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Modeling adaptive response profiles in
a vaccine clinical trial
Dicle Hasdemir1,2* , Robert A. van den Berg3,4, Antoine van Kampen1,2 and Age K. Smilde1,2

Abstract

Background: Vaccine clinical studies typically provide time-resolved data on adaptive response read-outs in
response to the administration of that particular vaccine to a cohort of individuals. However, modeling such data is
challenged by the properties of these time-resolved profiles such as non-linearity, scarcity of measurement points,
scheduling of the vaccine at multiple time points. Linear Mixed Models (LMM) are often used for the analysis of
longitudinal data but their use in these time-resolved immunological data is not common yet. Apart from the
modeling challengesmentioned earlier, selection of the optimal model by using information-criterion-basedmeasures
is far from being straight-forward. The aim of this study is to provide guidelines for the application and selection of
LMMs that deal with the challenging characteristics of the typical data sets in the field of vaccine clinical studies.

Methods: We used antibody measurements in response to Hepatitis-B vaccine with five different adjuvant
formulations for demonstration purposes. We built piecewise-linear, piecewise-quadratic and cubic models with
transformations of the axes with pre-selected or optimized knot locations where time is a numerical variable. We also
investigated models where time is categorical and random effects are shared intercepts between different
measurement points. We compared all models by using Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), Deviance Information Criterion (DIC), variations of conditional AIC and by visual inspection of the
model fit in the light of prior biological information.

Results: There are various ways of dealing with the challenges of the data which have their own advantages and
disadvantages. We explain these in detail here. Traditional information-criteria-based measures work well for the
coarse selection of the model structure and complexity, however are not efficient at fine tuning of the complexity
level of the random effects.

Conclusions: We show that common statistical measures for optimal model complexity are not sufficient. Rather,
explicitly accounting for model purpose and biological interpretation is needed to arrive at relevant models.

Trial Registration: Clinical trial registration number for this study: NCT00805389, date of registration: December 9,
2008 (pro-active registration).

Keywords: LMM, Linear mixed model, Vaccine, Adjuvant, AIC, BIC, DIC, Conditional AIC, Random effect selection,
Model selection, Quantification of individual differences, Immunology
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Background
Antibody levels are indicative of an individuals’ adaptive
immune response against a specific antigen. In vaccine
clinical trials, these adaptive response readouts are col-
lected in time following vaccine interventions. Such inter-
ventions with a certain vaccine induce a time-resolved
change in the adaptive response outcome; individuals gen-
erally exhibit distinct patterns of immune response in time
or reach different levels of protection.
Analyzing and modeling these adaptive response pro-

files can serve several goals. One of the goals might
be to understand the differences in treatment effects,
such as the administration of the vaccine using differ-
ent adjuvants. In that case, the interest is in the differ-
ences between groups of subjects which have received
different adjuvants. Another goal of such a study might
be to establish the magnitude of inter-individual varia-
tion of subjects within groups. A third goal of model-
ing such data can be to quantify individual differences
with the purpose of relating those differences to several
external variables. In this paper, we will focus on this
latter goal.
Often, the inter-individual differences are associ-

ated with characteristics of the subjects’ early immune
response whichmanifest themselves in the early days after
the vaccination or already in the baseline states of the
immune response components. Future vaccine research
can highly benefit from discovering early/innate response
- adaptive response associations, since these can guide
mechanistic studies ultimately leading to more efficacious
vaccines and better vaccination schemes. To do this, we
have to find good estimates of the adaptive response in
the individuals, such that at a later stage these can be
associated with early/innate response. A good example
of early response is the change in gene expression levels
after vaccination. Although modeling such an associa-
tion can also be done simultaneously, in this paper we
focus on finding good estimates of the adaptive response
read-outs (hence quantitative measures describing indi-
vidual responses) as a first step. These estimates can then
easily be associated with gene expression data (or yet
other covariates) in subsequent analyses as mentioned
above.
The need for such estimates is due to variation in

clinical data, which can be very high. Data is typi-
cally collected once per time point per individual and
the measurements are heavily affected by factors such
as the time of the day and temperature [1]. There-
fore, inter-individual differences arising from such factors
can wrongly be attributed to the study factors under
investigation. Reducing such unwanted variability can be
performed by modeling all individuals collectively and
exploiting the shrinkage property of Linear Mixed Mod-
els (LMMs). In an LMM, model coefficients consist of

a fixed part which is the same for all the individuals
(and can, e.g., be used for estimating treatment effects)
and a random part which can model the individual dif-
ferences. Therefore, the model structure allows retaining
inter-individual differences in the random coefficients in
a robust manner while similarities across individuals are
attributed to the fixed part. This approach covers all indi-
viduals at once, hence it is not restricted to one individual
per model.
LMMs provide a suitable framework for systematic

identification and quantification of inter-individual differ-
ences. They have already been extensively used in similar
experimental setups of growth curve analysis [2] which
covers the analysis of longitudinal data. LMMs have also
been used previously for the analysis of data originat-
ing from vaccine studies [3–5]. In these studies, they
were mainly used for prediction of late individual adaptive
responses following vaccination (persistence of response).
Nevertheless, the use of mixed models in the vaccine field
is still far from standard practice. Although principles of
growth curve analysis prove useful in the analysis of clin-
ical data for vaccine research [6], specific challenges in
modeling adaptive response profiles stem from the infre-
quent and irregular sampling through a highly dynamic
regime with multiple interventions. In this paper, we give
guidelines for application of LMMs under such restric-
tions on the data, where we will explore different types of
LMMs that differ in the way they model the factor time.
We also discuss model selection and - in that context -
the balancing of formal statistical measures and biological
interpretation.
The data used in this study comprises antibody read-

outs in response to vaccinations with HBsAg surface
antigen mixed with five different adjuvants (See [7] for
more details of the specific data set). Antibody profiles are
shown in Fig. 1 and are the focus of our paper. The five
adjuvant groups do not only exhibit distinct group pat-
terns in time but also different degrees of variability across
individual responses. The time-resolved responses can be
roughly divided in three segments excluding delays: i) a
rising response after the first vaccination (between Day 0
(denoted as PRE) and Day 30), ii) a rising response after
the second vaccination (between Day 30 and Day 44), iii)
a decaying response after Day 44. A biological interpreta-
tion would then be in terms of rates of responses during
those segments, both at a group and individual level.
Statistical measures that we involve in our paper include

Akaike Information Criterion (AIC) [8], Bayesian Infor-
mation Criterion (BIC) [9], Deviance Information Cri-
terion (DIC) [10], conditional AIC [11] and a variant
of conditional AIC [12]. These different measures are
necessary since we want to assess model performance
both regarding the fixed effects as well as the random
effects.
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Fig. 1 Time profiles of antibody (Ab) levels. Each Ab-profile (plotted in a different color from the gradient blue color scale) denotes a subject.
The y-axis denotes the antibody levels on log10 scale. The x-axis indicates the measurement points: prior to vaccinations (PRE), Day 30 (PI(D30)), Day
44 (PII(D44)), Day 60 (PII(D60)), Day 180 (PII(D180)) and Day 360 (PII(D360)). PI and PII show the measurements after the first and second vaccinations,
respectively. The five panels correspond to different adjuvants (AS01B, AS01E, AS03A, AS04 and Alum) and each group consists of different subjects.
The bird’s eye view on Ab levels presented here helps to visualise the increased divergence between the individual responses observed especially in
the AS04 and Alum groups

Methods
Models
We chose to study the model forms that would be able to
address specific characteristics of the data. These included
(i) high levels of inter-adjuvant variation with respect to
the time point of the maximum response, (ii) the over-
all time-resolved response pattern, (iii) increased inter-
individual variation in some adjuvant groups, (iv) infre-
quent sampling towards the end of the time trajectory and
(v) including the interventions (See Fig. 1).
The model equations used in this study are given in

Table 1. The choice of the models presented in Table 1

is the following. Choosing an appropriate functional form
for the fixed effect of time is the primary step in mod-
eling longitudinal data in a mixed models framework. In
a typical vaccine clinical study in which there are mul-
tiple interventions (vaccinations) the immune response
does not follow a simple linear behavior with a single
slope in time. One way to deal with this is to employ
non-linear regression. In that approach, it is assumed that
an exact mathematical formula defines the underlying
immune response process. This provides us with biologi-
cally interpretable parameters but that approach is prone
to problems associated with model convergence [13] and



Hasdemir et al. BMCMedical ResearchMethodology          (2020) 20:191 Page 4 of 13

Table 1 Model equations

2-segment piecewise (PW) linear Yij = β0i + β1i .tj + β2i .(tj − tKNOT )+ + εij

β0i = γ00 + ζ0i

β1i = γ10 + ζ1i

β2i = γ20 + ζ2i

i: subject index, j: time index

(tj − tKNOT )+ is a derived variable which becomes (tj − tKNOT ) only when tj > tKNOT . Otherwise it is 0.

γ00 and ζ0i are fixed and random intercepts

γ10 and ζ1i are fixed and random first segment slopes

γ20 and ζ2i are fixed and random incremental slopes

3-segment PW linear Yij = β0i + β1i .tj + β2i .(tj − tKNOT1)+ + β3i .(tj − tKNOT2)+ + εij

β3i = γ30 + ζ3i

γ30 and ζ3i are also fixed and random incremental slopes

Cubic Yij = β0i + β1i .tj + β2i .t2j + β3i .t3j + εij

γ00 and ζ0i are fixed and random intercepts

γ10 and ζ1i are fixed and random first order coefficients

γ20 and ζ2i are fixed and random second order coefficients

γ30 and ζ3i are fixed and random third order coefficients

2-segment PW quadratic Yij = β0i + β1i .(tj − tKNOT )+ + β2i .t2j + β3i .(tj − tKNOT )2+ + εij

γ00 and ζ0i are fixed and random intercepts

γ10 and ζ1i are fixed and random first order coefficients

γ20 and ζ2i are fixed and random second order coefficients

γ30 and ζ3i are fixed and random incremental second order coefficients

time as a categorical variable Yij = γ00.D0 + (γ10 + ζ1i).D1 + (γ20 + ζ2i).D2 + (γ30 + ζ2i).D3 + (γ40 + ζ3i).D4 + (γ50 + ζ3i).D5 + εij

γ00,10,20,30,40,50 are fixed coefficients

ζ1i,2i,3i are random coefficients shared between time points

D0,1,2,3,4,5 are dummy indicator variables for time points

requires solid assumptions about the underlying model
and therefore is not practical from a data analysis point
of view. Furthermore, it is not clear how to model the
interventions.
Polynomial time effect models are linear in the param-

eters in contrast to the non-linear regression approach.
If we assume that the change in time can be approx-
imated with small increases and decreases of constant
slopes in small time intervals, a piecewise linear regres-
sion approach would suffice. Also cubic models is a viable
alternative. Another alternative encountered in vaccine
research is using time as a categorical variable. Models
developed along these lines are shown in Table 1 and
may serve the purpose of this study. They are approxi-
mately ordered in increasing complexity and it is expected
that the more complex model increases model fit. This
comes, however, at the cost of unstable parameter esti-
mates and decreased biological interpretation. Hence, we
had to strike a balance and that is the main theme of
this paper. We used several information-criterion-based
models to judge the statistical performance of the models.

Estimation and validation
We fitted the models by maximizing the likelihood (ML)
of the parameters given the data unless otherwise stated.
In some cases we used maximizing the residual likelihood
(REML) because that method gave better results for esti-
mating the random effects for some of the models; we will
indicate this in the text. We have used plots to illustrate
fit of the fixed and random effects. Biological interpreta-
tion was judged according to the principles outlined in the
introduction.
The well known AIC is based on the marginal likeli-

hood value and was originally developed considering fixed
effect models. However, when the focus is on the inference
of random effects, calculating the effective degrees of free-
dom is not straightforward. Therefore, different measures
have been proposed for random effects selection. The
Bayesian-rooted Deviance Information Criterion (DIC)
[10, 14] or information criteria based on conditional like-
lihood [11] are the most referenced in the literature. This
is the reason why we included these measures next to
the marginal AIC in our study. We have also included
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Bayesian Information Criterion due to its well known
advantages in punishing complexity.
We chose to make a model per adjuvant group and

not across all groups simultaneously. The latter would
amount to using dummy variables to encode the differ-
ent groups and subsequently fit an overall model. Due to
the considerable differences of effects between the groups,
interaction terms describing these differences would be
needed in such an approach. This would complicate the
analyses considerably and we therefore decided to model
each group separately, since the sample sizes per group
were large enough. Consequently, the reported AIC values
cannot be compared across groups, only within groups,
because within groups the different models are fitted on
the same data whereas this is not the case between groups.
We carried out all calculations using R [15] with exten-

sive use of the lme4 package [16] for fitting the models.
We used also cAIC4 package for the calculation of the
corrected conditional AIC. All scripts can be provided
through communication with the authors.

Results
Piecewise linear models with fixed knot location across all
groups
The antibody levels data in this study are roughly char-
acterized by an increase due to vaccination and a subse-
quent decrease in time (Fig. 1). Therefore, the simplest
functional form we considered was a 2-segment piece-
wise form with a fixed knot location. The two segments
were connected at the day of maximum response (Day
44 based on prior knowledge). Consequently, the first

segment covers PRE to Day 44, while the second segment
covers Day 44 to Day 360.
Visual inspection of the 2-segment model showed that it

performed relatively well in the first three adjuvant groups
(AS01B, AS01E, AS03A). This is rather expected because
most of the individuals treated with these adjuvanted vac-
cines don’t experience a delay in response after the first
vaccination (Fig. 1). However, even in these groups the
measurements at Day 30 were consistently overestimated
because this model structure cannot reflect the difference
between the rates of antibody level increase after the first
and second vaccination. This resulted in AIC’s ranging
from 827 to 1254 (see Table 2 row 1).

Piecewise linear models with optimized knot locations
With a grid-search we found that the best 2-segment
PW model fits for the AS01B, AS01E and AS03A groups
located the knot (and hence the time of maximum
response) between Days 45-48. For AS04, this location
was around Day 57 and for the Alum group, it was around
Day 75 (see Table 2 row 3 and Table S1). The AIC’s
improved well for the AS04 and Alum groups unlike the
other groups compared to the respective AIC’s with fixed
knot models (Table 2 rows 1,3). That can also be seen from
the fact that the knot optimization does not change the
original fixed knot location Day 44 much for the AS01B,
AS01E and AS03A groups.
We focused further on the AS04 and Alum groups

because they benefited the most from knot optimization
for the 2-segment models we discussed in the previous
paragraph.We used a 3-segment linear PWmodel for that

Table 2 Marginal AIC values of models where time axis is numerical. In the case of models with optimized knot location(s), we
show the AIC’s of models with the lowest AIC amongst models of the same complexity with different knot locations. All AIC’s
calculated in this case can be seen in the Supplementary Tables and are calculated using ML estimation. The cells with an NA show
unbuilt models. This is because knot optimization in 2-segment first order polynomial models of these adjuvants did not result in much
gain, unlike the last two adjuvants (see first and third rows), therefore we skipped knot optimization in the 3-segment models for those.
Models in the last two rows were again built for all adjuvants due to their expected good performance

Fixed Effect Struc-
ture

Random Effect Structure Model specification Adjuvant

AS01B AS01E AS03A AS04 Alum

2-segment 1st

order polynomial
2 slopes knot at Day 44 1179.27 1228.55 1189.45 1254.54 827.64

3-segment 1st

order polynomial
3 slopes knots at Days 30 & 44 767.99 796.35 723.94 865.89 675.69

2-segment 1st

order polynomial
2 slopes knot optimized 1175.51 1223.95 1179.99 1216.55 784.10

3-segment 1st

order polynomial
3 slopes knots optimized NA NA NA 865.89 669.64

3rd order polyno-
mial

all degrees except intercept x-axis transformed 1385.02 1389.77 1344.64 1327.85 822.13

2-segment 2nd

order polynomial
all degrees except intercept x-axis transformed, knot optimized 1189.33 1227.23 1181.72 1210.15 765.78
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Fig. 2 Population estimates for the 2-segment and 3-segment PW linear models with a-priori fixed knot locations. Black lines show the
time profile (interconnected data points) of an individual. Red and blue lines (estimates interconnected at the measurement points) show the
population estimates obtained by the 2-segment and 3-segment PW linear models with a-priori fixed knot locations. These 5 individuals are typical
examples of their adjuvant group. Therefore, the population estimates obtained by the models (time profile prediction obtained by using only the
fixed part of the model) should reflect the example individual time profile

group with again a grid search but now for two knot loca-
tions (see Tables S2 and S4). Our grid search revealed that
the optimal knot locations were around Days 39 & 42 and
Days 33 & 45 for AS04 and Alum respectively. The mod-
els were fitted using REML during the grid search because
that estimation method gave better performance than ML
in finding the optimal knot locations. After having found
these optimal knot locations, the models were refitted
using ML (given those optimized knot locations) to make
the marginal AIC results (see Table 2) comparable.
The AIC of the optimal Alum model was 669 which

slightly improved on the fixed knot location 3-segment
linear PW model (AIC=675). The AIC of the AS04 model

did not improve at all on the respective fixed knot model
(Table 2 rows 2,4). The values we obtained show that
models did not improve with knot optimization in the
3-segment models unlike the previous 2-segment mod-
els. This is apparent also from the visualization of the fits
(Fig. 3).

Cubic and piecewise quadratic models
A third order polynomial appears to be a priori a rea-
sonable functional form of the time effect. By includ-
ing the third order term also in the random effects, we
should be able to capture also some of the inter-individual
dynamic response differences. However, the best fits of
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Fig. 3 Selected fits from the Alum group with optimized knot locations for the 3-segment first order models. Each panel represents an
individual from the Alum adjuvant group that was selected for demonstrative purposes. Red lines indicate the model fit and the black lines connect
the measured data points. Individuals 160 and 420 are examples whose final line segment, starting from D45, still show an increasing response due
to insufficiency of the model structure used. Individual 449 is an example of a good model fit. Overall, the graph shows inter-individual variation in
the Alum group

this form exhibited a large decrease and subsequent
increase between D180 and D360 (data not shown). One
would not expect this from the underlying biology. In this
time interval, we only expect a decay or stabilization in the
response. These fits occurred due to infrequent sampling
around this time interval. A square root transformation of
the time axis may solve this issue by accounting for a more
even sampling frequency.
Third order polynomial regression with the time axis

square-root transformation can to some extent model
dynamic differences and maximum response points
between adjuvant groups and model as well prolonged
delays in the initial phase (Fig. 4). However, it failed to
model steep increases well as reflected both visually and
also in the AIC values which became worse or improved
only slightly (see Table 2 row 5) compared to the basic
2-segment linear fixed knot models. An important obser-
vation from Fig. 4 is the steep decrease of the model that
takes place after the end of the first year.
AIC-wise all adjuvant quadratic piecewise models

improved on the cubic models when a 2-segment
quadratic form was used. For the AS04 and Alum groups,
the AICs were lower also than the 2-segment PW models
(Table 2). On top of that the piecewise quadratic mod-
els successfully captured the subtle dynamic differences
between individuals (see Fig. 5). However, like in the cubic
case, this was achieved only after the transformation of the

time axis, which makes the interpretation of the parame-
ters difficult. In addition to that, AICs were poorer than
the 3-segment PWmodels which shows that the complex-
ity brought by adding quadratic terms were not needed
from the statistical point of view. Visual inspection of the
models, however, support the biological plausibility of the
higher order terms indicating the discrepancy between
statistical and biological model selection criteria.

Time as categorical variable
Another solution to account for evenmore subtle dynamic
differences is to include time not as a continuous but as a
categorical variable. This is the ultimate level of flexibility
of modeling (fixed) time effects. Its advantage compared
to a quadratic piecewise function is that the time axis does
not have to be transformed. With time as categorical vari-
able in the fixed effects, the random effect strusture can
be modeled in different ways with increasing complex-
ity. The simplest random effect structure would give one
random intercept per person across all time points simul-
taneously, whereas the most complex structure would
allow a random intercept per time point per person. The
most complex random effect structure would absorb all
degrees of freedom (perfect fits) and does not allow for the
shrinkage effect to take place. Hence, we restricted some
of the time points to share the same intercept instead of
a separate intercept per time point. Determining which
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Fig. 4 Selected cubic model fits of individuals from the Alum group. Each panel represents an individual from the Alum adjuvant group that
was selected for demonstrative purposes. Red lines indicate the model fit and the black lines connect the measured data points. The model is
inadequate to fit the steep increase in response for individuals 187 and 343. The model is able to correctly fit the prolonged delay in response
shown for individuals 386 and 518

time points to lump together in this way pointed again
at the necessity of a detailed analysis of the trade-off
between model complexity and biological interpretability.
We used conditional AIC, DIC and BIC to judge model

performance in addition to the marginal AIC, as we were
interested (also) in the random effects and those have
been proposed in the literature for this specific purpose
[10, 11].
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Fig. 5 Selected fits of individuals fits from the AS04 group with quadratic piecewisemodels. Each panel represents an individual from the
AS04 adjuvant group that was selected for demonstrative purposes. Red lines indicate the model fit and the black lines connect the measured data
points. Individuals 181, 309 and 658 are examples where both steep increases and slight decreases with different maxima across individuals are
handled well by the model. Individual 322 shows a case in which a prolonged delay was handled well
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The optimal model selected based on all measures was
almost always the most complex model (Tables S6, S7,
S8, S9 and S10). One exception to that is for the Condi-
tional Corrected AIC measure for AS01E model selection
(Table S10). However, we do not consider it an advan-
tage to use this measure over the others since in general
this measure also followed the same trend with others.
Another exception is that the model that was chosen for
AS03A adjuvant group by BIC aggreed with our final
model selection (Table S8). In this case, BIC was success-
ful in penalizing the complexity sufficiently. However, that
did not hold in all cases and therefore, we can’t advise
relying solely on BIC for model selection either.
We did not test models with a random intercept at t0

due to very small inter-individual variation at that specific
time point. Table 3 shows the Conditional AIC [11] values
of the models with the smallest AIC and the competing
models with the closest AIC to it (for a more detailed
account, see Table S7). Very small AICs and the perfect
model fits with the most complex model in the AS04 and
Alum adjuvant groups (even negative AIC’s!) were due to
the fact that all individuals were at the same level at t0 in
these groups. Therefore, a model with different random
intercepts at each time point except t0 is practically of such
a high flexibility level that the model is not meaningful
anymore (for a plot of the fit of these models, see Fig. S1).
For moderating the trade-off between complexity and

biological interpretability, we then used an alternative
approach based on tracking the model fit and complexity
in the light of biological prior information. Our approach
includes a measure of model fit like all information cri-
teria, namely normalized sum of squared residuals, and a
penalization method for complexity. In our penalization
framework, we allow an increase in the complexity of the
model only if the increase in fit is relatively high compared
to the previous less complex model in the series. During
this process, we also are very cautious in obtaining bio-
logically interpretable model coefficients in terms of the
three qualitatively different segments as discussed earlier.
Following this protocol, we first plotted the degree of fit

as in Fig. 6. The figure shows how adequate the model fit
is at random intercept models with decreasing complexity
(from left to right in each panel). A striking observation

from this figure is as follows: Models with shared inter-
cepts at either t2 and t3 (e.g. the third from the left in each
panel) or t4 and t5 (e.g. the fifth from the left in each panel)
resulted in very good fits (see also row 2 of Table 3). Fur-
thermore, when both shared intercepts were used (e.g. the
tenth from the left), the model still gave comparably good
fit despite of a loss in flexibility. We therefore concluded
that the model which imposes both shared intercepts was
a plausible model.

Discussion
Piecewise linear models with fixed knot location across all
groups
The functional form with two segments allowed us to use
the time variable in its original units (days) and therefore,
biological interpretation of the two slopes were straight-
forward: the first segment describes the overall response
after vaccination and the second segment the long term
response. Moreover, if further fixed predictors other than
time are simultaneously added to the model (such as
cytokine levels measured as part of the early response),
interpretation of these additional effects would be easier
with such simple model structures (such as the effect of
cytokines on the intercept or on the first slope).
To account for the over-estimation problem with two

segment models, a 3-segment piecewise (PW) linear form
was used with the first knot being at Day 30 (administra-
tion of the second vaccination) and the second one at Day
44. The 3-segment PW linear form was sufficient in mak-
ing the distinction between the different rates of increase
after the two vaccinations. Especially for the AS04 and
Alum adjuvant groups, this is an improvement since it
can model the delay in response which starts at Day 30.
The improvement in the fit between the 2-segment and 3-
segment models can be seen in Fig. 2 and is supported by
a significant drop in the AIC’s (see Table 2 row 2).

Piecewise linear models with optimized knot locations
Not all adjuvant groups shared the same key character-
istics in terms of their adaptive response. Especially the
maximum antibody response for AS04 and Alum was
often observed at later time points in comparison with
the other adjuvants. For several individuals the maximum

Table 3 Conditional AIC values of the categorical models [11]. The abbreviations used for the model form denote the random
intercepts included in the model. For example, t1 denotes a random intercept specific to the first time point whereas t45 denotes a
random intercept which is common in the fourth and fifth time points

AS01B AS01E AS03A AS04 Alum

model with the smallest AIC model form t1, t2, t3, t4, t5 t1, t2, t3, t4, t5 t1, t2, t3, t4, t5 t1, t2, t3, t4, t5 t1, t2, t3, t4, t5

AIC -430.71 48.14 139.24 -8176.82 -6394.57

model with the second smallest AIC model form t1, t2, t3, t45 t1, t23, t4, t5 t1, t2, t3, t45 t1, t23, t4, t5 t1, t2, t3, t45

AIC -81.92 55.35 196.20 213.96 193.40
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Fig. 6 Model fit for all groups. The y-axis shows the normalized
sum of squared residuals from the fitted data for all groups separately.
The value is always normalized to the sum of squared residuals from
the first model of each panel. The x-axis shows the models with
random point-wise intercepts. For example, model t12+t3+t4+t5
shows a model with no random intercept at t0, a shared random
intercept at t1 and t2, and different intercepts at t3, t4 and t5. The first
model is always the most flexible model with separate random
intercepts for t1, t2, t3, t4 and t5

response even occurred at Day 180. The first step in
reflecting such differences in response dynamics between
individuals vaccinated with different adjuvants is to build
a separate model (with different knot locations) per adju-
vant group.

Another biological expectation that we wanted our
models to capture was that the time point of maximum
response was most likely not to coincide with a certain
measurement point. This time point may be in-between
twomeasurement points and this will also differ across the
adjuvant groups. To be more specific, it varies even across
individuals within the same group. To account for the dif-
ferences between the adjuvant groups, we fitted a series
of models with different knot locations and identified the
optimal knot locations with a time-grid for the fixed part
of the model.
While the optimized knot locations clearly show

that for the last two groups the time of maximum
response was delayed, one should still be cautious with
its interpretation because the model structure cannot
describe the differences between maxima of the individ-
ual profiles within the groups. Especially in the Alum
group, the individual differences in this respect are
very large.
We have to be careful that a change in the knot locations

brings a change in the interpretation of the parameters.
For example in the Alum group, very low estimated slopes
of the first line segment show the delay in the response.
The slopes of the second line segment correspond to the
rate of increase in the response whereas the final seg-
ment is not necessarily a decrease in the response contrary
to the AS01B, AS01E and AS03A adjuvant groups (See
example individuals in Fig. 3). Another important obser-
vationmade regarding both Alum and AS04 groups is that
many candidate knot locations resulted in comparable
model fits due to the increased inter-individual variation
(Tables S2, S3 and S4).
We conclude that inter-group differences can be mod-

eled to some extent by using optimized knot locations,
leading to a differentiated interpretation of the model
parameters. Irrespective of the exact knot locations, 3-
segment models have the smallest AIC’s in all adjuvant
groups and, therefore, have to be preferred over the other
models statistically. However, biological expectations on
the general dynamic response profiles (which should be
more smooth) and the need of describing inter-individual
differences better indicated that other model forms might
be suitable.

Cubic and piecewise quadratic models
Contrary to the higher AIC’s (see Table 2 row 5), the
cubic functional form is more biologically relevant than a
piecewise linear approach. The reason is that in a piece-
wise linear approach, we assume a fixed slope in certain
time intervals. However, when higher order polynomials
are used, we allow smoother decrease after the maximum
response point due to lack of intervention in that spe-
cific time frame which seems a more reasonable behavior.
However, a major drawback associated with the approach
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is that the time axis transformationmakes biological inter-
pretation more difficult because rates of change are now
expressed in terms of square-root of time.
It is also possible to capture more subtle important

dynamic properties which the current model failed to
do. Such an important dynamic feature is the character-
istics of the antibody level increase. The slow increase
(sometimes even with a delay in response) after the first
vaccination and the relatively faster increase after the sec-
ond vaccination can be better modeled with a concave
upward increase, which tends to become more apparent
later in time. Modeling such a concave upward increase
together with an appropriate delay in time brought the
necessity of using piecewise higher order polynomials.
We used second order polynomial piecewise regression
for this purpose. A piecewise quadratic functional form
requires the selection of the optimal knot just like the
piecewise linear regression. However, this time the knot is
not restricted to be the time of maximum response as a
result of the quadratic behavior of themodel, which allows
a maximum to occur before of after the knot (Fig. 5).

Time as categorical variable
As shown in the results section, the models selected by
formal selection criteria were the most complex mod-
els that could be obtained and a biological interpretation
along the lines of the three segments (first rise, second
rise and long term effect) were very difficult. Moreover,
they were far from serving as reasonable models with an

observable shrinkage effect. In other words, none of them
were successful in penalizing complexity. These obser-
vations showed that there might be cases that render
the proposed information-criterion-based measures for
optimal random effect selection insufficient.
Our biologically-guided model selection approach

raised less complex models as adequate. For the model
selected by this approach, the biological meaning of the
random parameters make perfect sense and corresponds
nicely with the earlier mentioned three phases in the
response: after the first vaccination, in the early phase
after the second vaccination and in the late phase after
the second vaccination, for the random intercepts at t1,
t2,3 and t4,5, respectively. Visual inspection of the plots of
this model (Fig. 7) show that the selected model is reason-
able (see also the AIC values in Table S6 for a comparison
with previous models which considered time as contin-
uous). We should note that this level is still very flexible
and therefore, the shrinkage effect is less apparent com-
pared to the previously discussed model structures which
consider time as a continuous variable.

Conclusions
In this paper, we presented a detailed analysis of how dif-
ferent models can be used in linear mixed modeling of
adaptive response profiles in clinical vaccine trials which
are typically characterized by infrequent and irregular
sampling through a highly dynamic regime with multi-
ple interventions. To account for infrequent sampling, we
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Fig. 7 Selected categorical model fits for four individuals from the Alum group. Red lines indicate the model fit and the black lines connect
the measured data points. Individual 315 shows a too perfect fit. Similarly, the other individuals still show very good fits, much better than the
numerical models
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started with very simple models and increased complexity
step by step. To account for irregularity in the time axis,
we studiedmodel formswith time axis transformation and
model forms which consider time as a categorical variable.
Our emphasis was in obtaining good estimates of the

individual differences by the LMMs to use those esti-
mates in subsequent models of innate/early response and
adaptive response associations. This would provide us
with a good way of modeling all subjects collectively and
therefore obtaining correct interpretations of the inter-
individual variation in the data. We sought model forms
that were complex enough to tackle issues in the data.
At the same time, we opted for models that were simple
enough to result in biologically interpretable parameters.
We have concluded that traditionalmarginal AIC is a good
selection measure of fixed effect terms at a coarse level.
However, success of measures previously proposed for the
fine tuning of random effects, such as variants of condi-
tional AIC and DIC in selecting biologically interpretable
models were problematic and, therefore, adding biological
information in the selection process is critical. Ultimately,
we based our model selection on penalizing the model fit
visually in the light of prior biological information.
For the current data, we tend to prefer the model with

time as categorical variable and with the restrictions on
the random effects as shown in Fig. 7. This seems to be the
best compromise between fit and interpretability for this
data.
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