Cobalt-Catalyzed Hydrogenations via Olefin Cobaltate and Hydride Intermediates

DOI
10.1021/acscatal.9b01584

Publication date
2019

Document Version
Final published version

Published in
ACS Catalysis

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Cobalt-Catalyzed Hydrogenations via Olefin Cobaltate and Hydride Intermediates

Sebastian Sandl,† Thomas M. Maier,‡ Nicolaas P. van Leest,§ Susanne Kröncke,† Uttam Chakraborty,† Serhiy Demeshko,∥ Konrad Koszinowski,¶ Bas de Bruin,∥ Franc Meyer,∥ Michael Bodensteiner,† Carmen Herrmann,† Robert Wolf,*,‡ and Axel Jacobi von Wangelin*,†

†Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
‡Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
§van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
∥Institute of Inorganic Chemistry, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
¶Institute of Organic and Biomolecular Chemistry, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany

ABSTRACT: Redox noninnocent ligands are a promising tool to moderate electron transfer processes within base-metal catalysts. This report introduces bis(imino)acenaphthene (BIAN) cobaltate complexes as hydrogenation catalysts. Sterically hindered trisubstituted alkenes, imines, and quinolines underwent clean hydrogenation under mild conditions (2−10 bar, 20−80 °C) by use of the stable catalyst precursor [(DippBIAN)CoBr2] and the cocatalyst LiEt3BH. Mechanistic studies support a homogeneous catalysis pathway involving alkene and hydrido cobaltates as active catalyst species. Furthermore, considerable reaction acceleration by alkali cations and Lewis acids was observed. The dinuclear hydridocobaltate anion with bridging hydride ligands was isolated and fully characterized.

KEYWORDS: hydrogenation, cobalt, hydrides, metalloradicals, reaction mechanism, redox-active ligands

INTRODUCTION

Metal-catalyzed hydrogenations of alkenes constitute one of the key chemical transformations with numerous applications to lab-scale syntheses and industrial manufacturing.1 The elucidations of the underlying catalytic mechanisms by Eisenberg, Halpern, Tolman, and others were major scientific milestones towards the understanding of catalytic elemental steps and the rational design of more active and selective catalysts.1,2 Very recently, the dominance of hydrogenation catalysts based on the noble metals Rh, Ru, Ir, Pd, and Pt has been challenged by the development of highly active 3d transition metals.3 While the use of more abundant, cheaper, and often less toxic base metals constitutes an important contribution to a more sustainable chemistry, their distinct reactivity and selectivity was often plagued by undesirable destructive side reactions.4 Recently, elaborate ligand design enabled the development of highly active cobalt catalysts by the groups of Beller, Budzelaar, Chirik, Hanson, Elsevier, de Bruin, and others (Figure 1).5−8 In the most recent literature, the implementation of pincer ligands (e.g., NNN; PNP; CNC) proved pivotal to the control of high activity and selectivity.9 Following our previous work on metalates with redox noninnocent arene ligands,10,11 we believed that an efficient 3d metal catalyst for hydrogenation reactions would fulfill the

Figure 1. Homogeneous cobalt catalysts for hydrogenations5−8,10 (Dipp = 2,6-diisopropylphenyl). following criteria: (i) facilitation of redox steps at the metal by a redox-active ligand; (ii) modular ligand design that allows for...
convenient synthesis and easy catalyst tuning; (iii) stabilization of reduced forms of the catalyst by the ligand, and (iv) broad scope of hydrogenations of unsaturated C=C and C==X bonds.

Imine-based ligand architectures constitute a privileged class of ligands as evidenced by the numerous applications to catalytic reactions. Simple α-dimine catalysts were first introduced by Tom Dieck and co-workers in 1977.12 Pincer-type motifs such as pyridinediimines13 (PDI) have recently received great attention. Bis(imino)acenaphthenes14,15 (BIANs) are another class of ligands that fulfill the aforementioned criteria: BIANs can be rapidly assembled from commercial precursors on multigram scales and are highly redox-active as they can harbor up to four electrons.14b There are eight reports of BIAN cobalt complexes with five applications to catalysis.16 On this basis, we investigated combinations of BIAN ligands and cobalt salts toward their ability to form active hydrogenation catalysts. Documented herein are the benefits of using this simple catalytic system that presents tangible advances over the current state-of-the-art that could not have been predicted: Clean hydrogenations of challenging alkenes (e.g., tetra-substituted), imines, and heteroarenes proceed under mild conditions. Mechanistic insight was gained from the isolation of structurally novel olefin and hydride complexes as potential catalyst intermediates that are distinct from those of the traditional noble metal catalysts (Figure 1, bottom).

RESULTS AND DISCUSSION

Optimization and Alkene Hydrogenation. Initially, we probed the ability of (DippBIAN)CoIIBr2 to act as a precatalyst for the hydrogenation of the model substrate triphenylethylene under very mild conditions (Dipp = 2,6-diiso-propylphenyl). High conversion was observed with lithium superhydride (LiEt3BH) as a cocatalyst at 2 bar H2 and room temperature (Scheme 1).20 The high efficacy of the developed protocol was demonstrated in the hydrogenation of challenging tri- and tetra-substituted alkenes such as myrene, α-pinene, and αββ-trimethylstyrene under mild conditions (Scheme 2). The high efficacy of the developed protocol was demonstrated in the hydrogenation of challenging tri- and tetra-substituted alkenes such as myrene, α-pinene, and αββ-trimethylstyrene under mild conditions (Scheme 2). Under standard conditions, the hydrogenation of α-methylstyrene exhibited a turnover frequency (TOF) of 780 h⁻¹ (Supporting Information). To the best of our knowledge, this protocol involves one of the most active homogeneous Co catalysts for alkene hydrogenations.8c

Reduction-sensitive functional groups in the alkenes required a different protocol involving addition of the hydride cocatalyst prior to the alkene (protocol B, see Table 1, entry 2, and Scheme 2, right). This alternative protocol B was tolerant to chloride, bromide, ether, and ester functions. In the absence of H2, 1-octene rapidly isomerized to a mixture of octene regioisomers and stereoisomers. With phenyl-acetylene, slow cyclotrimerization to triphenylbenzene was observed in low yield (see the Supporting Information).21

Methodology Extension: Hydrogenation of Imines. The homogeneous Co-catalyzed hydrogenation of imines8b,10 and quinolines8c is still in its infancy, despite being an atom-economic route to bioactive amines.22 Very good conversions were observed with the same cobalt catalyst in hydrogenations of selected electron-deficient and electron-rich imines and quinolines (10 bar H2, 60 °C, Scheme 2). Ester functions were tolerated. Similarly mild conditions were recently reported with related homogeneous Co catalysts.23,24,25

Mechanism. The advent of 3d transition metal catalysts has gone hand in hand with the utilization of ligands that profoundly influence the electronic properties at the metal ions and enable redox reactivity patterns that are distinct from those of noble metals catalysts.7 The reaction mechanisms of catalytic alkene hydrogenations with second and third row transition metals (Rh, Ru, Ir, Pd, Pt) are very well understood. For the classical Rh-catalyzed hydrogenation, alkene and hydride complexes have been determined as key catalyst intermediates and the elemental reaction steps to involve two electron redox events at the metal.1,2,7,12,13,14b There is much less insight into the hydrogenation mechanisms of first row transition metals; the nature of the key catalyst intermediates are still largely unexplored. Chirik and co-workers reported on a bis(aryl-imidazol-2-ylidene)pyridine cobalt hydride complex and a radical pathway that operates in cobalt-catalyzed alkene hydrogenations.26 In this work, we aimed at a concise mechanistic study of Co-BIAN catalysts in alkene hydrogenations that would address the following questions: Is the BIAN ligand redox-active under the reaction conditions? Are radical pathways operating? To what extent are heterogeneous catalyst species involved?23 Do alkene and hydride intermediates play a similarly important role as with 4d and 5d metal catalysts?

We commenced our mechanistic studies with a set of key experiments that addressed the operation of radical mechanisms and the topicity of the active catalysts species. Initially,

Table 1. Selected Optimization Experiments

<table>
<thead>
<tr>
<th>Entry</th>
<th>Deviation from standard conditions</th>
<th>Yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A: reduction in presence of the substrate</td>
<td>92 (93)</td>
</tr>
<tr>
<td>2</td>
<td>B: substrate addition after reductant</td>
<td>41 (50)</td>
</tr>
<tr>
<td>3</td>
<td>A: 6 mol % LiEt3BH</td>
<td>75 (75)</td>
</tr>
<tr>
<td>4</td>
<td>A: 6 mol % NaEtBH</td>
<td>33 (33)</td>
</tr>
<tr>
<td>5</td>
<td>A: 9 mol % NaEtBH</td>
<td>64 (65)</td>
</tr>
<tr>
<td>6</td>
<td>A: 9 mol % HBPin + 9 mol % KOTBu</td>
<td>1 (12)</td>
</tr>
<tr>
<td>7</td>
<td>A: (DippBIAN)CoCl</td>
<td>72 (72)</td>
</tr>
<tr>
<td>8</td>
<td>A: CoCl2 + 2(DippBIAN)</td>
<td>25 (35)</td>
</tr>
<tr>
<td>9</td>
<td>A: w/o reductant</td>
<td><1 (9)</td>
</tr>
</tbody>
</table>

aYields determined by quantitative GC-FID vs internal n-pentadecane; conversions in parentheses. Conditions: 0.2 mmol alkene (1 M, THF), 9 mol % LiEt3BH (1 M, THF), 3 mol % (DippBIAN)CoBr2, 2 bar H2.
radical probes were evaluated. α-Cyclopropyl styrene underwent dual alkene hydrogenation and hydrogenative ring-opening to give 2-phenylpentane in excellent yields following protocol A or B, respectively (Scheme 3A). This might be indicative of a mechanism involving hydrogen atom transfer (HAT). Furthermore, this is in full accord with our observations that nonstyrenic olefins (i.e., alkenes without aryl substituents that could stabilize potential radical intermediates in benzyl positions) constitute more difficult substrates under the standard conditions. Hydrogen atom transfer from the solvent is rather unlikely as no deuterium incorporation could be determined from reactions in THF-d₈ (Scheme 3B). The high activity of the catalyst was further demonstrated by the hydrogenation of a C–C σ-bond in cyclopropylbenzene (Scheme 3C).

The clear distinction between homogeneous and heterogeneous catalyst species is intricate, yet our observations are consistent with a homogeneous mechanism. Reaction progress analyses documented an immediate onset of catalytic activity and steady conversion, which indicates a zero order for the substrate in the rate law (Scheme 4, red curve). Thus, the rate-determining step presumably does not include olefin coordination. A plot of the initial rates versus catalyst concentration by gas-uptake and quantitative GC-FID vs n-pentadecane; conversions in parentheses if <90%.

"Procedure B. 80 °C. "Traces of the 5,6,7,8-tetrahydroquinoline derivative. Blue bonds indicate the sites of double bond hydrogenation. Conditions: procedure A, 0.2 mmol substrate (1 M, THF), 3 mol % (DippBIAN)CoBr₂, 9 mol % LiEt₃BH (1 M, THF); 10 bar H₂, 60 °C, 24 h. GC-FID yields vs internal n-pentadecane; conversions in parentheses if <90%.

Scheme 3. Key Mechanistic Experiments

\[\text{Scheme 3A: Substrate Scope of Cobalt-Catalyzed Hydrogenation of Alkenes} \]

<table>
<thead>
<tr>
<th>Procedure A</th>
<th>Procedure B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 bar, 20°C, 3 h</td>
<td>10 bar, 90°C, 24 h</td>
</tr>
<tr>
<td>R = Ph: >99%</td>
<td>>99%</td>
</tr>
<tr>
<td>R = Me: >99%</td>
<td>>99%</td>
</tr>
<tr>
<td>R = H: >99%</td>
<td>>99%</td>
</tr>
<tr>
<td>OTMS: <5%</td>
<td>>99%</td>
</tr>
</tbody>
</table>

\[\text{Scheme 3B: Hydrogenation of Imines and Quinolines} \]

<table>
<thead>
<tr>
<th>Procedure A</th>
<th>Procedure B</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °C</td>
<td>60 °C</td>
</tr>
<tr>
<td>R = OMe: 83% (isol)^a</td>
<td>R = OMe: 38% (43%) h,h,k</td>
</tr>
<tr>
<td>R = NMe₂: 80% (isol)^a</td>
<td>R = OMe: 63% (63%) h,k,e</td>
</tr>
<tr>
<td>R F: 55% (isol)^a</td>
<td>R = COOMe: 38% (43%) k,h</td>
</tr>
</tbody>
</table>

"Procedure B. substrate conversion determined by gas-uptake and quantitative GC-FID vs n-pentadecane.
concentrations showed a first order rate in cobalt (SI). The absence of any sigmoidal curvature argues clearly against initial precatalyst nucleation and particle formation. However, an induction period might be not visible due to the experimental setup (procedure B, substrate conversion determined by gas-uptake; \(\text{H}_2\) consumption was recorded after precatalyst formation and substrate addition; SI). Kinetic poisoning studies are a competent tool to ascertain the topicity of the operating catalyst species.\(^{23}\) The attempted amalgamation of the catalyst with 300 equiv. Hg had only a minimal effect on the reaction rate. Upon addition of subcatalytic amounts of trimethylphosphite (P(OMe)\(_3\)), partial catalyst inhibition was recorded. Complete inhibition was achieved at a catalyst/poison ratio of 1:1 which is consistent with a homotopic catalyst (Scheme 4, green curve). The selective homotopic catalyst poison dibenz[a,e]cyclooctatetraene\(^{25}\) (dct, 10 equiv per Co) resulted in catalyst inhibition which was slightly diminished by the concomitant hydrogenation of dct as a competing substrate (Scheme 4, violet curve, 31% conversion of dct; SI). The lower efficacy of dct as poison is presumably a consequence of the lower stability of 3d olefin complexes vs their heavier congeners.\(^{18}\)

Complexes and Catalyst Intermediates. Based on the initial mechanistic experiments, we postulate a homotopic mechanism by molecular cobalt catalysts. The distinct electronic properties of 3d transition metals vs their heavier congeners might also entail the participation of catalyst structures that are different from the Rh(I) catalysts of hydrogenation reactions. While the operation of alkene and hydride pathways has been intensively studied in rhodium-catalyzed hydrogenations, the knowledge of related catalyst intermediates with cobalt is still rather in its infancy. In an effort to identify potential catalyst species, we investigated reactions of (DippBIAN)CoBr\(_2\) with 3 equiv LiEt\(_3\)BH in THF solution (Scheme 5). LIFDI-MS (liquid injection field desorption mass spectrometry) analyses of the crude catalyst mixture displayed the formation of the low-valent dimer [(DippBIAN)Co]\(_2\) which is structurally related to a complex with two direct cobalt-arene bonding interactions prepared by Yang and co-workers using a different diimine.\(^{26}\) We surmised that the low-valent monomeric unit (DippBIAN)Co might exhibit catalytic activity and thus employed several arenes/olefins as labile coordination placeholders during the reductive dehalogenation of DippBIANCoBr\(_2\). Reduction of DippBIANCoBr\(_2\) in THF with 3 equiv LiEt\(_3\)BH and excess amounts of 1,5-cyclooctadiene (cod) led to the formation of [Li(thf)\(_3\)]\(_+\) (DippBIAN)Co(cod)) \((1)\) which was isolated after recrystallization in 17% yield.\(^{27,16c}\) This complex is the corresponding Li salt to our previously described potassium homotopic catalyst poison dibenzo[cyclooctatetraene\(^{25}\) (dct, 10 equiv per Co) resulted in catalyst inhibition which was slightly diminished by the concomitant hydrogenation of dct as a competing substrate (Scheme 4, violet curve, 31% conversion of dct; SI). The lower efficacy of dct as poison is presumably a consequence of the lower stability of 3d olefin complexes vs their heavier congeners.\(^{18}\)

2), which was further investigated by EPR.\(^{28,29}\) The X-band spectrum of 3 in toluene glass at 20 K (Figure 3) shows a rhombic symmetry and was simulated in accordance with an unpaired electron coupled to a spin 7/2 nucleus. We attribute this signal to a cobalt-centered radical (SI). Inclusion of the Euler angles \([-2.0, +90.0, 0]\) proved to be necessary to align the g and \(A_{\text{Co}}\) tensors and provided a more satisfactory simulation of the measured spectrum. Some linear and quadratic A-strain parameters have been included to simulate

Figure 2. Molecular structures of 1, 3, and 4b. Thermal ellipsoids at the 50% probability level; minor disordered parts, noncoordinated solvents, selected H atoms, and the [Li(thf)]\(_+\) cation of 4b were omitted for clarity.
the final line shape (SI). Some remaining slight deviations in the line shapes between simulation and experiment can be attributed to nonperfect glass formation. The provided simulation allowed for accurate determination of the g and \(A_{Co} \) tensors (MHz): \([2.013, 2.145, 2.134]\) and \([+185.0, +406.0, 198.4]\), respectively. These results are in agreement with an effective magnetic moment \(\mu_{eff} \) of 1.9 \(\mu_B \) (Evans method, \(C_9D_9 \)), which is only slightly higher than the spin-only value for an \(S = 1/2 \) system (\(\mu_{eff} = 1.7 \mu_B \)).

Further analysis of 3 included elemental analysis, LIFDI-MS \((m/z = 637.2781)\), cyclic voltammetry (CV, one reversible reduction, \(E = −2.3 \) V vs Fc/Fc\(^+\)), and UV−vis (\(C_9H_9 \), \(\lambda_{max} = 481 \) nm, \(\epsilon_{max} = 14300 \) \(\text{mol}^{-1} \text{cm}^{-1} \) L). The combined data point to a highly unusual electronic structure of complex 3 which is described as a \([\text{BIAN}^-]Co^{I}(\sigma^2-C_6H_6) \) complex that contains a very rare high-spin Co(I) center. 31 The BIAN radical anion is (strongly) antiferromagnetically coupled to the \(S = 1 \) Co(I) ion, thus resulting in an effective \(S = 1/2 \) system with the unpaired electron being primarily located at Co (as detected by EPR). The cobalt−arene coordination in 3 is not only relevant for the catalysis protocol, as it is structurally related to \([(\text{BIAN})Co]_2 \). Moreover, substrates may coordinate in a similar way, as most substrates involve a phenyl ring. 3 also cocrys tallized in a benzene-free synthesis of 1, which might be a consequence of a solvent impurity.

Transition metal hydrides are key intermediates in many synthetic27 and biological31 processes. The largest industrial catalytic processes are hydrogenation reactions that operate via metal hydride species. Since the landmark studies of homogeneous Rh-catalyzed hydrogenations,7 extensive knowledge of hydridorhodium complexes has been collected whereas very little is known about the nature and catalytic role of related intermediates in Co-catalyzed reactions. From a reaction of \((\text{DippBIAN})\text{CoBr}_2 \) with 3 equiv \(\text{LiEt}_3\text{BH} \) in \(\text{Et}_2\text{O} \) in a closed reaction vessel, we isolated a structurally unusual cobalt hydride complex (SI).34 Effervescence was observed during the reduction, presumably by formation of \(\text{H}_2 \). Extraction with \(\text{n}-\text{heptane} \) and \(\text{Et}_2\text{O} \) afforded the anionic hydridorhodium complex \([\text{Li}(\text{thf})_3(\text{Et}_2\text{O})[(\text{DippBIAN})\text{Co}]_2(\mu-\text{H}_2)]_4 \) (4a) as dark green microcrystals in 23% yield.35 The closely related \([\text{Li}(\text{thf})_4]^+ \) (4b) solvate can be isolated in an analogous fashion by crystallization from THF/\(n \)-hexane (Figure 2 and SI). X-ray diffraction analysis revealed that 4a and 4b show very similar solid-state molecular structures, thus only the structural parameters of 4a are given below. The anion of 4a shows three hydride ligands (located in the electron density Fourier map) that bridge two \((\text{DippBIAN})\text{Co} \) units (Figure 2).

The \([\text{Li}(\text{thf})_3(\text{Et}_2\text{O})]^+ \) counterion is solvent-separated. A very short Co−Co distance presumably is observed due to the presence of three bridging hydrides: 2.2640(5) and 2.2426(3) Å for 4a and 4b, respectively. To the best of our knowledge, the latter is the shortest Co(\(\mu-\text{H}_2 \))Co motif known to date (2nd shortest: 2.249(1) Å).35b The Co−H bond distances are between 1.51(2) and 1.63(5) Å. The twist angle between the two \(\text{CoN}_2 \) planes is 54.94(7)°. The NCCN bond lengths of BIAN are slightly shorter than in 3 (Figure 1; C−N 1.333(3)−1.349(3) Å; C−C 1.412(3)−1.419(3) Å), yet are in good agreement with the monoanionic BIAN in the complex \([(\text{DippBIAN})\text{Fe}] \) (C−N 1.3367(15) and 1.3393(15) Å; C−C 1.4234(18) Å) which contains a high-spin Fe\(^{II}\) that is antiferromagnetically coupled to BIAN.35 Accordingly, the observed bond lengths of the BIAN ligands in 4 suggest a radical anion state of BIAN which is supported by theoretical studies (vide infra).28,29,37

The sum formula of 4a was further verified by negative-ion mode ESI mass spectrometry (Figure 4, \(m/z = 1121.4 \)). The compound proved highly sensitive as unsealed THF solutions decomposed in an argon-filled glovebox within several hours to a red-brown paramagnetic mixture presumably by formation of \(\text{H}_2 \). Direct evidence of such decomposition came from the gas-phase fragmentation of the mass-selected anionic component of 4a in ESI-MS. Apart from dissociation into its monomeric subunit \([(\text{DippBIAN})\text{Co}]^- \), the dinuclear cobaltate readily underwent dehydrogenation (Figures S25 and S26). Remarkably, multiple dehydrogenation steps were operative (≥7). Most likely, the released H atoms originated from the bridging hydrides and from the isopropyl groups of the \(\text{DippBIAN} \)s. The \(^1\text{H}\) NMR spectrum of 4a displayed a characteristic, broad singlet resonance for the three bridging hydrides at −75.2 ppm (see the Supporting Information for 2D NMR analyses). This remarkable high-field shift may indicate an open-shell structure which was further investigated by temperature-dependent \(^1\text{H}\) NMR studies.38 The chemical shift of this resonance is temperature-dependent and shows a strong upfield shift upon...
decreasing temperature (Figure 5). A similar behavior is observed for the remaining 1H NMR resonances. The observed non-Curie behavior indeed points to an antiferromagnetic coupling of the cobalt centers with the diamagnetic ground state at low temperatures. Signal fitting provided a ratio of the coexisting configurations. Hence, the paramagnetic configurations are 27% of the singlet at 293 K (Figure 5 and SI). The ratio decreased to 0.3% at 193 K ($\Delta E_{\text{triplet-singlet}} = 21.4$ kJ/mol). An effective magnetic moment $\mu_{\text{eff}} = 2.1 \mu_B$ per dimer was determined in solution at 293 K (Evans method, THF-d_8).

The solid-state magnetic behavior of the crystalline sample of 4b was investigated in the 2–250 K range by SQUID magnetometry (Figure 6). The $\chi_M T$ product was 1.76 cm3 mol$^{-1}$ K (or 3.75 μ_B) at 250 K and decreased to almost zero by lowering the temperature, indicating overall antiferromagnetic coupling and a diamagnetic ground state of 4b. The best fit was achieved using a model of four antiferromagnetically coupled centers: two BIAN radical anions with $S = 1/2$ and two $S = 3/2$ cobalt(II) ions. The best fit parameters were the following: $g(\text{BIAN}) = 2.0$ (fixed), $g(\text{Co(II)}) = 2.08$, $J(\text{BIAN-Co}) = -427$ cm$^{-1}$ and $J(\text{Co-Co}) = -17$ cm$^{-1}$.

Additional analyses of the cobaltate 4a include elemental analysis (EA), UV–vis spectroscopy ($C_{\text{CoH}} I_{\text{max}} = 474$ nm, $\epsilon_{\text{max}} = 1200$ mol$^{-1}$ cm$^{-1}$ L), and cyclic voltammetry (THF/nBu_4NPF_6, one reversible reduction was observed $E = -2.4$ V vs FeCl$_3$). The combined data are strongly indicative of a highly unusual electronic structure of the trihydridodicobaltate anion of 4a, which is best described as $[\{(\text{DippBIAN})\}^{-1}$.

Charge distributions are typically less polarized than formal oxidation numbers suggest, this is compatible with a CoII assignment, even though it does not exclude CoI. Importantly, DFT confirms the singlet ground state, this state being both lowest in energy and showing the best agreement with the X-ray crystallographic structure.

Hydrogenation Activities of Complexes 1–4 and Mechanistic Proposal. We evaluated the catalytic activities of the isolated cobalt complexes 1–4 and various precatalyst mixtures in a hydrogenation model reaction (Table 2). The cobaltate complex $[\text{Li(thf)}_{3.5}(\text{DippBIAN})\text{Co(cod)}]$ (1) was...
found to be active for the hydrogenation of 1,5-cyclooctadiene (cod), albeit exhibiting slightly lower activity than the in situ formed catalyst (entry 2). Interestingly, 1 could be further activated by addition of 3 equiv Et₃B (entry 5), which may indicate Lewis acid-assisted catalysis.⁴⁰ The borane could activate the cleavage of H₂ as demonstrated by Peters and co-workers with a borylcobalt complex.⁴⁰a The catalytic inactivity of the corresponding potassium derivative \([\text{K(ths)}\{(\text{DippBIAN})\text{Co}(\text{cod})\}][2]\) (Table 2, entry 6) manifested the observed alkali cation effect during our preliminary optimization experiments (Table 1, entries 1 and 5, and SI).¹⁹ One possible explanation for this effect is an attractive noncovalent cation−π interaction. As mainly an electrostatic interaction, the association free enthalpy (ΔH°) for the alkali metals with benzene follows the trend: Li⁺ > Na⁺ > K⁺. Hence, the alkali cation can stabilize transition states or bind substrates (i.e., alkenes, arenes) in proximity to the catalyst.¹⁹ Moreover, alkali metals are able to tune the reactivity of the ligand. Mazzanti and co-workers reported on ligand- or metal-based reduction of cobalt salophen complexes dependent on the redox activity of the ligand.⁴⁰b The catalytic inactivity of metals are able to tune the redox activity of the ligand. Mazzanti and co-workers reported on ligand- or metal-based reduction of cobalt salophen complexes dependent on the redox activity of the ligand.⁴⁰b The catalytic inactivity of metals are able to tune the redox activity of the ligand. Mazzanti and co-workers reported on ligand- or metal-based reduction of cobalt salophen complexes dependent on the redox activity of the ligand.⁴⁰b

Table 2. Hydrogenations with Isolated Complexes and Precatalyst Mixtures*⁴

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst mixture</th>
<th>cyclo-octene yield [%]</th>
<th>cyclo-octene yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>([\text{Li(thf)}{(\text{DippBIAN})\text{Co}(\text{cod})}][2])</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>([\text{Li(thf)}{(\text{DippBIAN})\text{Co}(\text{cod})}][1])</td>
<td>5</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>([1+3.5\text{ mol % }12\text{-crown-4}])</td>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>([1+3\text{ mol }{\text{Fc}[\text{PF₆}]_3}])</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>([1+9\text{ mol % }\text{Et₃B}])</td>
<td>66</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>([\text{K(thf)}{(\text{DippBIAN})\text{Co}(\text{cod})}][2])</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>([2+3\text{ mol % }{\text{Fc}[\text{PF₆}]_3}])</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>([2+30\text{ mol % }\text{LiBr}+{2.2.2\text{-cryptand}}])</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>([2+30\text{ mol % }\text{LiCl}+3\text{ mol % }18\text{-crown-6}])</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>([2+9\text{ mol % }\text{Et₃B}])</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>([11+9\text{ mol % }\text{Et₃B}+30\text{ mol % }\text{LiBr}])</td>
<td>3</td>
<td>38</td>
</tr>
<tr>
<td>12</td>
<td>([\text{Li(thf)}{(\text{DippBIAN})\text{Co}(\text{µ-H})_3}])</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>([4a+3\text{ mol % }\text{Et₃B}])</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>([4a+1.5\text{ mol % }\text{LiEt₃BH}])</td>
<td>57</td>
<td>43</td>
</tr>
<tr>
<td>15</td>
<td>([\text{DippBIAN})\text{Co}(\text{µ-H})_3}])</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>([3+9\text{ mol % }\text{LiEt₃BH}])</td>
<td>4</td>
<td>29</td>
</tr>
</tbody>
</table>

*Conditions: 0.2 mmol alkene, 0.1 M in THF, 3 mol % cat, 2 bar H₂.⁴

Yields determined by quantitative GC-FID vs internal n-pentadecane: ane = cyclooctane, ene = cyclooctene. "1.5 mol % 4a.⁴b Reduction in the presence of the substrate.

significantly enhanced by further reduction with 0.5 equiv of LiEt₃BH (entries 12 and 14). It may be speculated that the hydridocobaltate anion present in 4a,⁴b (or related derivatives) acts as a catalyst reservoir for mononuclear hydrides as indicated by in situ NMR studies (SI). A catalytic mechanism via multinuclear metal complexes can likely be ruled out (first order in [Co], poisoning studies, SI).²¹ Based on the collected synthetic, spectroscopic, and theoretical data, we propose a homotopic reaction mechanism that involves cobaltate complexes as active catalyst species. Rate acceleration by Lewis acids and an alkali-cation effect were observed.

The observed alkali cation effect was also evident in the more effective stoichiometric hydrogenation of 1 vs 2 (Scheme 6, A). Preliminary explorations of the reactivity of relevant hydrides were performed with 4b as model compound: Protolysis occurred with the strong Bronsted acid HCl in dioxane to give H₂ evolution (2.3 ± 0.1 equiv H₂). In the presence of benzaldehyde, 4b reacted to give 28% benzyl alcohol and 27% pinacol coupling product (Scheme 6B). This may indicate the competing operation of hydride transfer and single-electron transfer processes from 4b. In the absence of dihydrogen, incomplete isomerization of (Z)-stilbene to (E)-stilbene was observed (51%, Scheme 6C). 4a represents a conceivable intermediate in our recently published (BIAN)Co-catalyzed amine-borane dehydrogenation reaction as it affords the same reaction products (borazine, cyclotriminoborane, cyclodiaminoborane, H₂BNH₂-cyclo-B₃N₃H₁₁, polyborazine, and polyaminoborane; SI).¹⁶e

![Scheme 6. Related Reactivity of 1, 2, and 4b](image_url)

CONCLUSION

In summary, this report has established reduced cobalt complexes as competent catalysts in a user-friendly hydrogenation protocol for challenging alkenes under mild conditions. The observed reactivity suggests bidentate BINAs as interesting alternatives to well-established pincer-type motifs possessing comparably high activities in cobalt-catalyzed alkene and imine hydrogenations. Mechanistic studies revealed considerable alkali-cation and Lewis-acid effects. Synthetic, kinetic, and spectroscopic experiments indicate a mechanism involving homotopic cobaltate catalysts. Catallytically relevant cobalt complexes were isolated that document the reduct noninnocence of the BIAN ligand. Especially, the isolation of trihydridocobaltates 4a,b represents a tangible advance over the current state-of-the-art of transition metal hydrides. Their molecular structures show the first reported anionic cobalt complex with bridging hydride ligands. In contrast to the vast majority of reported transition metal hydrides bearing...
multidentate phosphines, cyclopentadienyl, or carbonyl ligands, the high electron density in this complex is stabilized by the redox noninnocent BIAN. It is reasonable to assume that the anion in 4a,b constitutes a catalytically competent off-cycle intermediate of (BIAN)Co-catalyzed (de)hydrogenation reactions.16e

■ ASSOCIATED CONTENT

S Supporting Information

. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.9b01584.

Experimental procedures, analytical and crystal data of compounds, mechanistic studies, and spectra (PDF)

Combined crystal data for (DppBIAN)CoBr2, 1, 3, 4a, 4b with CCDC 1909828, 1909827, 1909830, 1909831, respectively (CIF)

Individual CIFs and reports for (DppBIAN)CoBr2, 1, 3, 4a, and 4b (ZIP)

■ AUTHOR INFORMATION

Corresponding Authors

*E-mail: axel.jacobi@uni-hamburg.de (A.J.v.W.).

*E-mail: robert.wolf@ur.de (R.W.).

ORCID

Konrad Koszinowski: 0000-0001-7352-5789

Bas de Bruin: 0000-0002-3482-7669

Franc Meyer: 0000-0002-8613-7862

Robert Wolf: 0000-0003-4066-6483

Axel Jacobi von Wangelin: 0000-0001-7462-0745

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank Prof. Jürgen Heck, Prof. Peter Burger, and Dr. Dieter Schaarachsdorf for helpful discussions. Technical assistance by Max Völker, Felix Seeberger, and Ursula Otterpohl is gratefully acknowledged. This work was financed by the Deutsche Forschungsgemeinschaft (DFG, JA 1107/6-1, WO 1496/6-1, 1K 2875/8-1), the European Research Council (ERC, CoG Forschungsge- meinschaft (DFG, JA 1107/6-1, WO 1496/6-1, 1K 2875/8-1), the European Research Council (ERC, CoG 401−407. (e) Duckett, S. B.; Newell, C. L.; Eisenberg, R. Observation of New Intermediates in Hydrogenation Catalyzed by Wilkinson’s Catalyst, RhCl(PPh3)3, Using Parahydrogen-Induced Polarization. J. Am. Chem. Soc. 1994, 116, 10548–10556.

(9) (a) Lyaskovskyy, V.; de Bruin, B. Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions. ACS Catal. 2012,
Wangelin, A. Heteroatom-Free Arene-Cobalt and Arene-Iron Complexes. Inocent Bulky Diimine Ligands Derived from Fluorinated 1,4-Diaza-Structures of Homoleptic Nickel and Cobalt Complexes with Non-K.; Burghaus, O.; Sundermeyer, J. Molecular and Electronic Developments in the Coordination Chemistry of Bis(imino)-Mono-, Di-, Tri- and Tetraanions of Dpp-Bian. with Sodium Metal: Crystal Structures of the Sodium Salts of the Trans.

Weigand, J. J.; Wolf, R. Construction of Alkyl-Substituted Complexes: Discussing the Role of Nitrogen.

(29) For average bond distances of BIAN from the literature, see ref 16c: BIAN2+: C–N 1.28, C–C 1.49; BIAN−: C–N 1.34, C–C 1.44; BIAN−: C–N 1.39, C–C 1.40.

(34) It is noteworthy that the reaction needs to be performed in a closed reaction vessel as reported by Finke and co-workers: Laxson, W. W.; Ökzär, S.; Folkman, S.; Finke, R. G. The Story of a Mechanism-Based Solution to an Irreproducible Synthesis Resulting in an Unexpected Closed-System Requirement for the LiBEtH2-Based Reduction: The Case of the Novel Subnanometer Cluster, [Ir(1,5-COD)(μ-H)4], and the Resulting Improved, Independently Repeatable, Reliable Synthesis. *Inorg. Chem. Acta* 2015, 432, 250–257.

(35) Related hydrides: (a) Fryzuk, M. D.; Ng, J. B.; Retting, S. J.; Huffman, J. C.; Jonas, K. Nature of the Catalytically Inactive Cobalt Hydride Formed upon Hydrogenation of Aromatic Substrates. Structure and Characterization of the Binuclear Cobalt Hydride [(Pr₂P(Ph₂)₃PPr₂)(H)₂]Co₂. *Inorg. Chem.* 1991, 30, 2437–2441. (b) [(CPP₂)(μ-H)₂]K. (c) [(CPP₂)(μ-H)]₃K. (d) [(CPP₂)(μ-H)₂]Fe. (e) [(CPP₂)(μ-H)]Fe₂. (f) [(CPP₂)(μ-H)]Fe₃. (g) [(CPP₂)(μ-H)]Fe₄. (h) [(CPP₂)(μ-H)]Fe₅. (i) [(CPP₂)(μ-H)]Fe₆. (j) [(CPP₂)(μ-H)]Fe₇. (k) [(CPP₂)(μ-H)]Fe₈. (l) [(CPP₂)(μ-H)]Fe₉. (m) [(CPP₂)(μ-H)]Fe₁₀. (n) [(CPP₂)(μ-H)]Fe₁₁. (o) [(CPP₂)(μ-H)]Fe₁₂. (p) [(CPP₂)(μ-H)]Fe₁₃. (q) [(CPP₂)(μ-H)]Fe₁₄. (r) [(CPP₂)(μ-H)]Fe₁₅. (s) [(CPP₂)(μ-H)]Fe₁₆. (t) [(CPP₂)(μ-H)]Fe₁₇. (u) [(CPP₂)(μ-H)]Fe₁₈. (v) [(CPP₂)(μ-H)]Fe₁₉. (w) [(CPP₂)(μ-H)]Fe₂₀. (x) [(CPP₂)(μ-H)]Fe₂₁. (y) [(CPP₂)(μ-H)]Fe₂₂. (z) [(CPP₂)(μ-H)]Fe₂₃.