{Ni}–\text{N} \)
94.05(13); \(\text{N}–\text{Ni}–\text{P} \) 86.03(11); \(\text{N}–\text{Ni}–\text{C} \) 173.74(9); \(\text{Ni}–\text{Ni}–\text{P} \)
129.7(2); \(\text{C}–\text{N}–\text{C} \) 116.8(3).

Scheme 2. Proposed pathway for the formation of 3 upon irradiation of 2 in \(\text{C}_6\text{H}_6 \) based on DFT calculations (b3-lyp, def2-TZVP). Energetics in kcal mol\(^{-1} \) relative to CSS state of compound A.
The spin density predominantly resides on the N-atom (b3-lyp: 89 %, BP86: 81 %), resulting in significant nitridyl radical character (Figure 4), similar to previously reported systems.[5b,d,f,6] The relative spin-state energies of intermediate C at the CSS, OSS surfaces are very similar. While the triplet configuration of C is most stable at the b3-lyp level, the CSS configuration of C is most stable at the BP86 level. The reaction from C via TS3 to D may follow a thermal or photochemical pathway. Thermal activation at the triplet surface has a prohibitively high barrier at room temperature, but spin cross-over from the triplet to the CSS surface might facilitate the overall process. A pathway involving H-atom abstraction from benzene followed by a radical rebound reaction was found to be less likely, due to a higher energy barrier. At the CSS and OSS surfaces, direct thermal conversion from 3C to 3D is energetically possible at room temperature. The alternative scenarios of outer-sphere C–H activation prior to the N-insertion step, with a five-coordinate Ni(PNP)(NH)(Ph) imido-species intermediate, were also investigated but found to be less favorable.

Based on these computational data, several attempts to trap the postulated intermediate B were undertaken. Photolysis of 2 in benzene in the presence of Me2NO, 50 equiv PMe3, or in pure 1,4-cyclohexadiene did not generate Ni(NO)(PNP), Ni(N=PMe3)(PNP), or Ni(NH2)(PNP), respectively, based on IR and NMR spectroscopic analysis. The use of HCl as trapping agent did not lead to the parent Ni-amido species, but instead the known Ni(H)(PNP) complex[10] was observed. NH3 was detected by 15N NMR spectroscopy and spectrophotometric assay analysis (SI). Use of D2 resulted in ND3. The NH3 and the Ni-hydride may originate from reaction of H2 with the transient nitrido, but other pathways for their formation cannot be excluded at this point.[10] Initial experiments to broaden the reactivity “scope” of the trapped nitrido species C were also performed. Photolysis of 2 in toluene led to four sets of doublets by in situ 31P NMR spectroscopy, suggesting that C–H and C=N–H bond activation may be competitive processes. Photolysis of 2 in neat cyclohexane or heptane resulted in a myriad of unidentified species in the 31P NMR spectrum. Photolysis in 1,3,5-trideuterobenzene was thwarted by trace amounts of chlorobenzene (detected by MS), culminating in the presence of two doublets at δ 46.8 and 45.3 in the 31P NMR spectrum, attributed to be the chlorido derivative of 3. NiCl(PNP)[7] (4). Complex 4 was also prepared independently by reaction of 3 with HCl (Scheme 1) and fully characterized by NMR spectroscopy, mass spectrometry, and X-ray crystalslography (see Figure 3 for X-ray structure). The structural parameters for 4 are very similar to those observed for 3 (Figure 3). Deprotonation of 4 with lithium disopropylamide (LDA) in the presence of benzene did not result in aren C–H activation. We are currently exploring the reactivity of 3 and 4, both to understand the unique structural features of these species and to deduce whether the parent iminophosphorane P=NH unit shows promising ligand reactivity.

In summary, we herein report the first example of a trapped transient nickel nitrido species, making use of a well-defined NiIII(PNP) platform. Irradiation of the nickelazido precursor generates a nickel nitrido, which has significant nitridyl radical character, that is efficiently trapped by insertion of the nitrogen into a Ni–P bond. This trapped intermediate undergoes follow-up intermolecular C–H bond activation of aromatic solvent, with the activated exogenous phenyl fragment incorporated in the final complex 3, which bears a unique tridentate phosphino-amido-iminophosphorane PNPNi ligand in the coordination sphere of NiIII. DFT calculations support the intermediacy of a rare transient formal NiIV nitrido species and subsequent 1,2-addition of the C–H bond. Substitution of the Ph-ligand for Cl is facile, generating 4, which is likely amenable to follow-up chemistry.

Keywords: azides - C–H activation - iminophosphoranes - nickel - nitridyl radical

How to cite: Angew. Chem. Int. Ed. 2015, 54, 7055–7059
Angew. Chem. 2015, 127, 7161–7165

[8] Irradiation of a tetrahedral Ni(”BP3”)2 complex gave no reaction, whereas thermolysis led to a myriad of products. N-atom transfer using dbab (dbab = 2,3,5,6-dibenzo-7-azabicyclo[2.2.1]-hepta-2,5-diene) was also not successful. See: C. E. MacBeth, J. C. Thomas, T. A. Betley, J. C. Peters, Inorg. Chem. 2004, 43, 4645–4646.

[16] CCDC 1043360 (2), 1043865 (3), and 1044484 (4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[18] Activation of C3H4 by a Ni(PNP)-hydride species has been reported, but AlMe3 is required to promote this reaction: L.-C. Liang, P.-S. Chien, Y.-L. Huang, J. Am. Chem. Soc. 2006, 128, 15562–15563.

[19] This includes potential pathways for photoactivated reaction of 2 with H2 to generate Ni(H)(PNN) and HN2. The latter can be decomposed to NH2 under photolytic conditions: M. van Thiel, G. C. Pimentel, J. Chem. Phys. 1960, 32, 133–140.

[20] Next to 4, species 1 was also observed. Photolysis of 2 in neat chlorobenzene generated the same two compounds.

Received: February 13, 2015
Revised: March 27, 2015
Published online: April 29, 2015