Supporting Information

Rhodium Complexes in P–H Bond Activation Reactions

Víctor Varela-Izquierdo,[a] Ana M. Geer,*[b] Bas de Bruin,[c] José A. López,[a] Miguel A. Ciriano,[a] and Cristina Tejel*[a]

chem_201903981_sm_miscellaneous_information.pdf
Selected crystallographic data for \([(Tp)(H)Rh(\mu-PPh_2)_2Rh(PHPh_2)_2] \) 0.5H_2O (7·0.5H_2O). Crystal data for 7·0.5H_2O: C_{57}H_{54}BN_{6}O_{0.5}P_{4}Rh_{2}, \(M_r = 1171.57 \), monoclinic, space group \(P2_1/n \), \(a = 10.1225(9), b = 23.858(2), c = 22.240(2) \) Å, \(\beta = 96.3060(10), V = 5338.6(8) \) Å³, \(Z = 4, \rho_{\text{calc}} = 1.458 \) g cm\(^{-3} \), \(F(000) = 2388, T = 100(2) \) K, MoK\(\alpha \) radiation (\(\lambda = 0.71073 \) Å, \(\mu = 0.783 \) mm\(^{-1} \)). Data were collected with a yellow needle (0.32 × 0.06 × 0.02 mm). Of 38802 measured reflections (2\(\theta \): 2.5-53.1º), 11057 were unique (\(R_{\text{int}} = 0.0572 \)). Final agreement factors were \(R_1 = 0.0412 \) (8020 observed reflections) and \(wR_2 = 0.0941 \). Data/restraints/parameters 11057/1/653; GOF = 1.020. Largest peak and hole in the final difference map 0.813 and -0.643 e Å\(^{-3} \).

Selected crystallographic data for \([Rh(Tp)(IMes)(PHPh_2)]\) (11). Crystal data for 11: C_{42}H_{45}BN_{8}PRh, \(M_r = 806.55 \), triclinic, space group \(P-1 \), \(a = 13.3019(12), b = 17.3033(16), c = 18.1535(17) \) Å, \(\alpha = 87.9497(14), \beta = 71.6254(14), \gamma = 88.4523(14), V = 3962.2(6) \) Å³, \(Z = 4, \rho_{\text{calc}} = 1.352 \) g cm\(^{-3} \), \(F(000) = 1672, T = 100(2) \) K, MoK\(\alpha \) radiation (\(\lambda = 0.71073 \) Å, \(\mu = 0.512 \) mm\(^{-1} \)). Data were collected with a yellow prismatic block (0.23 × 0.21 × 0.14 mm). Of 42447 measured reflections (2\(\theta \): 2.3-60.0º), 21181 were unique (\(R_{\text{int}} = 0.0214 \)). Final agreement factors were \(R_1 = 0.0294 \) (17823 observed reflections) and \(wR_2 = 0.0676 \). Data/restraints/parameters 21181/0/969; GOF = 1.020. Largest peak and hole in the final difference map 0.465 and -0.444 e Å\(^{-3} \).

Selected crystallographic data for \([Rh(Tp)(H)(POPh_2)(PHPh_2)]\) (14). Crystal data for 14: C_{33}H_{32}BN_{6}OP_{2}Rh, \(M_r = 704.30 \), monoclinic, space group \(Cc \), \(a = 13.8971(11), b = 15.5914(12), c = 14.8704(11) \) Å, \(\beta = 99.7810(10), V = 3175.2(4) \) Å³, \(Z = 4, \rho_{\text{calc}} = 1.473 \) g cm\(^{-3} \), \(F(000) = 1440, T = 100(2) \) K, MoK\(\alpha \) radiation (\(\lambda = 0.71073 \) Å, \(\mu = 0.676 \) mm\(^{-1} \)). Data were collected with a yellow irregular block (0.15 × 0.12 × 0.08 mm). Of 13804 measured reflections (2\(\theta \): 3.9-54.0º), 6783 were unique (\(R_{\text{int}} = 0.0266 \)). Final agreement factors were \(R_1 = 0.0343 \) (6352 observed reflections) and \(wR_2 = 0.0845 \). Data/restraints/parameters 6783/3/406; GOF = 1.036. Largest peak and hole in the final difference map 0.856 and -0.708 e Å\(^{-3} \).
Selected NMR Spectra:

Figure S1. Selected region of: a) 1H NMR spectrum, b) 1H-selnOe and c) 1H-seltocsy irradiating the resonance corresponding to the Ph01 proton (marked with a ray) of complex [[(Tp)(H)Rh(μ-PPh$_2$)$_2$]]$_2$ (3) in [D$_6$]-benzene. The hydride region of the 1H and 1H(31P) NMR spectra are shown in the blue inset, whereas the 31P(1H) NMR spectrum of 3 is shown in the green inset.
Figure S2. Selected region of the 1H NMR spectrum of [Rh(Tp)(H)(PMe$_2$Ph)(PPh$_2$)] (5) in [D$_6$]-benzene. The hydride region of the 1H and 1H(3P) NMR spectra are shown in the blue inset, whereas the 31P{1H} NMR spectrum of 5 is shown in the green inset.

Figure S3. Selected regions of the 1H NMR spectrum of [Rh(Tp)(H)(PHPh$_2$)(PPh$_2$)] (6) in [D$_8$]-toluene at -70 °C. Selected regions of the 1H(3P) NMR spectrum are shown in the blue inset, whereas the 31P{1H} NMR spectrum of 6 is shown in the green inset.
Figure S4. Selected region of the 1H NMR spectrum of [(Tp)(H)Rh$^\text{III}$(μ-PPh$_2$)$_2$Rh(1PPh$_2$)$_2$] (7) in [D$_6$]-benzene. The hydride region of the 1H and 1H(31P) NMR spectra are shown in the blue inset.

Figure S5. Selected regions of the 31P(1H) NMR spectrum (in black) and simulated (in red) of [(Tp)(H)Rh$^\text{III}$(μ-PPh$_2$)$_2$Rh(1PPh$_2$)$_2$] (7) in [D$_6$]-benzene. A selected region of the 1H,31P-hmbc NMR spectrum is shown on the right.
Figure S6. Selected region of the 1H NMR spectrum of 8 in [D$_6$]-benzene, showing the signals of the hydrido-phosphanido complex [Rh(Tp)(H)(PMePh$_2$)(PPh$_2$)] 8a. The hydride region of the 1H and 1H31P NMR spectra are shown in the blue inset, whereas the 31P(1H) NMR spectrum of 8 is shown in the green inset.

Figure S7. 31P(1H) NMR of the reaction mixture after mixing [Rh(Tp)(C$_2$H$_4$)(PPh$_3$)] (6.7 %) [Rh(2-Tp)(PPh$_3$)(PHPh$_2$)] (10b, 41.3 %) [Rh(Tp)(H)(PPh$_3$)(PPh$_2$)] (10a, 14.7 %) [Rh(Tp)(H)(PHP$_2$)(PPh$_3$)] (6, 20.2 %) [(Tp)(H)Rh($^{\mu}$-PPh$_2$)$_2$] (3, 1.5 %) PPh$_3$ (15.6 %)

31P(1H) NMR of the reaction mixture after mixing [Rh(Tp)(C$_2$H$_4$)(PPh$_3$)] (2) and PPh$_3$ in [D$_6$]-benzene. The blue insets show the hydride (down) and ethylene (up) regions of the 1H NMR spectrum.
Figure S8. Van ’t Hoff plots for the equilibria $[\text{Rh}(\kappa^2\text{-Tp})(\text{PMePh}_2)(\text{PHPh}_2)] \quad (8b) \rightleftharpoons [\text{Rh}(\text{Tp})(\text{H})(\text{PMePh}_2)(\text{PHPh}_2)] \quad (8a)$ (in blue) and $[\text{Rh}(\kappa^2\text{-Tp})(\text{PPh}_3)(\text{PHPh}_2)] \quad (10b) \rightleftharpoons [\text{Rh}(\text{Tp})(\text{H})(\text{PPh}_3)(\text{PHPh}_2)] \quad (10a)$ (in red).

Figure S9. ^1H NMR spectrum of $[\text{Rh}(\kappa^2\text{-Tp})(\text{IMes})(\text{PHPh}_2)] \quad (11)$ in [D$_6$]-benzene and a selected region of the $^1\text{H},^1\text{H}$-noesy NMR spectrum showing the negative cross-peaks due to the chemical exchange of the pyrazolate protons.
Figure S10. Selected regions of the 1H (down) and 1H(31P) (up) NMR spectra of [Rh($^{\kappa_2}$-Tp)(BzMe)(PHPh$_2$)] (12) in [D$_6$]-benzene. The 31P(1H) NMR spectrum is shown in the green inset.

Figure S11. Selected region of the 1H NMR spectrum of [[Rh(Tp)($^{\eta_1}$-1Et)(C,P-CH$_2$CH$_2$PPh$_2$)] (13) in [D$_6$]-benzene. A selected region of the 1H,1H-cosy NMR spectrum is shown in the upper part.
Figure S12. Selected region of the 1H NMR spectrum of [Rh(Tp)(H)(POPh$_2$)(PHPh$_2$)] (14) in [D$_6$]-benzene. The hydride region of the 1H and 1H(3P) NMR spectra are shown in the blue inset, whereas the 3P(1H) NMR spectrum of 14 is shown in the green inset.

Figure S13. Selected regions of the 1H,3P-hmbc NMR spectra of [Rh(Tp)(H)(POPh$_2$)(PHPh$_2$)] (14) in [D$_6$]-benzene with correlation times corresponding to J(H,P)= 10 Hz (left) and J(H,P)= 400 Hz (right).
Figure S14. 1H NMR spectrum of [{(Tp)(η1-Et)Rh(µ-OPPh$_2$)}$_2$] (15) in [D$_6$]-benzene. The 31P{1H} NMR spectrum of 15 is shown in the green inset.

Figure S15. 31P{1H} NMR spectra in [D$_6$]-benzene of: i) a mixture of the dinuclear complex [{(Tp)(η1-Et)Rh(µ-OPPh$_2$)}$_2$] (15) and OPHPh$_2$ (bottom), ii) after warming for 2h at 60 °C (middle) and iii) after warming for 14h at 60 °C (top), showing the full transformation into the mononuclear complexes [Rh(Tp)(η1-Et)(POPh$_2$)(POHPh$_2$)] (16) and [Rh(Tp)(H)(POPh$_2$)(POHPh$_2$)] (17).
Figure S16. Selected regions of the 1H NMR spectrum of a mixture of [Rh(Tp)(η1-Et)(POPh$_2$)(POHPh$_2$)] (16, in red) and [Rh(Tp)(H)(POPh$_2$)(POHPh$_2$)] (17, in gray) in [D$_6$]-benzene.

R = Et 16, H 17