Sisyphus optical lattice decelerator

Chen, C.-C.; Bennetts, S.; González Escudero, R.; Schreck, F.; Pasquiou, B.

DOI
10.1103/PhysRevA.100.023401

Publication date
2019

Document Version
Final published version

Published in
Physical Review A

Citation for published version (APA):
https://doi.org/10.1103/PhysRevA.100.023401

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Sisyphus optical lattice decelerator

Chun-Chia Chen, Shayne Bennetts, Rodrigo González Escudero, Florian Schreck, and Benjamin Pasquiou*
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands

(Received 18 October 2018; revised manuscript received 24 June 2019; published 1 August 2019)

Leading tests of the Standard Model, like measurements of the electron electric dipole moment or of matter-antimatter asymmetry, are built upon our ability to laser-cool atoms and molecules to ultracold temperatures. Unfortunately, laser-cooling remains limited to a minute collection of species with very specific electronic structures. To include more species, such as polyatomic molecules or exotic atoms like antihydrogen, new cooling methods are needed. Here we demonstrate a method based on Sisyphus cooling that was proposed for laser-cooling antihydrogen. In our implementation, atoms are selectively excited to an electronic state whose energy is spatially modulated by an optical lattice, and the ensuing spontaneous decay completes one Sisyphus cycle. We show that this method eliminates many constraints of traditional radiation-pressure-based approaches, while providing similar atom numbers with lower temperatures. This laser-cooling method can be instrumental in bringing new exotic species and molecules to the ultracold regime.

DOI: 10.1103/PhysRevA.100.023401

I. INTRODUCTION

Precision measurement with cold atoms and molecules is allowing us to probe the validity and limitations of the Standard Model [1,2], including searches for the electron electric dipole moment [3–5], for dark matter [6,7], and for variations in fundamental constants [8–10]. Recent breakthroughs in laser cooling, focused on using molecules with close-to-diagonal Frank-Condon factors [11–14], have been crucial enablers for many of these experiments.

Yet many of today’s most exciting proposals require first extending these successes to efficiently cool new atomic and molecular species. For example, the ability to precisely compare the spectra of hydrogen with antihydrogen might shed light on one of the most important mysteries of physics today, the asymmetry between matter and antimatter. However, the ability to generate a robust trapped sample of ultracold antihydrogen [15–20] is strongly constrained by the limitations of current laser technology at 121.6 nm [21–24]. Other proposals call for ultracold samples of complex, polyatomic molecules [25–29]. While the use of radiation pressure has been wildly successful at slowing some atomic species, the need to scatter vast numbers of photons makes it difficult to apply these methods to slow species without very closed cycling transitions. Common molecules with a myriad of internal states and leaky transitions typically suffer from heavy losses. There remains a strong need for the continued development of new laser-cooling methods in order to tackle these important frontiers.

A range of approaches has been devised to achieve improved performance while relaxing constraints imposed by traditional Doppler cooling techniques. For example, rapid cycling using stimulated emission can provide stronger momentum transfer without spontaneous heating or loss from nonclosed cycling transitions. This is demonstrated in bichromatic force cooling [30,31], adiabatic rapid passage [32], and SWAP cooling [33] but it requires intense resonant light not available for some applications like at the 121.6-nm transition needed for antihydrogen. Alternatively, Sisyphus-like cooling methods [34], where kinetic energy is converted into potential energy, can function effectively even at very low excitation rates and are routinely applied to beat the Doppler temperature limit [35]. Examples of this approach include Zeeman-Sisyphus decelerators [36] and Rydberg-Stark decelerators [37,38], where a photon excitation changes the internal state, allowing a significant part of the slowing to be done by an externally applied electromagnetic field gradient.

In this work, we present a proof-of-principle demonstration of a class of proposals developed to laser-cool antihydrogen [39] and other species [40–42]. Our demonstration uses a Sisyphus-like deceleration mechanism to slow a continuous stream of strontium atoms without using radiation pressure. The method uses a one-dimensional (1D) optical lattice acting on the excited 3P_1 electronic state, combined with a selective excitation mechanism that transfers atoms to the lattice potential minima. We explore the performance of this method, which we call the Sisyphus optical lattice decelerator (SOLD). To compare it with traditional radiation pressure schemes we also substitute the SOLD with a Zeeman slower using the same transition as our excitation mechanism. In principle, using a deep lattice very few excitation photons can be sufficient to bring fast atoms to rest, making the SOLD a good decelerator candidate for exotic species and molecules without a closed cycling transition [11–14,25–29].

This paper is structured as follows. In Sec. II we present the working principle of the SOLD. We describe in Sec. III our implementation to slow a beam of strontium atoms and measure its performance. Section IV describes the various parameter regimes for the removal of an atom’s kinetic energy, then elaborates on the SOLD efficiency in terms of the required number of scattered photons. In Sec. V we explain the

*SOLD@strontiumBEC.com
behavior of the excitation rate, and from this analysis we provide a simple formula for the capture velocity of this cooling method. We compare in Sec. VI the SOLD performance with typical radiation-pressure-based laser-cooling. In Sec. VII we discuss eventual limitations to the applicability of this method, and we conclude in Sec. VIII.

II. PRINCIPLE

The working principle of the SOLD relies on a three-level system coupled by two optical transitions, something ubiquitous for both atomic and molecular species. Our implementation using strontium is depicted in Fig. 1(a). An optical lattice is formed using a pair of coherent counter-propagating beams with a frequency in the vicinity of the $1_{P1} - 3_{S1}$ transition. This produces a spatially modulated coupling between the 1_{P1} and the 3_{S1} states and thus a spatially modulated light shift on the excited 3_{P1} state. The ground 3_{S0} state remains essentially unaffected. By applying a laser resonant with the $1_{S0} - 1_{P1}$ transition, atoms can be excited into the 3_{P1} state, where they experience the force associated with the lattice potential [see Fig. 1(b)]. If the linewidth Γ of the $1_{S0} - 1_{P1}$ intercombination line is much smaller than the lattice height $U_{lat} \gg h\Gamma$, this “excitation” laser can be tuned to selectively address the bottom of the lattice sites. For a high enough velocity $v > \lambda_{lat}\Gamma$, atoms excited into 1_{P1} will then climb a significant fraction of the lattice potential hills and lose kinetic energy before spontaneously decaying to the ground state as shown in Fig. 1(b). As atoms in 1_{S0} propagate along the lattice axis, this cooling cycle repeats, forming a Sisyphean mechanism. By creating a very high lattice, it is theoretically possible to remove most forward kinetic energy within distances of a few lattice periods or with a single cycle, as in Rydberg-Stark decelerators [37,38]. The temperature limit for this scheme is the higher of an effective Doppler temperature depending on Γ [41], or the recoil temperature.

III. EXPERIMENTAL SETUP

To demonstrate the feasibility of the SOLD experimentally, we implement the setup shown in Fig. 2(a). We start with a magneto-optical trap (MOT) for 88Sr operating in a steady-state regime on the 7.4 kHz-linewidth $2_{S0} - 1_{P1}$ transition, as described in our previous work (configuration “Red MOT I” in [43]). We overlap this MOT with an optical dipole trap acting as a “transport” guide [44]. This 1D guide is $\sim 35 \mu K$ deep at the MOT location and propagates horizontally along the z axis. By adding a “launch” beam resonant with the $1_{S0} - 1_{P1}$ transition and pointed at the overlap between the MOT and the transport guide, we outcouple MOT atoms into the guide with a well-controlled mean velocity ranging from 0.08 to 0.25 m/s$^{-1}$ [44]. Atoms then propagate along the guide for ~ 3.7 cm until they reach the decelerator region.

We produce a 1D lattice potential with a pair of counter-propagating laser beams whose frequency is blue-detuned by $\lambda_{lat} \approx 2 \pi \times 30$ GHz from the $1_{P1} - 3_{S1}$ transition. The lattice beams cross the transport guide at the shallow angle of 6°, overlapping the atomic beam for about 3.4 mm. Excitation from the 1_{S0} to the 1_{P1} state is provided by illuminating 1_{P1} with a well-controlled mean velocity ranging from 0.08 to 0.25 m/s$^{-1}$ [44]. Importantly, we do not apply any near-resonant light capable of slowing atoms in the z axis in the absence of the SOLD optical lattice. Despite the possibility of other orientations of the excitation beams, as suggested in Ref. [39], we initially chose the configuration described above in order to demonstrate that radiation pressure is not directly involved in the slowing of atoms, and just climbing the lattice potential removes the kinetic energy.

We operate the decelerator on a guided atomic beam continuously fed by the MOT, with a homogeneous axial density across the full field of view of our imaging system [see Fig. 2(b)]. When the lattice is switched on, the density in the overlap region between the atomic and the lattice beams sharply increases, suggesting an accumulation of slowed atoms, as shown in Fig. 2(c). Without either lattice beam or with a large (160 MHz) frequency difference between the two lattice beams, this feature vanishes. Figure 2(c) also shows

\[\text{FIG. 1. SOLD working principle. (a) Relevant electronic levels of strontium and the two transitions used for excitation and optical lattice creation, both necessary for the SOLD. (b) Schematic of two typical cooling cycles, from excitation to spontaneous decay.} \]

\[\text{FIG. 2. (a) Side view of the setup. (b)–(d) $1_{S0} - 1_{P1}$ absorption imaging pictures of the atomic beam at the decelerator location: without lattice (b), with lattice (c), and with lattice and reservoir (d).} \]
that some atoms travel completely across the lattice region due to incomplete slowing or by diffusion. Note that our slowing mechanism is fully compatible with a steady-state apparatus, and we perform our measurements after reaching steady state.

For better characterization of the SOLD, and since we are concerned about diffusion of slowed atoms, we add a second “reservoir” dipole trap beam. This beam crosses below the transport guide at the lattice location, with an offset adjusted to allow slow atoms to pass from the guide into the reservoir while not significantly disturbing the potential landscape of the guide. With the help of the radial optical molasses, the reservoir collects and stores slowed atoms 2 mm away from the crossing. We show one example of loading into this reservoir in Fig. 2(d), which also exemplifies a means of atom extraction from our ultracold atom source. We show in Fig. 3 the measured atom number loaded into the reservoir by the SOLD. The efficiency is poor for small lattices, as not enough kinetic energy is removed before atoms leave the lattice location. For increasing lattice height, we observe a clear loading optimum, followed by a slow decrease. As we discuss in Sec. V, these two features originate from the behavior of the excitation rate to 3P_1.

The SOLD deceleration scheme brings atoms ultimately to zero mean velocity in the reference frame of the lattice. By applying a small frequency difference between two lattice beams, a lattice will move at a well-controlled velocity [45,46]. This implies that the SOLD can ideally decelerate or accelerate atoms to any desired velocity (see Appendix C). Here we use the moving lattice to characterize the reservoir dipole trap. The loading of this reservoir is sensitive both to the mean velocity of atoms and to the location at which they end up when reaching zero mean velocity. We characterize the velocity acceptance of the reservoir by varying the frequency difference between the two lattice beams. The loading efficiency of the reservoir depending on the lattice velocity is shown in Fig. 4. It can be fitted by a Gaussian whose width is $\sigma_v = 0.0084(4) \text{ m s}^{-1}$, centered at $v_R \sim -0.002 \text{ m s}^{-1}$.

IV. KINETIC ENERGY REGIMES AND PHOTON SCATTERING EFFICIENCY

We can understand the SOLD slowing efficiency observed in Fig. 3 with a simple semiclassical model describing its various working regimes, which depend on the relative magnitude of the atoms’ kinetic energy with respect to lattice height. Consider atoms initially excited into the 3P_1 state at the bottom of the lattice potential. In Fig. 5(a), we plot the dependence of the average energy lost per cooling cycle E_{lost} with incoming velocity v and lattice height. For high kinetic energies compared to the lattice height $1/2mv^2 \gg U_{\text{lat}}$, atoms travel through several lattice sites and the energy lost tends to $E_{\text{lost}} \rightarrow \frac{\hbar \nu}{\pi} (1 + \frac{\lambda_{\text{lat}}^2}{4\pi v^2})$; see Appendix B. When $v \gg \lambda_{\text{lat}}\Gamma$,
the energy lost saturates to $E_{\text{lost}} \rightarrow U_{\text{lat}}/2$. A striking feature of Fig. 5(a) is that E_{lost} exhibits an efficiency peak for $\frac{1}{2}mv^2 \leq U_{\text{lat}}$. In this case, atoms have just enough energy to climb one lattice maximum, where they spend most of their time and are thus more likely to undergo spontaneous emission. The energy lost in this regime asymptotically reaches $E_{\text{lost}} \rightarrow U_{\text{lat}}$ for $v \gg \lambda_{\text{lat}} \Gamma$; see Appendix B. Let us note that, in contrast to Ref. [39], which relies also on a spatial modulation of Γ, the effective rate of spontaneous emission in our case is higher on lattice hills only because of the increased time atoms spend there.

Laser-cooling techniques can be benchmarked by the average number of photons that need to be scattered to slow atoms from some initial velocity to the technique’s temperature limit. This is particularly relevant for species without a cycling laser-cooling transition, like most molecules [11–14,25–29], where there is a small, finite number of photons allowed to be scattered before the species decays to a dark state and is lost. Using the results of Fig. 5(a) repeated over several cycles with decreasing velocity, we calculate the number of excitation photons needed to reach a kinetic energy equivalent to a temperature below $2\mu K$ and present it in Fig. 5(b). This temperature was arbitrarily chosen \sim4 times larger than the recoil temperature for the 3S_0–3P_1 transition, the relevant limit in our case. For comparison with radiation-pressure-based laser-cooling methods, we also show in Fig. 5(b) the number of photons required in the case of a Zeeman slower (ZS) [47]. The SOLD always requires fewer cooling photons than the ZS for a lattice height satisfying $U_{\text{lat}}/\hbar > v/\lambda_{\text{lat}}$.

V. EXCITATION RATE AND CRITICAL VELOCITY

The SOLD ability to slow atoms with high incoming velocities is strongly dependent on the excitation rate. We model this rate by solving the optical Bloch equations for a two-level system corresponding to the 3S_0 and 3P_1 states, coupled by the excitation laser with Rabi frequency Ω. The time-dependent Schrödinger–von Neumann equation for the density operator ρ is

$$\frac{d\rho}{dt} = -\frac{i2\pi}{\hbar}[H, \rho] + L,$$

with \hbar the Planck constant, L the usual term to account for the spontaneous emission due to Γ, and the Hamiltonian H written as

$$H = \begin{pmatrix} 0 & \frac{\Omega}{2} \\ \frac{\Omega}{2} & U_{\text{lat}} \sin^2(2\pi v t/\lambda_{\text{lat}}) \end{pmatrix}.$$

We numerically solve Eq. (1) with time, starting with all the population in 3S_0 at $t = 0$. For this calculation, we assume a constant velocity v, which is valid for $\frac{1}{2}mv^2 \gg U_{\text{lat}}$. After a variable time, the (Ω, U_{lat}, v)-dependent solution for the excited population reaches a steady state only slightly perturbed by the time-dependent detuning produced by traveling within the lattice. Averaging over this small perturbation, we get the population in the 3P_1 state shown in Fig. 6. Let us note that solutions for Hamiltonians similar to Eq. (2) have been analyzed before, in particular, in the frequency domain [48].

The remarkable feature in Fig. 6 is the presence of multiple resonances where there are high excitation rates. These can be explained by in-phase multiple π-over-N pulses. Indeed, only at the bottom of a lattice site is the detuning small enough to excite a significant population to 3P_1. While the atoms propagate from one site to the next, the distributions in 3S_0 and 3P_1 states acquire different phases. Once at the next site, further population is efficiently excited to 3P_1 only if the dephasing is equal to multiples of 2π, in which case the steady-state excited population is high. This behavior can be confirmed by looking at the evolution of the Bloch vector associated with ρ, displayed in Fig. 7 for two cases.

We can give a simple quantitative criterion for the positions of these excitation rate resonances. The phase accumulated...
TABLE I. Comparison of the SOLD and the Zeeman slower (ZS). The rows list steady-state atom numbers in the reservoir (when present), fluxes, 1/e loading times, and reservoir radial (axial) temperatures T_{rad} (T_{z}). The various configurations are, in order, the SOLD in the transport guide, the SOLD plus the reservoir (R), the ZS plus reservoir, and the combination of both.

<table>
<thead>
<tr>
<th></th>
<th>SOLD</th>
<th>SOLD + R</th>
<th>ZS + R</th>
<th>SOLD + ZS + R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atoms ($\times 10^9$)</td>
<td>0.78(01)</td>
<td>0.69(01)</td>
<td>1.87(04)</td>
<td>2.00(10)</td>
</tr>
<tr>
<td>Flux ($\times 10^4$ s$^{-1}$)</td>
<td>0.74(04)</td>
<td>0.65(03)</td>
<td>2.11(14)</td>
<td>2.80(15)</td>
</tr>
<tr>
<td>Loading (ms)</td>
<td>705(20)</td>
<td>625(52)</td>
<td>434(43)</td>
<td>507(55)</td>
</tr>
<tr>
<td>T_{rad} (μK)</td>
<td>1.53(02)</td>
<td>1.08(04)</td>
<td>1.34(02)</td>
<td></td>
</tr>
<tr>
<td>T_{z} (μK)</td>
<td>2.30(06)</td>
<td>5.67(94)</td>
<td>2.59(10)</td>
<td></td>
</tr>
</tbody>
</table>

during the propagation through one lattice period is $\Phi = \Delta T$, with $T = \frac{\Delta T}{2\pi}$ the propagation time and Δ the dephasing, taken as the average detuning due to the lattice, giving $\Delta = 2\pi \frac{1}{2} \frac{U_{\text{lat}}}{\lambda_{\text{lat}}}$. The condition $\Phi = m \times 2\pi$ (with $m \in \mathbb{N}$) leads to the relation

$$\frac{U_{\text{lat}}}{\hbar} = m \times \frac{4v}{\lambda_{\text{lat}}}.$$ \hspace{1cm} (3)

This criterion is shown as dashed red lines for $m \in \{1, \ldots, 7\}$ in Fig. 6. Due to the high density of the lines with $m > 1$, for low incoming velocities the loading efficiency optimally observed in Fig. 3 correspond mainly to fulfilling the criterion of Eq. (3) for the case $m = 1$.

Including both the average lost energy E_{lost} and the excitation rate, both depending on (U_{lat}, v), we model the behavior of the SOLD by solving classically the evolution of the atoms’ velocity with time, under an effective force $F(U_{\text{lat}}$, v) $= -\Gamma \times \rho_{\text{lat}}(U_{\text{lat}}$, v) $E_{\text{lost}}(U_{\text{lat}}$, v). We reproduce qualitatively all features of the experimental data (see Appendix B). The criterion of Eq. (3) with $m = 1$ effectively dictates the capture velocity of the SOLD:

$$v_{c} = \frac{U_{\text{lat}} \lambda_{\text{lat}}}{4\hbar}.$$ \hspace{1cm} (4)

Let us note that, for a lattice height thus matching the atoms’ velocity, the condition $U_{\text{lat}}/\hbar > v/\lambda_{\text{lat}}$ given in Sec. IV is verified. Therefore, when working under nominal conditions, the SOLD requires fewer photons than standard radiation-pressure-based laser-cooling methods like the ZS.

VI. COMPARISON WITH RADIATION-PRESSURE-BASED COOLING

We now experimentally compare the SOLD performance with that of a Zeeman slower. The varying magnetic field for the ZS is provided by the existing MOT quadrupole field, whose gradient in the guide axis is 0.23 G/cm. We then add a laser beam counter-propagating to the transport guide, focused in the SOLD region and with a circular polarization set to address the high-field-seeking $|3P_{1/2}, F = -1 \rangle$ state. We demonstrated in previous work that it is possible to operate a ZS on the narrow Sr intercombination line [43]. In Table I, we report a comparison between the two slowing methods. Both give similar results for fluxes and final atom numbers, with an advantage for the ZS, which we attribute mainly to the spatial selectivity of its optical excitation. However, we observe a clear difference in the final axial temperatures T_{z} within the reservoir, which effectively reflects the final mean velocities. For the SOLD, T_{z} is almost as low as the radial temperature T_{rad} provided by the molasses cooling, whereas T_{z} is 2.5 times hotter for the ZS. This is because a Zeeman slower is unable to decelerate atoms to zero velocity, as they remain somewhat resonant with ZS photons and are pushed backwards. By contrast, the final mean velocity for the SOLD is stationary in the frame of the optical lattice, which itself can be chosen arbitrarily [45,46].

An additional difference is that, since the SOLD does not rely on radiation pressure from the excitation beam to cool, it is possible to use a much broader class of transitions than for standard laser-cooling methods. It is, for example, also possible to use the ZS beam as an excitation beam that features both spatial and velocity selectivity. The lattice, now acting on atoms in $|3P_{1/2}, m_{F} = -1 \rangle$, is the one charged with decelerating atoms to zero axial velocity. In the presence of both lattice and ZS beams, we observe the best number of atoms in the reservoir, while keeping the low-temperature T_{c} due to the SOLD (see Table I).

VII. DISCUSSION

Let us now turn to considerations for further applications of this cooling scheme. First, it is clear from Fig. 6 that, at high velocities, excitation rates are low unless the lattice height matches the conditions of Eq. (3). This can be dealt with by temporal modulation of the lattice intensity, which varies the resonance locations. Second, for lattices much higher than the transport guide depth, we observe a clear spread of the atomic beam out of the guide. This is due both to the radial anticonfinement from the blue-detuned lattice beams and the slight angle between lattice and transport beams. A red-detuned lattice could remedy this by confining the atoms radially, but this will make correctly tuning the excitation frequency dependent on the lattice intensity.

Third, if the lattice detuning Δ_{lat} is insufficient, atoms in the $|3S_{1/2}\rangle$ state can be optically pumped by the lattice light to $|3P_{1/2}\rangle$. If this occurs, atoms can decay from $|3P_{1/2}\rangle$ to the metastable $|3P_{0}\rangle$ and $|3P_{2}\rangle$ states and exit the cooling cycle. Figure 8 shows, for several lattice laser detunings Δ_{lat}, the effect of optical pumping to $|3P_{1/2}\rangle$ depending on the lattice height. For detunings that are a few GHz away from the $|3P_{1/2}\rangle$-$|3S_{1/2}\rangle$ transition, we see a clear reduction of the maximum atom number slowed and captured in the reservoir. For detunings above 20 GHz, the efficiency seems to converge toward a unique curve, indicating no significant optical pumping. A repumping scheme such as the one used in Ref. [49] can optically pump atoms back to $|3S_{1/2}\rangle$. If this occurs, atoms can decay from $|3S_{1/2}\rangle$ to the metastable $|3P_{0}\rangle$ and $|3P_{2}\rangle$ states and exit the cooling cycle. Figure 8 shows, for several lattice laser detunings Δ_{lat}, the effect of optical pumping to $|3P_{1/2}\rangle$ depending on the lattice height. For detunings that are a few GHz away from the $|3P_{1/2}\rangle$-$|3S_{1/2}\rangle$ transition, we see a clear reduction of the maximum atom number slowed and captured in the reservoir. For detunings above 20 GHz, the efficiency seems to converge toward a unique curve, indicating no significant optical pumping. A repumping scheme such as the one used in Ref. [49] can optically pump atoms back to $|3S_{1/2}\rangle$.
of the SOLD could bring an atom wave packet to any desired velocity while scattering only a handful of photons.

ACKNOWLEDGMENTS

B.P. thanks the NWO for funding through Veni Grant No. 680-47-438. We thank the NWO for funding through Vici Grant No. 680-47-619 and the European Research Council (ERC) for funding under Project No. 615117 QuantStro. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 820404 (iqClock project). C.-C.C. thanks the MOE Technologies Incubation Scholarship from the Taiwan Ministry of Education for support.

APPENDIX A: LATTICE HEIGHT DETERMINATION

We need an accurate determination of the lattice height to characterize the SOLD. The potential of a 1D lattice acting on the 3P_1 state depends on its dynamic dipole polarizability α. In the two-level approximation, valid here because the lattice laser detuning Δ_{lat} is only a few tens of GHz, the polarizability is given by

$$\alpha \approx \frac{3\epsilon_0 \lambda^3}{8\pi^2} \frac{\Gamma_{\text{eff}}}{\Delta_{\text{lat}}}$$

where ϵ_0 is the vacuum permittivity. The effective rate $\Gamma_{\text{eff}} = \eta \lambda_{^3P_1-^3S_1}$ is the effective transition rate for the $5s5pP_{1}-5s6sS_{1}$ transition, with $\eta = 1/2$ due to the lattice laser polarization. The relative uncertainties of the parameters contributing to the determination of the lattice height are listed in Table II. All parameters contributing to the lattice height and their uncertainties are determined experimentally, except for $A_{^1P_1-^3S_1}$ that we derive from the literature in the following manner.

The branching ratios from the 3S_1 state to the three $5s5pP_{1}$ states can be calculated taking into account the fine-structure splitting that produces frequency-dependent correction factors. The resulting branching ratios are 3S_1 to 1P_0, 3P_1, 3P_2 = (12.02 %, 34.71 %, 53.27 %). The transition rate for $5s5pP_{0}-5s6sS_{1}$ was precisely determined experimentally and theoretically in Refs. [51] and [52]. By scaling this known transition according to the branching ratios, we arrive at a transition rate $A_{^1P_1-^3S_1} = 2.394(24) \times 10^7$ s$^{-1}$.

APPENDIX B: SOLD MODEL

Here we give a description of our model of the SOLD that is an extended version of the description given in the text.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice beam power</td>
<td>$\pm 3.0%$</td>
</tr>
<tr>
<td>Lattice beam waist</td>
<td>$\pm 1.4%$</td>
</tr>
<tr>
<td>Lattice frequency detuning Δ_{lat}</td>
<td>$\pm 0.1%$</td>
</tr>
<tr>
<td>Total transition rate $A_{^1P_1-^3S_1}$</td>
<td>$\pm 1.0%$</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>$\pm 4.2%$</td>
</tr>
</tbody>
</table>

TABLE II. Relative uncertainties on the relevant parameters used to calculate the lattice height for the 1P_1 state.
In order to model our cooling scheme in an insightful way, we split the problem into two parts: the average energy lost per cooling cycle and the excitation rate. The excitation rate has been described extensively in the text. As for the energy lost, we give more details below. We then use both energy lost and excitation rate results to simulate the time evolution of the atoms’ velocity.

1. Energy lost

We begin with a study of the energy lost due to the presence of the lattice. We assume that the atoms are excited into the 3S_0 state at the bottom of the lattice and we solve the differential equation for the motion $z(t)$ along the lattice propagation axis,

$$\frac{1}{2} m v_0^2 = U_{\text{lat}} \sin^2 k_{\text{lat}} z + \frac{1}{2} m \left(\frac{dz}{dt} \right)^2, \quad z(t = 0) = 0,$$

with m and v_0 being, respectively, the mass and the initial velocity of the atom. U_{lat} is the lattice depth and $k_{\text{lat}} = \frac{\lambda_{\text{lat}}}{\lambda}$ is the wave vector of the lattice light with wavelength λ_{lat}. The solution of this equation can be written in terms of the Jacobi amplitude J_0:

$$z(t) = \frac{1}{k_{\text{lat}}} J_0 \left(k_{\text{lat}} v_0 t, \frac{2 U_{\text{lat}}}{m v_0^2} \right).$$

(B2)

Since the process relies on spontaneous emission towards 1S_0, we determine the average energy lost $E_{\text{lost}}(U_{\text{lat}}, v_0)$ by integrating the lattice height explored for a duration set by the natural linewidth Γ of the $^3S_0-^1P_1$ transition,

$$E_{\text{lost}} = \Gamma \int_0^{\infty} e^{-\Gamma t} U_{\text{lat}} \sin^2(k_{\text{lat}} z(t)) \, dt.$$

(B3)

In Fig. 5(a), we show the evolution of E_{lost} for several lattice heights and depending on the incoming velocity. We observe that for high incoming kinetic energies compared to the lattice height $\frac{1}{2} m v_0^2 \gg U_{\text{lat}}$, the energy lost E_{lost} saturates. In this case, atoms travel through several lattice sites, and their propagation tends to $z(t) \rightarrow \frac{1}{k_{\text{lat}}} J_0(k_{\text{lat}} v_0 t, 0) = v_0 t$.

Equation (B3) gives the relation $E_{\text{lost}} \rightarrow \frac{U_{\text{lat}}}{2} / (1 + \frac{1}{2 \lambda_{\text{lat}} v_0^2})$. In our experiment, $v_0 \gg \lambda_{\text{lat}}$, so the average energy lost saturates to $U_{\text{lat}}/2$. One striking feature of Fig. 5(a) is that the energy lost exhibits a sharp resonance for $\frac{1}{2} m v_0^2 = U_{\text{lat}}$, where cooling is the most efficient. In this case, atoms have just enough energy to climb on top of the first lattice hill, so they spend most of their time at this location, which makes them more likely to spontaneously emit there and therefore to lose most of their kinetic energy. Indeed, the explored lattice height becomes $U(t) \rightarrow U_{\text{lat}} \tanh^2(k_{\text{lat}} v_0 t)$, which for $v_0 \gg \lambda_{\text{lat}} \Gamma$ gives an average energy lost reaching asymptotically $E_{\text{lost}} \rightarrow U_{\text{lat}}$.

2. Overall evolution

In order to model the complete behavior of the SOLD, we solve classically the evolution of the atoms’ velocity v with time, under an effective force $F(U_{\text{lat}}, v) = -\Gamma / \rho_p(U_{\text{lat}}, v) E_{\text{lost}}(U_{\text{lat}}, v)$. We carry out this calculation for a packet of atoms whose velocity distribution follows a (1D) Boltzmann distribution corresponding to the temperature of our MOT of 6 μK summed with an offset corresponding to the measured mean velocity given by the launch beam. The capture probability in our reservoir is determined by the velocity-dependent efficiency extracted from the measurement shown in Fig. 4, corresponding to a Gaussian function with a width $\sigma_v = 0.0084$ m s$^{-1}$. We thus simulate the time evolution of the loaded population in the reservoir depending on the lattice height, for the four mean starting velocities shown in Fig. 3.

In Fig. 9 we compare the results from this model with our experimental data.

We see a good qualitative agreement concerning the overall behavior with both the lattice height and the starting mean velocity. In particular, the locations of the optima of loading efficiency are well reproduced by our model. These correspond to the case when the starting mean velocity v_0 verifies the criterion of Eq. (3) (with $m = 1$). Indeed, in that case atoms are efficiently excited to the 3P_1 state and typically lose a significant amount of energy $U_{\text{lat}}/2$. After spontaneous emission, their velocity is much lower and atoms are in the (U_{lat}, v) region where the density of lines for $m \geq 2$ is high. They are therefore very likely to keep decelerating efficiently. On the contrary, for a high velocity v_0 in the region $0 \ll \frac{U_{\text{lat}}}{\lambda_{\text{lat}}} \ll \frac{2}{3 \lambda_{\text{lat}}}$, atoms will not get excited to 3P_1. Our model is thus able to estimate the capture velocity v_c of the SOLD, which is given by

$$v_c = \frac{U_{\text{lat}} \lambda_{\text{lat}}}{4 h}.$$
are given for one particular evolution time, $t = 1.4$ ms, that has been chosen for the best match with the steady-state experimental data. Since no decay mechanism has been added in the model, the final loading would be with unity efficiency. This chosen deceleration time is rather short, because in this case the saturation parameter of the $\text{Sr}^\text{3-P}_1$ transition is set to ~ 320, for which the calculations suffer fewer numerical errors compared to more realistic, lower saturation parameters. Nonetheless, the simulations always exhibit the same overall behavior no matter the value of the saturation parameter. Another limitation of our model is that no selection criteria have been chosen for the position of atoms, whereas they must be in the vicinity of the crossing between the transport guide and the reservoir to be loaded. Similarly, atoms expelled from the guide by the barrier formed by the blue-detuned lattice and the effects of the lattice’s slight angle with the guide are not taken into account. Finally, the constant-velocity approximation made when solving the optical Bloch equations is not valid for $1/2 \mu t^2 \lesssim U_{\text{lat}}$. To obtain a better quantitative agreement, a more advanced theoretical study would be required [53].

APPENDIX C: SISYPHUS OPTICAL LATTICE ACCELERATOR

The SOLD deceleration scheme brings atoms ultimately to zero mean velocity in the reference frame of the lattice. By applying a small frequency difference between two lattice beams, a lattice will move at a well-controlled velocity. This implies that the SOLD can ideally decelerate or accelerate atoms to any desired velocity. We test this using a 1.53(2)-μK stationary cloud produced by loading a MOT into a dipole trap, at the location of the lattice. We shine both lattice and excitation light onto this cloud for 100 μs and, after 20 ms, observe the number of atoms in a displaced cloud corresponding to the moving lattice frame. The results are shown in Fig. 10. We observe an increase in the displaced fraction with lattice height, which we attribute to the increase in energy $\sim U_{\text{lat}}/2$ given to the atoms for each scattering event. We also observe an optimal lattice velocity for a given lattice height, which roughly corresponds to our model criterion of Eq. (3) with $m = 1$. The variation in the location of these efficiency peaks is more visible in Fig. 10 than in Fig. 3, because here the SOLD is pulsed for a short duration instead of operating in the steady-state regime, so the effects of each resonance corresponding to Eq. (3) are more pronounced. Note that due to the initial size of the cloud and its location with respect to the lattice, our estimation of the effective lattice depth is much rougher than for the data in Fig. 3.

