[Ni(cod)2][Al(ORF)4], a source for naked nickel(I) chemistry

DOI
10.1002/ange.201506475
10.1002/anie.201506475

Publication date
2015

Document Version
Final published version

Published in
Angewandte Chemie

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
[\text{Ni(cod)}_2][\text{Al(OR)}_4], a Source for Naked Nickel(I) Chemistry

Miriam M. Schwab, Daniel Himmel, Sylvia Kacprzak, Daniel Kratzert, Valentin Radtke, Philippe Weis, Kallol Ray, Ernst-Wilhelm Scheidt, Wolfgang Scherer, Bas de Bruin, Stefan Weber, and Ingo Krossing*

Abstract: The straightforward synthesis of the cationic, purely organometallic Ni\(^{I}\) salt [Ni(cod)]\(^+\) [Al(OR)]\(^4\)\(^-\) was realized through a reaction between [Ni(cod)]\(^2\) and Ag[Al(OR)]\(^4\)\(^-\) (cod = 1,5-cyclooctadiene). Crystal-structure analysis and EPR, XANES, and cyclic voltammetry studies confirmed the presence of a homoleptic Ni\(^{I}\) olefin complex. Weak interactions between the metal center, the ligands, and the counterion provide a good starting material for further cationic Ni\(^{I}\) complexes.

Nickel is traditionally used in many heterogeneous catalytic processes,[1] for example, the Reppe carbylonylation, the cycletramerization of acetylene, di- or trimerization reactions of ethylene, as well as the Shell higher olefin process (SHOP), where the catalytically active species are Ni\(^0\) and Ni\(^{II}\) compounds.[2] However, other oxidation states of nickel have been reported for intermediates or isolated compounds.[3] With a d\(^0\) electron configuration, mononuclear Ni\(^{I}\) is rather an uncommon oxidation state. Previously isolated Ni\(^{I}\) compounds were typically stabilized by electron-rich ligands, such as phosphines,[4] amines,[5] carbenes,[6] \(\beta\)-diketimines,[6c,7] or Cp\(^*)\) (cyclopentadienyli)l,[6e,8] or were incorporated in aluminophosphates.[9] All mononuclear compounds include strongly \(\sigma\)-donating C, N, P, S, O, or halogen atoms in their ligands.[4–8,10] An open question is whether Ni\(^{I}\) leads to a better performance in catalysis than Ni\(^0\) or Ni\(^{II}\). Towards this goal, Stephan’s dinuclear Ni\(^{II}\) \(\beta\)-diketiminate were used by the groups of Driess and Limberg for small-molecule activation.[7k,10–24] Furthermore, Ni\(^{I}\) catalysts were used in Kumada cross-couplings[4n,10b] and olefin oligomerization or polymerization reactions.[10b–d] Nevertheless, knowledge regarding Ni\(^{I}\) olefin complexes is very scarce. The first report of a Ni\(^{I}\) olefin complex was the marginally stable [(cod)Ni(\text{X})] (cod = 1,5-cyclooctadiene; X = Br, I), which was published in 1967 without any characterization.[10] Later, Saraev et al. described a poorly characterized Ni\(^{I}\) olefin species as an intermediate in EPR studies starting from [Ni(cod)]\(^2\).[12]

To study a previously unknown homoleptic olefin coordination sphere of Ni\(^{I}\), by analogy with the “naked” Ni\(^0\) complexes of Wilke et al.,[13] our aim was to produce a stable, cationic Ni\(^{I}\) olefin complex in combination with a weakly coordinating anion (WCA). The closest known approximation to this goal thus far is Grützmann’s [Ni(trop,H\(_2\)) (OOC\(_2\)F\(_4\))]\(^+\) complex (trop\(\cdot\)H\(_2\) = bis([5H\(\cdot\)dibenzo\(\alpha\)di-\(\alpha\)cyclohepta-5,7-y]amine)[10d] and the intermediate [Ni(cod)]\(^0\) species of Saraev and co-workers.[12] A straightforward access to the [Ni(cod)]\(^+\) salt of very weakly coordinating perfluoro-tert-butoxy aluminate, [Al(OR)]\(^-\)\(^4\) (OR = OC\(_2\)F\(_4\)), is provided by the oxidation of [Ni(cod)]\(^0\) with Ag[Al(OR)]\(^4\)\(^-\) in CH\(_2\)Cl\(_2\) at room temperature (Scheme 1; orange crystals in 61% yield after recrystallization; the reaction was calculated to be exergonic at the COSMO/PBE0/def2-TZVPP level of theory; for details, see the Supporting Information, Figure S3).

Crystal-structure analysis as well as IR, EPR, XANES, and cyclic voltammetry (CV) measurements confirmed the existence of a homoleptic Ni\(^{I}\) cod complex. The powder

\[
\text{[Ni(cod)]}^+ + \text{[Ag(\text{CH}_2\text{Cl})_2]}^+
\]

in CH\(_2\)Cl\(_2\):

\[
\Delta G^0_{\text{pow}}(\text{CH}_2\text{Cl}_2) = -247 \text{ kJ mol}^{-1}
\]

in the gas phase:

\[
\Delta G^0_{\text{g}}(\text{g}) = -40 \text{ kJ mol}^{-1}
\]

\[
\Delta H^0_{\text{g}}(\text{g}) = +63 \text{ kJ mol}^{-1}
\]

\[
\text{[Ni(cod)]}^+ + \text{Ag}\text{[Al(OR)]}_4^-
\]

Scheme 1. Oxidation of [Ni(cod)].
product is stable at room temperature and, astonishingly, did not show oxygen or air sensitivity over weeks. By contrast, in solution, the salt 1 is highly sensitive towards dioxygen. Weakly coordinating solvents such as CH₂Cl₂ or ortho-difluorobenzene (o-DFB) neither replace the cod rings nor coordinate to the nickel center. CV measurements of 1 in o-DFB showed an electrochemically irreversible oxidation for the redox pair Ni²⁺/Ni³⁺ at E₁/₂ = +0.962 V versus Fc/Fc⁺ (Rₛ = 2.4 × 10⁻⁴ cm s⁻¹; Table S8). The reduction of Ni³⁺ at E₆/₇ = −0.7 V versus Fc/Fc⁺ includes a more complicated two-electron transfer, which will be analyzed later. In THF solution, 1 disproportionated into black solid Ni³⁺ and yellow dissolved [Ni²⁺(THF)₆][Al(OR₄)₄]. The molecular structure of 1 was determined by single-crystal X-ray crystallography and is shown in Figure 1a.

The overall structure of 1 is between tetrahedral and square-planar. More precisely, the torsion angle θ of the planes, which is defined by the C–C bond centroids of adjacent cod rings, is 53.1° (Ni1, d⁸; Figure 1b). For comparison, we also prepared and crystallized tetrahedral [Ag(cod)₂]⁺[Al(OR₄)₄]⁻ (2, d⁴, θ = 88.5°; Figure 1b) as well as square-planar [Rh(cod)₂]⁺[Al(OR₄)₄]⁻ (3, d⁶, θ = 10.0°; Figure 1b). Neutral [Ni(cod)₂] has a torsion angle of 84.5° (d⁶).¹⁰ Compared to [Ni(cod)₂], the Ni–C bonds in 1 are elongated by 6–15 pm, and the C=C bonds are actually shorter in 1 by 3–4 pm. They are within 135 to 136 pm, similar to the undistorted C=C bonds in free cod (134 pm).¹⁵ This is probably induced by the positively charged Ni atom, which allows only minimal n–back-bonding. NMR spectroscopy and quantum-chemical calculations support this hypothesis: The resonance of the olefinic proton in the ¹H spectrum (Figure S6) is not paramagnetically shifted, which would be the case if there was a Fermi contact interaction with the SOMO of nickel. This finding suggests that the unpaired electron spin density is mainly centered on the metal. Calculations at the PBE0/def2-TZVPP level of theory reproduce the molecular structure well within 0.6° (torsion angle) and 4 pm (Ni–C distances; Figure S1, Table S1), and a Mulliken population analysis (Table S3, PBE0/def2-TZVPP, but also B3LYP/def2-TZVPP) localizes over 90% of the cation spin density on the nickel center (Figure 2a, inset). EPR measurements of a concentrated solution of 1 in CH₂Cl₂ with a non-reactive ionic liquid ([MeN(octyl)]⁺[Al(OR₄)₄]⁻ · 0.1m) as a glass-forming additive that prohibits aggregation and an ordered orientation of the ions in frozen solution showed the typical signal of a nickel atom with d⁸ configuration (Figure 2a).¹² The experimental spectrum was simulated with g tensor principal values of g₁ = 2.390, g₂ = 2.061, and g₃ = 2.047 (dashed line). After magnification of parts of the experimental spectrum, an additional small signal from a second component became visible (5% signal intensity).¹⁶ Similarly to the spectrum of a frozen solution (Figure 2a), a powdered sample of 1 shows contributions from two components (Figure S5). Importantly, the g tensor components of the main species in the solid state (90% of the signal) are very similar to those of the main component in the frozen solution (a comparison of all experimental g tensors is given in Table S7).¹⁷

X-ray absorption near-edge spectroscopy (XANES; Figure 2b) studies were performed at the Ni K-edge (on a powdered sample of 1 diluted in boron nitride) to directly probe the metal oxidation states in 1, and provide support for the EPR-derived Ni⁷ assignment. Complex 1 exhibits an edge inflection energy of approximately 8341 eV, which is typical for nickel in the +1 oxidation state.¹⁰,¹₆ A shoulder along the rising edge is observed at 8334.5 eV and corresponds to a 1s → 4p shake down transition,¹⁶ which is in accordance with the distorted structure in between tetrahedral and square-planar. This transition is strongest in four-coordinate square-planar Ni complexes, but also observed in five-coordinate square-pyramidal geometries (it is not present in either T₄ or O₅ geometries).

It is important to note that spectra were collected at both 19 K and 298 K and found to be identical at both temperatures; this excluded the possibility of any temperature-dependent spin- or oxidation-state isomerism in 1. The temperature dependence of the inverse magnetic susceptibility χ⁻¹(T) of 1 in a magnetic field (Figure S11) follows Curie’s law, indicating independent spins on the Ni site. From the slope of the fit, an effective magnetic moment of 1.86 ±
0.05 μµ was calculated. Taking into account the average g-factor of 2.166 ± 0.112 (EPR) and assuming a spin 1/2 system with J = S = 0.5, led to the theoretical value of μµeff = 1.876 ± 0.097 μµ. The good agreement of the experimental result with theory is in line with a Ni³⁺ center in 1.

Salt 1 is a good starting material for the synthesis of other Ni³⁺ salts: In preliminary studies, we substituted the cod ligands of 1 by o-donors such as PPh₃, and 1,3-bis(diphenylphosphinophenyl)propane (dppp). The resulting products, [Ni(PPh₃)₃]⁺ - [Al(OR)₃]⁻ and [Ni(dppp)₃]⁺ [Al(OR)₃]⁻, respectively, indicate the high potential of 1 as a precursor for further Ni³⁺ complexes as we thus obtained a propitious Ni³⁺ salt in a direct oxidation route from commercially available chemicals.[21] The stabilization by the [Al(OR)₃]⁻ WCA allows handling of 1 at room temperature and storage as an air-stable powder over months, as well as its use in highly oxygen-sensitive solutions in CH₂Cl₂ and 1,2-difluorobenzene. Preliminary experiments show that a simple exchange of the olefin ligands provides access to a variety of new (possibly catalytically active) Ni³⁺ complexes, which will be investigated in an upcoming full paper.

Acknowledgements

We thank Fadime Bitgül and Dr. Harald Scherer for measuring and helping to evaluate NMR spectra, Melanie Werner for her work on the [Ni(dppp)₃]⁺ [Al(OR)₃]⁻ salt, Britta Knaebel for crystallizing the rhodium complex, and Prof. Dr. Berndhard Breit for supplying the rhodium source. This work was supported by the Freiburger Materialforschungszentrum (FMF) and funded by the ERC project UniChem (291383). K.R. thanks the Cluster of Excellence “Unifying Concepts in Catalysis” (EXC 314/2), Berlin and the Heisenberg-Programm of the Deutsche Forschungsgemeinschaft for financial support. XAS data were obtained on the NSLS beamline X3A (Brookhaven National Laboratory), with support from the NIH (P30-EB-009998) and the U.S. Department of Energy. We thank Dr. Erik R. Farquhar for help with XAS data collection and Prof. Frank Breher (KIT) for recording the very first EPR spectra of 1.

Keywords: crystallography · cyclic voltammetry · density functional calculations · electron paramagnetic resonance · nickel(Ⅰ) complexes

shifts have been ...

\[\text{tensor components of } \left[\text{Ni(cod)} \right] \text{ are underestimated. The DFT-calculated anisotropies for transition-metal compounds are known to be underestimated, and errors of up to 50% in the } g \text{ shifts have been reported.} \]

The DFT calculated } g \text{ tensor components of the } [\text{Ni(cod)}] \text{ cation are clearly sensitive to the used geometry (Table S4). Whereas the computed } g \text{ and } g_z \text{ values in reasonable fair agreement with the experimental values, the computed } g_z \text{ components are underestimated. The DFT-calculated anisotropies for transition-metal compounds are known to be underestimated, and errors of up to 50% in the } g \text{ shifts have been reported.} \]

The deviations likely result from an imperfect description of the metal–olefin interactions (and thereby the energy separation between the SOMO and the filled orbitals) by density functional theory, which has also been noted for some other Group 9 metal–olefin interactions (and thereby the energy separation was underestimated. The DFT-calculated anisotropies for transition-metal compounds are known to be underestimated, and errors of up to 50% in the } g \text{ shifts have been reported.} \]

The DFT calculated } g \text{ tensor components of the } [\text{Ni(cod)}] \text{ cation are clearly sensitive to the used geometry (Table S4). Whereas the computed } g \text{ and } g_z \text{ values are in reasonable fair agreement with the experimental values, the computed } g_z \text{ components are underestimated. The DFT-calculated anisotropies for transition-metal compounds are known to be underestimated, and errors of up to 50% in the } g \text{ shifts have been reported.} \]

The deviations likely result from an imperfect description of the metal–olefin interactions (and thereby the energy separation between the SOMO and the filled orbitals) by density functional theory, which has also been noted for some other Group 9 transition-metal systems.