The battle inside our genome

Controlling transposable elements and the evolution of human gene regulatory networks

Haring, N.L.

Publication date
2020

Document Version
Other version

License
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Summary

The Battle Inside Our Genome: Controlling Transposable Elements and the Evolution of Human Gene Regulatory Networks
Transposable elements (TEs) are mobile genetic elements that accumulated in various families over the course of evolution and comprise approximately 50% of the human genome (Cordaux and Batzer 2009). Their relatively fast propagation rate and high sequence homology make them highly suitable for the innovation of gene regulatory networks by donating identical regulatory sequences on a large scale. The past decade an increasing body of evidence showed that TEs function as cis-regulatory elements in a species- and cell type-specific manner (Wang et al. 2007; Kunarso et al. 2010; Xie et al. 2010; Lynch et al. 2011; Chuong et al. 2013; Sundaram et al. 2014; Notwell et al. 2015; Chuong et al. 2016; Ito et al. 2017; Trizzino et al. 2017, 2018). For example, lineage-specific TEs have provided novel transcription factor (TF) binding sites that rewired the gene expression programs essential for early embryonic development in humans and mice (Kunarso et al. 2010). However, studies showing the contribution of TEs to gene regulation in other – adult – cell types are relatively scarce and mostly limited to cancer, liver and blood cells (Ecco et al. 2016; Chuong et al. 2016; Trizzino et al. 2017; Tie et al. 2018). As the brain is probably the most evolutionary divergent organ, it would not be surprising if TEs contributed novel cis-regulatory elements that rewired neuronal gene expression underlying major structural changes. Yet, our understanding of TE-mediated gene regulation in the human brain, including the TE families involved and their target genes, is still very limited.

Important to note is that only a small fraction of TEs act as gene regulators, whereas the majority are epigenetically repressed by members of the KRAB zinc finger (KZNF) family. KZNF proteins recognize specific DNA sequences with their tandem array of zinc fingers (Frankel et al. 1987; Thukral et al. 1991; Cook et al. 1994) and their KRAB domain recruits co-factor KAP1 and epigenetic factors that ensure heterochromatin formation (Nielsen et al. 1999; Sripathy et al. 2006; Schultz et al. 2001, 2002; Turelli et al. 2014). KZNF genes evolved in parallel and most likely in response to TE invasions and are therefore the largest family of TFs in the human genome, comprising almost 200 primate-specific KZNF genes (Thomas and Schneider 2011; Jacobs et al. 2014; Imbeault et al. 2017). The highly dynamic and cell type-specific expression pattern of KZNF genes and TEs suggests that KZNF proteins regulate the availability of TE-derived enhancers (Brattås et al. 2017; Oleksiewicz et al. 2017; Imbeault et al. 2017). Recent efforts have revealed the target TE families of over two hundred KZNF proteins (Najafabadi et al. 2015; Schmitges et al. 2016; Imbeault et al. 2017). However, little is known about their exact role in TE control, how KZNF genes themselves are regulated and how their expression dynamics relate to TE control.
Therefore, the overall aim of this thesis was to study TE-derived cis-regulatory elements and how they are controlled by KZNF proteins. Firstly, we set out to identify TE families that are co-opted for gene regulation in different neuronal subpopulations and relate this to KZNF gene expression. Secondly, we focused on understanding the regulation of a specific TE family, called SVA, and their hidden gene regulatory potential.

We hypothesized that evolutionary young TEs are integrated in neuronal gene regulatory networks to orchestrate human neurodevelopment. Therefore, in Chapter 1 we analyzed human embryonic stem cells (hESCs) and hESC-derived cortical and midbrain dopamine (mDA) brain organoids transcriptionally and epigenetically. We showed that both KZNF genes and TEs show a highly cell type-specific expression pattern. Yet, KZNF genes targeting the same TE family are frequently co-expressed and follow the expression dynamics of their target TE. Profiling of enhancer-associated H3K27ac suggested that co-option of TE families as regulatory elements is also highly cell type specific, although the neuronal tissues shared a high number of H3K27ac enriched TE families. In hESCs, mainly evolutionary young LTR families showed characteristics of enhancers. In the brain organoids, to our surprise, mainly older TE families were marked with H3K27ac. Upon more detailed analysis, however, we identified several primate-specific TE families that showed cell type-specific enrichment of H3K27ac. We showed that a number of LTR10 and MER4 elements display an hESC-specific H3K27ac profile and contain motifs for pluripotency TFs. In mDA organoids we found that MER61F and LTR5B elements were enriched for H3K27ac and carried motifs for key mDA TFs such as PITX3. LTR12E elements showed a higher H3K27ac signal in cortical organoids and were enriched for cortical-specific TF motifs, as well as general TFs motifs that were shown to bind LTR12E before (Brocks et al. 2017). Together these findings show that the control of TEs is dynamic, possibly owing to regulation of their repressors - the KZNF proteins. The fact that several primate-specific TE families appear to function as cis-regulatory elements in different neuronal subpopulations supports the hypothesis that TEs have been key to the innovation of gene regulatory networks underlying structural and functional evolution of the human brain.

SVA elements are a great-ape specific TE subfamily that still actively retrotransposes in the human genome. On top of that, they harbor a strong, but generally hidden, gene regulatory potential (Savage et al. 2013, 2014; Jacobs et al. 2014; Pontis et al. 2019). Overexpression of ZNF91 and ZNF611 revealed
that they have the potential to repress SVA activity (Jacobs et al. 2014; Pontis et al. 2019) Little is known, however, about how these elements are controlled exactly in a physiological context and what their genome wide impact on gene expression is. Therefore, Chapter 2, 3, 4 were aimed at identifying which KZNF proteins are essential for SVA repression and studying the transcriptional and epigenetic consequences of loss of SVA repression.

In Chapter 2, we aimed at unleashing the gene regulatory potential of SVA elements through ablation of ZNF91 expression with RNA interference. Our first approach to use lentiviral transduction with an shRNA construct to generate stable ZNF91 knockdown hESC lines was compromised due to high levels of cell death and loss of ZNF91 knockdown after culturing for an extensive amount of time. Transient transfection with siRNAs, however, resulted in a ZNF91 knockdown between 60-80% in various cell types. Genome wide transcriptome profiling of hESCs and neuroblastoma cells (SK-N-SH) transfected with siRNAs against ZNF91 revealed no widespread induction of SVA transcription in either cell type. Nevertheless, we observed several signs that suggest that SVA elements may be epigenetically derepressed. Firstly, genes located close to an SVA element displayed a mild upregulation in siZNF91 neuroblastoma cells. Secondly, in hESCs we found that a chimeric HORMAD1 transcript starting in an SVA-F located ~7kb upstream was induced upon ZNF91 knockdown. In conclusion, our data reveal transcriptional consequences of reduced ZNF91 levels that can be directly linked to derepressed SVA elements.

In Chapter 3 we mapped the binding sites of ZNF91 and showed that it binds to nearly all SVA elements. In parallel, in Chapter 4, we analyzed publicly available chromatin immunoprecipitation followed by sequencing (ChIP seq) data of other KZNF proteins that were suggested to bind SVA elements (Imbeault et al. 2017). Next to ZNF91, ZNF611 was demonstrated to have the highest SVA binding capacity. It was shown before that ZNF91 underwent major structural changes around the same time as the appearance and spread of SVA elements (Jacobs et al. 2014). In Chapter 4, we studied the evolutionary history of ZNF611 and showed that ZNF611 was also subject to great ape-specific structural changes of specific ZNF domains that may have enabled it to bind SVA elements.

To study the role of ZNF91 and ZNF611 in SVA repression, we genetically deleted ZNF91 (Chapter 3) and ZNF611 (Chapter 4) in hESCs. Additionally, we generated a ZNF91/ZNF611 double knockout to assess if their combined activity was required for full SVA repression (Chapter 4). Transcriptional analyses
of these KZNF knockout hESC lines revealed that only in absence of ZNF91 SVA elements become transcriptionally active (Chapter 4). In Chapter 3 we extensively analyzed ZNF91 knockout hESCs and demonstrated that mainly the youngest SVA subclasses became epigenetically and transcriptionally activated. Consequently, they appeared to regulate gene expression in cis and trans. Transcriptionally active SVA elements frequently functioned as alternative transcription start sites (TSSs) leading to generation of chimeric SVA-Gene transcripts or long non-coding RNAs (lncRNAs). Furthermore, the fact that that genes in the vicinity of SVA elements adorned with active chromatin marks are mildly – but significantly – upregulated. This could be the result of targeted cis-regulation or loss of local heterochromatin, facilitating transcription in the area. The selective upregulation of clusters of KZNF genes in proximity of reactivated SVA elements point towards targeted cis-regulation. But even more striking, it suggests that derepressed TEs elicit a defense response of the host aimed at controlling a TE invasion. The fact that we observe a similar, but milder, upregulation of KZNF genes upon ZNF611 deletion suggest that SVA elements have lost repression to a certain extent (Chapter 4). Together, the data in Chapter 3 and 4 showed that ZNF91 is essential for SVA repression in hESCS and ZNF91-mediated SVA repression impacts gene expression in the neighborhood and protects against, potentially harmful, gene regulatory effects of SVA elements. Also we provide valuable insights into the defensive response against a TE outburst.

The findings described in this thesis show once more that TEs are more than junk DNA that need robust and continuous silencing. In fact we demonstrated that their activity is tightly controlled in a time- and place-dependent manner by KZNF proteins in hESCs and human neurons. We identified TE subfamilies that show characteristics of cis-regulatory elements and may contribute to cell type-specific gene regulatory programs in early embryonic and neuronal development. On top of that we provided insights into KZNF-mediated repression of SVA elements and the latent gene regulatory potential they harbor. Most striking was that globally unveiling their enhancer potential appears to induce a pioneering genomic response against TE outburst. Together these findings contribute to our understanding of the evolutionary arms race between the host and TEs and lay ground to further study the role of TEs in human gene regulation and the way it impacted the evolution of novel structures and functions. The repeated invasions of TEs have inflicted genomic challenges and innovations, but inevitably shaped our genome and contributed to human evolution.
References

Samenvatting

De strijd in ons genoom: Het beteugelen van transponeerbare elementen en de evolutie van humane gen regulatoire netwerken

Belangrijk om te vermelden is dat slechts een klein gedeelte van de TEs als cis-elementen functioneren, terwijl de meeste epigenetisch onderdrukt worden door leden van de KRAB zinc finger (KZNF) gen familie. KZNF eiwitten herkennen specifieke DNA sequenties met hun zinc fingers (Frankel et al. 1987; Thukral et al. 1991; Cook et al. 1994) en rekruteren met hun KRAB domein co-factor KAP1 en epigenetische factoren die heterochromatine induceren op de locatie van de TE (Nielsen et al. 1999; Sripathy et al. 2006; Schultz et al. 2001, 2002; Turelli et al. 2014). KZNF genen zijn in parallel met, en zeer waarschijnlijk als reactie op, TEs geëvolueerd en zijn daarom de grootste TF familie in het humane genoom (Thomas and Schneider 2011; Jacobs et al. 2014; Imbeault et al. 2017). Het feit dat er bijna 200 primaat specifieke KZNF genen bestaan, wekt de suggestie dat ze een belangrijke bijdrage hebben geleverd aan recente evolutie (Thomas and Schneider 2011). Hun dynamische expressiepatroon doet vermoeden dat ze betrokken zijn bij het reguleren van de beschikbaarheid van TEs als cis-elementen (Brattås et al. 2017; Oleksiewicz et al. 2017; Imbeault...
et al. 2017). De identificatie van bindingsplaatsen van meer dan tweehonderd KZNF eiwitten heeft meer inzicht gegeven over welke TEs worden herkend door specifieke KZNFs (Najafabadi et al. 2015; Schmitges et al. 2016; Imbeault et al. 2017). Er is echter weinig bekend over hun precieze rol in de regulatie van TEs, hoe KZNF genen zelf worden gereguleerd en hoe hun expressie niveau gerelateerd is aan TE activiteit.

Daarom is het overkoepelende doel van deze thesis om een beter inzicht te krijgen in TEs als cis-elementen en hoe ze gereguleerd worden door KZNF eiwitten in een humane context. Als eerste hebben we TE families geïdentificeerd die als cis-elementen worden gebruikt in verschillende neuronale subpopulaties en hun activiteit gerelateerd aan KZNF genexpressie. Daarnaast hebben we de regulatie van een specifieke TE familie, SVA genaamd, en hun verborgen gen regulatoire potentiaal bestudeerd.

Onze hypothese was dat evolutionair jonge TEs geïntegreerd zijn in neuronale gen regulatorische netwerken die belangrijk zijn voor humane breinontwikkeling. Daarom hebben we in hoofdstuk 1 het transcriptoom en epigenoom van humane embryonale stamcellen (hESCs) en corticale en middenbrein dopaminergen (mDA) organoïden geanalyseerd. We hebben laten zien dat zowel KZNF genen als TEs een sterk celtype specifiek expressiepatroon hebben. Interessant genoeg volgden KZNF genen het expressiepatroon van TE die ze binden. Analyse van H3K27ac, een histonmodificatie geassocieerd met enhancers, suggereerde dat specifieke TE families geïntegreerd zijn in celtype specifieke gen-regulatie programma’s, hoewel de verschillende neuronale weefsels relatief veel overeenkomsten hadden. Globaal gezien waren voornamelijk evolutionair jonge LTR families positief voor H3K27ac in hESCs, terwijl in brein organoïden dit vooral oude TE families van alle subclasses waren. Echter, na een gedetailleerde analyse ontdekten we verschillende primaat specifieke TE families die een celtype specifiek H3K27ac profiel lieten zien. Elementen van de LTR10 en MER4 subfamilies waren H3K27ac positief in hESCs en bevatten bindingsplaatsen voor TFs essentieel voor pluripotentie. In mDA organoïden vonden we dat MER61F en LTR5B verrijkt waren met H3K27ac en motieven voor essentiële mDA TFs zoals PITX3. H3K27ac was sterk verhoogd op verscheidene LTR12E elementen in cortical organoïden en bevatten TF bindingsplaatsen voor diverse cortex specifieke TFs, alsmede algemene TFs waarvan bekend is dat ze LTR12E binden (Brocks et al. 2017). Deze bevindingen illustreren dat de epigenetische regulatie van TEs dynamisch is, mogelijk dankzij de regulatie van hun KZNF repressors. Dat enkele primaat specifieke TE families als cis-elementen
194

lijken te fungeren in verschillende neuronal subpopulaties ondersteunt de hypothese dat TEs belangrijk zijn geweest voor het innoveren van gen regulatie ten behoeve van structurele en functionele evolutie van het humane brein.

SVA elementen behoren tot een TE familie die nog altijd actief retrotransponeert en uniek is voor de mensachtigen. Daarnaast hebben ze een sterk, maar over het algemeen verborgen, gen regulator potentiaal (Savage et al. 2013, 2014; Jacobs et al. 2014; Pontis et al. 2019). Overexpressie van ZNF91 en ZNF611 heeft onthuld dat deze KZNF eiwitten de potentie hebben om SVA activiteit te onderdrukken (Jacobs et al. 2014; Pontis et al. 2019). Er is echter weinig bekend over hoe deze elementen gereguleerd zijn in een fysiologische context en wat hun genoomwijde effect op genexpressie is. Daarom waren de doelstellingen van hoofdstuk 2,3,4 het bepalen van welke KZNF eiwitten essentieel zijn voor SVA repressie en het bestuderen van de transcriptionele en epigenetische consequenties van het verlies van deze repressie.

In hoofdstuk 2 hebben we ons gericht op het tot leven wekken van SVA elementen door ZNF91 expressie te reduceren met RNA interferentie. Onze eerste poging om een stabiele ZNF91 knockdown hESC lijn te genereren door middel van lentivirale transductie met een shRNA construct werd bemoeilijkt door veel celdood en verlies van ZNF91 knockdown wanneer cellen voor langere tijd gekweekt werden. Transfectie van siRNAs op lipide basis daarentegen resulteerde in een ZNF91 knockdown van 60-80% in verschillende celltypes. Genoomwijde analyse van het transcriptoom van hESCs en neuroblastoma cellen (SK-N-SH) getransfecteerd met siRNAs tegen ZNF91 lieten geen globale activatie van SVA elementen zien. Desalniettemin zijn er diverse indirecte aanwijzingen die erop duiden dat SVA elementen mogelijk epigenetisch repressie hebben verloren. In neuroblastoma cellen laten genen die in de buurt van SVA elementen liggen een collectieve milde, maar significante, upregulatie zien. Daarnaast hebben we laten zien dat na verlaging van ZNF91 expressie in hESCs een chimeer SVA-HORMAD1 transcript wordt geïnduceerd. Hieruit concluderen wij dat de transcriptionele consequenties van verlaagde ZNF91 expressie indirect kunnen worden gelykst aan derepressie van SVA elementen.

In hoofdstuk 3 hebben we de bindingsplaatsen van ZNF91 in kaart gebracht en laten zien dat bijna alle SVA elementen gebonden worden door ZNF91. Daarnaast hebben we in hoofdstuk 4 gepubliceerde chromatine immunoprecipitatie gevolgd door sequencing (ChIP seq) data van KZNF eiwitten geanalyseerd om te bepalen welke KZNF eiwitten SVA elementen binden (Imbeault et al 2017). We hebben laten zien dat naast ZNF91, ZNF611 de sterkste
SVA bindingscapaciteit heeft. Jacobs et al. (2014) hebben laten zien dat ZNF91 belangrijke structurele veranderingen heeft ondergaan in dezelfde periode als de verspreiding van SVA elementen. In hoofdstuk 4 hebben we een vergelijkbare reconstructie van ZNF611 evolutie gemaakt en laten zien dat ZNF611 structurele veranderingen heeft ondergaan in dezelfde periode als ZNF91 die er mogelijk voor hebben gezorgd dat ZNF611 SVA elementen kan binden.

Om de rol van ZNF91 en ZNF611 in SVA repressie verder te bestuderen, hebben we ZNF91 (hoofdstuk 3) en ZNF611 (hoofdstuk 4) genetisch verwijderd met CRISPR/Cas9 in hESCs. Daarnaast hebben we een ZNF91/ZNF611 dubbel knockout hESC lijnen gecreëerd om te zien of beide KZNF eiwitten nodig zijn voor volledige SVA repressie (hoofdstuk 4). RNA sequencing analyses van KZNF knockout hESC lines hebben onthuld dat alleen in afwezigheid van ZNF91, SVA elementen transcriptioneel actief werden (hoofdstuk 4). In hoofdstuk 3 hebben we ZNF91 knockout hESCs uitgebreid geanalyseerd en laten zien dat voornamelijk jonge SVA subgroepen epigenetisch en transcriptioneel geactiveerd werden. Deze SVA elementen leken genexpressie in cis en trans te reguleren. Transcriptioneel actieve SVA elementen fungerden frequent als alternatieve TSS resulterend in chimere SVA-gen transcripten of non-coding RNAs (lncRNAs). Het feit dat genen in de buurt van epigenetisch actieve SVA elementen collectief upgereguleerd worden wijst op een cis-regulator effect. Verlies van lokaal heterochromatine dat indirect transcriptie faciliteert zou een alternatieve verklaring kunnen zijn. Echter de selectieve upregulatie van clusters met KZNF genen wijst op doelgerichte cis-regulatie en wellicht nog wel belangrijker: het suggereert dat gederepresseerde TEs een verdedigingsmechanisme van een TE invasie activeren. Het feit dat we een vergelijkbare, doch mildere, upregulatie van KZNF genen na ZNF611 deletie observeren wekt de suggestie dat SVA elementen in zekere mate repressie hebben verloren (hoofdstuk 4). Samenvattend laten de data in hoofdstuk 3 en 4 zien dat ZNF91 essentieel is voor SVA repressie in hESCs. ZNF91 gemedieerde SVA repressie heeft een licht repressieve invloed heeft op lokale genexpressie en beschermt tegen, potentieel schadelijke, gen regulatorie effecten van SVA elementen. Bovendien hebben we waardevolle inzichten verschafte met betrekking tot de inductie van een verdedigingsmechanisme tegen een TE invasie.

De bevindingen beschreven in deze thesis laten wederom zien dat TEs meer zijn dan ‘junk’ DNA dat continu en robuust onderdrukt moet worden. We laten zien dat TE activiteit nauw wordt gereguleerd door KZNF eiwitten op een
tijd- en plaatsafhankelijke manier in hESCs en humane neuronen. Daarnaast hebben we verschillende TEs subfamilies geïdentificeerd die karakteristieken van cis-elementen vertonen en mogelijk bijdragen aan celtype specifieke gen regulatie in vroege embryonale en neuronale ontwikkeling. Bovendien hebben we inzicht gegeven in de repressie van SVA elementen en het verborgen gen regulatoire potentiaal dat ze bevatten. Het meest opvallende resultaat was dat de cis-regulatoire potentiaal van SVA elementen gebruikt lijkt te worden voor de inductie van een genoom verdedigingsmechanisme gericht op het onderdrukken van een TE uitbraak. Gezamenlijk dragen deze bevindingen bij aan onze kennis over de evolutionaire wapenwedloop tussen het genoom en TEs en vormen de basis voor verdere studies naar de rol van TEs in humane gen regulatie en hoe dit de evolutionie van nieuwe structuren en functies heeft beïnvloed. De herhaaldelijk invasies van TEs hebben tegen wil en dank genomische conflicten en innovaties teweeg gebracht, maar zonder twijfel hebben ze ons genoom gevormd en bijgedragen aan de evolutie van de mens.
References

Addenda

Acknowledgements
About the author
Acknowledgements/Dankwoord

The last bit of this thesis I would like to devote to all people that have played an important role in the successful completion of my PhD trajectory. Your scientific and non-scientific support have been an invaluable part of my journey.

Frank, allereerst wil ik jou bedanken voor het feit dat je me hebt opgenomen in je team en dat ik heb mogen bijdragen aan de ambitieuze onderzoekslijnen die daar de basis van vormen. Je kritische wetenschappelijke blik en jarenlange ervaring met klassieke en cutting-edge onderzoekstechnieken in combinatie met een tomeloze toewijding en energie zijn een inspiratie geweest. Ik had me geen betere training tot onafhankelijke wetenschapper kunnen wensen. Ook heb je een belangrijke bijdrage geleverd aan mijn persoonlijke vorming. Het opzetten van een nieuw lab en nieuwe technieken/protocollen hebben de eerste jaren bloed, zweet en tranen gekost. Nu kijk ik met trots terug en ben ik blij om te zien dat die processen inmiddels als een geoliede machine lopen! Ook wil ik je bedanken voor de mooie trips die we hebben gemaakt: naast de inspirerende congressen waren de hiking en camping trips in de ruige natuur van de USA onvergetelijk.
Het is heel mooi om te zien hoe het Jacobs lab is gegroeid tot een volwaardige onderzoeksgroep: ik weet zeker dat er nog veel mooi werk gaat komen!

Marten, bedankt dat je me een promotieplek in je groep hebt gegeven en me altijd hebt gesteund tijdens het traject. Ik waardeer het dat ik de kans heb gekregen om tijdens mijn eerste jaar over te stappen naar een ander project en dat je vol enthousiasme langs de zijlijn hebt meegeleefd. Jouw benaderbaarheid en open-door policy hebben meerdere keren een crisis afgewend. Zo wist je bijvoorbeeld altijd binnen no-time mijn onverklaarbare linux errors op te lossen, waardoor ik weer vlot aan het werk kon (natuurlijk inclusief adviezen in linux jargon). Ook voor serieuze mentale coaching of juist een babbeltje aan de koffietafel kon ik altijd bij jou terecht, dank daarvoor!

I would like to sincerely thank all members of the committee for their expertise and careful reading of this manuscript.

I also would like to express my gratitude to **Johan and Marie** for their hospitality and insights into lentivirus production during my visit to Lund University. **Marie**, you’re a great scientist and fun person to be around, thank you for the good times in Lund and Santa Fe!
A big thank you to all (former and new) members of the Jacobs lab. Gerrald, samen zijn wij begonnen als eerste PhD studenten van het Jacobs lab – in die tijd konden we nog geheime lab retreats organiseren, zonder dat het opviel. Ik ben jou veel dank verschuldigd voor je wetenschappelijke en mentale support. Naast dat je een buitengewoon getalenteerde wetenschapper bent, bezit je het vermogen om niet-veroordelend naar mensen te luisteren en snel tot de essentie van zaken te komen. Jij gaat ver komen! Anouk, als eerste student van het Jacobs lab was jij ook een belangrijk onderdeel van het team. Bedankt voor alle gezellige avonden die meestal diep in de nacht eindigden (waarna ik bij jou mocht logeren). Ik ben blij om te zien dat je het geluk in California hebt gevonden. Elise, geweldig om jou te hebben mogen zien groeien de afgelopen jaren; je bent een topper in en buiten het lab. Dank voor al je oprechte interesse! Miranda, your warm personality and scientific expertise truly contributed to my growth, thank you for being supportive during the toughest part of my PhD! Elias, herr Brandorff, the expert on gebied van alternatieve DNA structuren. Ik heb bewondering voor hoe je het ambitieuze G-spot pro-ject aanpakt en je helemaal eigen hebt gemaakt. Je relaxte en nieuwsgierige levensinstelling zijn een inspiratie voor me. Dank dat je aan mijn zijde wilt staan tijdens de verdediging. New(er) Jacobs lab members: Grace, Diana, Rita, and Judith, you are all talented scientists and I am happy to see that you truly support each other and make a great team. I am curious to learn the exciting scientific findings that are going to come out of your projects!

Ook wil ik de rest van de MNS groep (of Smidt lab) bedanken voor hun onvoor-waardelijke steun en gezelligheid. Cindy en Lars v O in het speciaal, vanwege jullie grote rol in het bij elkaar houden van de groep op alle niveaus. Jullie zijn van onschatbare waarde; geweest wat betreft technische ondersteuning en het organiseren van leuke activiteiten! Swip-disco-dip, dank voor alle vrijdamiddag-tunes, luchtige gesprekken en disco-dansjes tussendoor. Ik hoop dat je ooit eens een portal naar de ‘70’s vindt! Eddy, ook jij hebt je bijna door je PhD heengeslagen, gefeliciteerd. Daarnaast wil ik de ‘oude garde’ bedanken: Rico, Willemieke, Simone, Iris en Erik. Jullie zijn allemaal op je eigen manier een inspiratie voor me geweest tijdens mijn masterstage en de eerste jaren van mijn PhD. Ook wil ik de nieuwe van der Heijde lab aanwinsten, Jesse, Erik en Reinofke, bedanken voor de fun als ik weer een dagje kwam schrijven op het science park!
Lars vd H and Marco, met jullie eigen invalshoek hebben jullie waardevolle bijdragen geleverd aan discussies tijdens lab meetings, waarvoor dank. Lars vd H, mooi om ook jouw lab te hebben mogen zien groeien. Met je rustige, maar kritische houding tijdens wetenschappelijke discussies geef je de ander ruimte om zijn werk te verdedigen. Aan de koffietafel heb ik je gevoel voor humor en sarcasme altijd zeer kunnen waarderen!

I owe the supervisors of my internships gratitude for teaching me the ropes. Carlyn, I was lucky that my first experience in a ‘real’ lab was under your supervision. Not only are you a great scientist, but also a gifted teacher and joyful/positive person. Thank you for taking the time to teach me the basics (from wet lab to figure design) back in 2011 and for the help with landing my new job, you are a role model to me! Jesse, jij hebt me kennis laten maken met gene expression analysis tijdens mijn eerste masterstage, dat is goed van pas gekomen bij de analyses van de RNA seq data in dit proefschrift. Je enorme kennis van wetenschappelijke literatuur en innovatieve ideeën waren een inspiratie en maakte dat ik altijd bij je terecht kon met m’n vragen, waarvoor dank! Dwayne, thanks for teaching me how to culture stem cells and differentiate neural cells; it turned out that these were essential skills for generating the data presented in this thesis. I enjoyed all your crazy stories and miss the memorable Friday afternoon drinks in de tegenstelling (although the memories are a bit blurry). Luckily we live close to each other and continue with borrels in café de vijfhoek, let’s keep doing that every now and then!

I would like to express appreciation for all the hard work performed by the students that did their internships with me. Marnus, jij kwam stage lopen helemaal aan het begin van mijn project in het Jacobs lab. Er was nog veel onontgonnen en daarom was het niet altijd even makkelijk, dank voor je enthousiasme! Irene, you were at the start of introducing CRISPR/Cas9 to the lab and you impressed everyone with your graphic design skills explaining this technique. It was a pleasure to see you grow during the project. Whitney, door jouw toe-wijding, technische skills en doorzettingsvermogen hebben we de felbegeerde ZNF91 knockout hESC lijnen gemaakt die ons prachtige data hebben opgeleverd, daar mag je trots op zijn! Je zelfstandigheid en probleemoplossendvermogen zijn eigenschappen die je verder zullen brengen in je training tot onafhankelijk onderzoeker. Tiziana, jouw enorme drive en organisatievermogen (van weekplanningen in kleur tot zeer leesbare en complete labeling van al je onderzoeksmateriaal) heeft ervoor gezorgd dat je heel veel werk hebt kunnen
verzetten, zowel wetlab als drylab. Het was heerlijk om met je samen te werken en ik weet zeker dat je succesvol in je volgende stap zult zijn (hopelijk een mooi PhD project!). Fred, it was an experiment to co-supervise a dry lab project together with Martijs, but I learned a lot from your machine-learning perspective and you helped us figure out some of the computational questions we were struggling with. I admire your broad interest and courage to jump into the unknown, I am curious to see where you’ll end up.

To all the members of the other SILS(-CNS) groups: Thank you for the fun times and support! The hilarious borrels were a welcome distraction from failed experiments and sharing experiences with you made me realize that I was not alone in the struggle called PhD. Kitty, heel fijn om alle zwangerschaps-, baby- en kolfervaringen met je te delen: succes met het laatste stuk van je PhD!

Marc, a.k.a. the fisherman: thank you for teaching me how to fish! The RNA seq data analysis pipeline you wrote not only helped me to learn all aspects of RNA seq data analysis, but also made my live so much easier (although there is a limit to the number of packages, programs and bioinformatics terms that I can process, I learned). Because you also encouraged me to start writing my own R scripts, I eventually was able to generate all beautiful plots presented in this thesis: thank you for having faith in my (first non-existent) computational skills! Keep up the good work with the study group, hopefully you will show many others that they can also learn bioinformatics.

Martijs en Wim, ook jullie wil ik bedanken voor alle keren dat ik jullie kantoor binnenviel met een computationele vraag en jullie gelijk de tijd namen om me te helpen!

Martijn, dank voor alle prettige wandelingen rondom het science park en je steun tijdens de moeilijkste periodes van mijn PhD. Jij hebt me laten inzien dat je iedere lastige situatie kunt veranderen door er zelf anders mee om te gaan. Je warme en betrokken manier van communiceren zijn een verademing. Ik wens je het beste als Prof en als mens!

Natuurlijk moet ik ook mijn vrienden bedanken die naar mijn gezeur hebben geluisterd en aan wie ik steeds weer moest uitleggen dat ik op zaterdag en zondag naar het science park moest om stamcellen en mini brains te verzorgen, waardoor het al snel mijn ‘baby’s’ werden.

Bodil, Froukje en Dorien, onze etentjes/feestjes/weekendjes weg zijn altijd
Acknowledgments

een welkome afleiding geweest de afgelopen jaren. Hoewel we nu regelmatig met kinderwagens op stap gaan, blijven de avondjes dineren gelukkig ook in stand. Jullie zijn prachtmensen en topvriendinnen! Sabina, fijn dat ik ook met één van m’n vrienden de inhoudelijke struggles kon delen. Als iemand de issues met celkweek en CRISPR begrijpt, dan ben jij het wel! Mooi om te zien hoe jij helemaal opgebloeid bent tijdens je PhD en ik weet zeker dat je met jouw talenten een mooie vervolgstap zult vinden. Dank dat je er altijd voor me bent en aan mijn zijde wilt staan tijdens de verdediging van mijn proefschrift. Nienke en Dieuwertje, de psychobiobeukers. Alle drie een totaal andere kant op gegaan en toen zaten we toch ineens alle drie zonder baan en de vraag: What’s next? Ik ben blij dat we zoveel met elkaar kunnen delen, maar bovenal waardeer ik jullie no-nonsense amsterdams communicatiestijl en dat we altijd kunnen lachen (ook als het even minder gaat). Hedy en Floor, het is altijd gezellig, luchtig en hilarisch met jullie. Dank voor nachten stampen (en zitten en rondjes lopen) op techno beats (hoe harder hoe beter) met een bonte verzameling mensen, waaronder veel bovengenoemd! Lobke en Douwe, dank voor alle gezellige avondjes en (ski)vakanties.

Jean Paul, wat fijn dat hij de lay out van mijn boekje wilde doen. Het was verfrissend om te horen hoe hij als graphic designer naar mijn wetenschappelijke teksten en figuren kijkt. Je hebt het complexe onderwerp van mijn thesis in een schitterend cover design weten te vangen, duizend maal dank daarvoor! Sporten is een essentieel onderdeel van mijn leven waardoor ik mijn energie kwijt kan en m’n zinnen kan verzetten. Dank aan alle meiden van de volleybal, in het speciaal Jamie, Annemiek en Annelies voor alle fun binnen en buiten het veld. Anne, bedankt voor alle coaching op volleybalgebied en daarbuiten (in het leven krijg je niets zonder moeite), je bent een gouden vent.

Ook wil ik mijn familie bedanken voor alle steun door de jaren heen. Eva, Thomas en Hanna: jullie zijn er alledie op je eigen manier altijd voor me en ik hoop er altijd voor jullie te kunnen zijn! Ook wil ik mijn schoonouders, Marco en Vera, bedanken voor hun steun en interesse in mijn PhD project. Opa Leo en Oma Cilli, bedankt voor alle keren dat ik bij jullie mocht komen slapen en de lekkere ontbijtjes die dan de volgende ochtend op me wachten. Maar bovenal ben ik dankbaar voor jullie oneindige liefde en gevoel voor humor. Opa, ik mis je joviale amsterdams babbels iedere dag. Oma, je progressieve en actieve levenshouding zijn een inspiratie; er zijn weinig mensen van jouw leeftijd die nog werken en goed aansluiting vinden bij de jeugd.
Acknowledgments

Lieve Papa en Mama, dank voor jullie steun, liefde en grenzeloze vertrouwen. Dankzij jullie onvoorwaardelijke geloof in mij heb ik altijd mijn hart en dromen kunnen volgen. Pap, jij weet als geen ander hoe het eraan toe gaat in een onderzoeksgroep; dank voor alle gesprekken en adviezen. Mam, dank voor de mentale support in de eerste jaren van mijn PhD en het oppassen op Yara terwijl ik mijn thesis schreef.

Jelle, jij bent degene aan wie ik het meeste dank verschuldigd ben. Zonder jouw onvoorwaardelijke steun, liefde en tolerantie was dit proefschrift nooit tot stand gekomen. Dank voor het accepteren dat ik zoveel weekenden mijn stamcellen meer aandacht gaf dan jou. Dank dat je me de ruimte gaf om door te werken op momenten dat het voor jou eigenlijk genoeg was. Dank voor alle keren dat ik mocht afreageren, maar dat je me gelijk een ander perspectief voorhield; dit bracht objectiviteit in emotioneel geladen situaties. Dank dat je me bleef herinneren aan wat echt belangrijk is in het leven (je leeft niet om te werken, maar je werkt om te leven). Gelukkig hebben we ook genoeg tijd vrijgemaakt om te leven: van weekendjes Lowlands met al onze vrienden tot samen genieten van verlaten witte (en zwarte) indonesische stranden. Dat we dezelfde levensvisies hebben en veel interesses delen zorgt voor een solide thuisbasis waar ik altijd op kan terugvallen, dat is van onschatbare waarde. De komst van ons kleine meisje heeft ervoor gezorgd dat we nog meer als een team zijn gaan samenwerken en veel meer tijd samen zijn gaan doorbrengen, wat is dat fijn. Ik kijk uit naar de toekomst samen!

Yara, het leven is zoveel mooier en intenser geworden door jouw komst. Je vrolijke lach, eindeloze energie en je vermogen om na honderd keer vallen nog een keer op te staan zijn inspirerend en bezorgen me een gezonde dosis relativeringsvermogen. Wat een voorrecht om de wereld samen met jou (opnieuw) te ontdekken.
About the author

Nina Leonie Haring was born on December 6th 1989 in Amsterdam. She obtained her pre-university degree (VWO degree) at the Rudolf Steiner College in Haarlem in 2008. The same year she started the bachelor’s program Psychobiology at the Universiteit van Amsterdam (UvA). In 2010 she went for a 5-month exchange to University of British Columbia (UBC), Vancouver, Canada to follow courses in Immunology, Neuroscience, and Psychology. She completed her bachelor’s degree in 2011 with a 4-month research project on the role of GFAP- in the developing mouse brain in the lab of Prof.dr. Elly Hol at the Netherlands Institute for Neuroscience.

The following year (2011-2012) she worked as a teaching assisstant in several biology courses and went traveling through Latin-America for 5 months. After returning from traveling, she was hired by UvA Outreach and Bêtapartners Academie to develop courses for high school students to get an introduction to academia. The course “goochelen met genen”, a collaboration with the Plant physiology group of Prof.dr. Michel Haring, is still organized today.

In 2012 she started with the master’s program Basic and Applied Neuroscience at the Universiteit van Amsterdam. As part of this program she completed two research projects. The first was was a 10-month project on the gene expression programs underlying neuronal subset specification in the dopaminergic midbrain of the mouse in the lab of Prof.dr. Marten Smidt at the Universiteit van Amsterdam. The second was a 7-month project on the optimization of embryonic stem cell-derived oligodendrocyte differentiation and the characterization of 5-hydroxymethylcytosine on neural gene promoters in the lab of Dr. Vivi Heine at the Vrije Universiteit Amsterdam. In December 2014 she obtained her master’s degree cum laude.

In January 2015 Nina started her PhD program in the Molecular Neuroscience group of Prof.dr. Marten Smidt at the Swammerdam Institute for Life Sciences, Universiteit van Amsterdam. The first half year she continued with projects she worked on during her master’s internship. This included the characterization of neuronal subsets in the human dopaminergic midbrain. After approximately 6 months, however, she switched to the group of Dr. Frank Jacobs to work on the projects presented in this thesis. During her PhD Nina has presented her work at several national and international scientific meetings and some of it will soon be published in peer-reviewed journals.
Nina will continue her career in the fields of biomedicine and health care as a medical communications manager. In this role she will be generating communication and education materials for pharmaceutical/biotech companies.