Chandra Position of Galactic Center X-ray Transient Swift J174540.7-290015

Published in:
The astronomer's telegram

Citation for published version (APA):
Chandra Position of Galactic Center X-ray Transient Swift J174540.7-290015

ATel #8746; F. K. Baganoff, L. R. Corrales, J. Neilsen, M. A. Nowak (MIT), N. Rea (Amsterdam, CSIC-IEEC), F. Coti Zelati (Insubria, Amsterdam, INAF-OAB), D. Haggard (McGill), S. Markoff (Amsterdam), G. Ponti (MPE), G. C. Bower (ASIAA), G. P. Garmire (Huntingdon), on behalf of a larger collaboration

Distributed as an Instant Email Notice Transients
Credential Certification: Frederick Baganoff (fkb@space.mit.edu)

Subjects: Radio, Infra-Red, X-ray, Binary, Black Hole, Neutron Star, Transient

Referred to by ATel #: 8793, 8881, 9236, 9551

Swift monitoring of the Galactic Center (Degenaar et al. 2015) detected a new X-ray transient, SWIFT J174540.7-290015, on 2016 February 6 (UTC; ATel #8649). We observed the region with Chandra/ACIS-S twice for 25 ks each beginning at 2016 February 13 08:59:23 and 2016 February 14 14:46:01 (UTC) to continue our monitoring of the GC magnetar SGR J1745-29 (ATel #5222; Pennucci et al. 2015). ACIS-S was operated in single chip (S3), 1/8-subarray mode yielding a frame time of 0.4s. Despite this, the core of the PSF was heavily piled up in the CCD. Filtering on events within the energy range 0.3-8 keV and excluding those within the piled-up core, we calculated the centroid of events within an annulus with inner and outer radii of 2.5â and 9â . The standard deviation of the means in RA and Dec are 0.0145â and 0.0142â . To compute absolute positional errors, we used celdetect to determine the position and uncertainties of SGR J1745-29 and added the uncertainties in quadrature. As a check on the astrometry, we list below the ATCA position of SGR J1745-29 (PSR J1745-2900) from Shannon & Johnston (2013). All uncertainties are 1-sigma. ATCA position of SGR J1745-29 RA (J2000): -29:00:29.818 +/- 0.090â Chandra position of SGR J1745-29 RA (J2000): -29:00:29.82 +/- 0.3260â Chandra position of SWIFT J174540.7-290015 RA (J2000): 17:45:40.664 +/- 0.3263â Dec (J2000): -29:00:15.61 +/- 0.3263â Reynolds et al. (ATel #8649) note two cataloged CXO sources, CXOU J174540.1-290016 and CXOGC J174540.0-290014, that lie just outside Swiftâ s 2.2â error radius (90%). We find that no previous CXO source in the catalog of Muno et al. (2009) is associated with the new transient and we have not detected the source in subsequent Chandra monitoring, until now. We confirm that SWIFT J174540.7-290015 is a previously located source.
unknown transient X-ray source. For the CXO catalog, we designate the new transient as CXOGC J174540.6-290015. The two nearest known X-ray transients, CXOGC J174540.0-290005 and CXOGC J174541.0-290014 (Muno et al. 2005), are currently in quiescent states that would not contaminate the spectrum and flux measured by Swift. AX J1745.6-2901 is the only transient currently bright enough to contaminate the INTEGRAL observation (#8684). The outbursts of SGR J1745-29 and SWIFT J174540.7-290015 within the past three years have added two new faint X-ray transients to the four known to lie within 0.5° of Sgr A*. The rate of discovery of faint X-ray transients within this region since 1999 September 21 (UTC) is 0.37 +/- 0.15 per year, indicating that Swift, Chandra and XMM-Newton monitoring are likely to discover a significant number of new faint X-ray transients in this region over the next decade. ATels #8689 and #8737 report the positions of three ISPI catalog (DeWitt et al. 2010) and one VVV catalog (Minniti et al. 2010) NIR point sources that may be associated with the new transient based on the Swift error circle. ISPI 527175 and 540591 are firmly excluded by our improved Chandra position. ISPI 522271 is disfavored. Both ISPI 575458 and the VVV source lie northeast of the Chandra position with error circles overlapping that of Chandra and of each other. However, an unpublished K-band image taken with the PANIC camera on the 6.5-m Magellan Baade Telescope shows multiple overlapping NIR sources that are spatially coincident with these two sources. High angular resolution NIR imaging with an AO system will be required to cleanly identify the NIR counterpart. A joint timing search of both Chandra datasets found no significant periodicity above 0.9s. References: Degenaar et al. 2015, JHEAp, 7, 137 DeWitt et al. 2010, ApJ, 721, 1663 Minniti et al. 2010, New Astron., 15, 433 Muno et al. 2005, ApJ 622, L113 Muno et al. 2009, ApJ, 181, 110 Pennucci et al. 2015, ApJ, 808, 81, 15 Shannon & Johnston 2013, MNRAS, 435, L29
Effelsberg

5058 On-going radio observations of PSR J1745-2900 at Effelsberg, Nancay, and Jodrell Bank: flux density estimates, polarisation properties, spin-down measurement, and the highest dispersion measure measured.

5053 Detection by Sardinia Radio Telescope of radio pulses at 7 GHz from the Magnetar PSR J1745-2900 in the Galactic center region

5046 Spin-down Measurement of PSR J1745-2900: a New Magnetar

5043 Further radio pulsations from the direction of the NuSTAR 3.76-second X-ray pulsar, and a dispersion measure estimate.

5040 Detection of radio pulsations from the direction of the NuSTAR 3.76 second X-ray pulsar at 8.35 GHz

5037 Swift-BAT monitoring for additional bursts from SGR J1745-29 (Trigger 55491)

5035 Detection of radio pulsations from the direction of the Galactic center Soft Gamma-ray Repeater with Parkes and the GBT

5033 Searches for Dispersed Radio Pulsar Emission from the Sag A* SGR

5032 Chandra localization of the soft gamma repeater in the Galactic Center region

5027 Searches for radio pulsations from the 3.76 second NuSTAR X-ray pulsar in the Galactic centre.

5025 Limits on Radio Frequency Flux Density Changes in Sgr A*

5020 NuSTAR discovery of a 3.76 second pulsar in the Sgr A* region

5016 Continued Swift Monitoring of the Galactic Center Flare

5014 Brightening of Sgr A* at 32 GHz from VLA observations

5013 Possible brightening at 22 GHz of Sgr A*

5011 Swift XRT spectrum of transient X-ray source at Sgr A*'s position

5009 Swift/BAT detection of an SGR-like flare from near Sgr A*

5008 Ongoing X-ray activity from Sgr A*

5006 Large Flare from Sgr A* Detected by Swift

4840 Transient X-ray burster KS 1741-293 active again

4471 1E 1740.7-2942 (the Great Annihilator) enters a low-intensity state

3529 IR counterpart candidates to the transient Swift J174535.5-285921 - UPDATE

3525 Chandra Localization of the Galactic Center X-ray Transient Swift J174535.5-285921

3508 The Galactic center transient Swift J174535.5-285921 has returned to quiescence

3481 IR counterpart candidates to the transient Swift J174535.5-285921

3476 Search for an IR counterpart to the newly discovered transient Swift J174535.5-285921

3472 Swift/XRT discovers a new X-ray transient near the
2770 Galactic center: Swift J174535.5-285921
2770 Swift/XRT detects new outbursts of the galactic center X-ray transients GRS 1741-2853 and XMM J174457-2850.3
1513 Chandra detects Swift J174535.5-290135.6 in a relatively bright state
904 Announcement of the Swift/BAT Hard X-ray Transient Monitor
753 Swift/XRT detection of a transient source in the Galactic Center

ATel #8746: Chandra Position of Galactic Center X-ray Transient Swift J174540.7-290015

[Telegram Index]

R. E. Rutledge, Editor-in-Chief
dfox@astronomerstelegram.org
Derek Fox, Editor
mansi@astronomerstelegram.org
Mansi M. Kasliwal, Co-Editor