Inoculating Relevance Feedback Against Poison Pills

Dehghani, M.; Azarbonyad, H.; Kamps, J.; Hiemstra, D.; Marx, M.

Publication date
2016

Document Version
Final published version

Citation for published version (APA):
Inoculating Relevance Feedback Against Poison Pills

Mostafa Dehghani1 Hosein Azarbonyad2 Jaap Kamps1
Djoerd Hiemstra1 Maarten Marx2
1Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands
2Informatics Institute, University of Amsterdam, The Netherlands
{dehghani,h.azarbonyad,kamps,maartenmarx}@uva.nl,d.hiemstra@utwente.nl

1. INTRODUCTION

Relevance Feedback (RF) is a common approach for enriching queries, given a set of explicitly or implicitly judged documents to improve the performance of the retrieval. Although it has been shown that on average, the overall performance of retrieval will be improved after relevance feedback, for some topics, employing some relevant documents may decrease the average precision of the initial run. This is mostly because the feedback document is partially relevant and contains off-topic terms which adding them to the query as expansion terms results in loosing the retrieval performance. These relevant documents that hurt the performance of retrieval after feedback are called “poison pills”[2,3]. In this paper, we discuss the effect of poison pills on the relevance feedback and present significant words language models (SWLM) as an approach for estimating feedback model to tackle this problem.

Significant words language models are family of models [1,3] aiming to estimate models for a set of documents so that all, and only, the significant shared terms are captured in the models. This makes these models to be not only distinctive, but also supported by all the documents in the set. To do so, SWLM assumes that terms in the each document in the set are drawn from mixture of three models: 1. General model, representative of common observation, 2. Specific model, representative of partial observation, and 3. Significant Words model, latent model representing the significant characteristics of the whole set. Then, it tries to extract the significant words model.

2. POISON PILLS AND ANTIDOTES

We investigated the effect of poison pills on relevance feedback. To do so, for each topic with more than ten relevant documents, we add them one by one, based on their ranking in the initial run, to the feedback set and keep the track of the change in the performance of the feedback run after adding each relevant document to the feedback set compared to the feedback run without its presence.

To evaluate the robustness of different systems against bad relevant documents, we define a variant of Robustness Index (RI) to be applicable in the document level instead of topic level. For a set of relevant documents, D_r, the RI measure is defined as: $RI(D_r) = N^+ - N^- + \lambda_d,g$ where N^+ and N^- denote number of helpful and harmful relevant documents, respectively. $|D_r|$ is total number of relevant documents. Higher values of $RI(D_r)$ means more robustness. Table1 presents the $RI(D_r)$ of different systems on different datasets. As can be seen, SWLM is strongly robust against the effect of bad relevant documents in all datasets.

Employing SWLM enables the feedback system to control the contribution of feedback documents and prevents their specific or general terms affect the feedback model. Figure1 shows how using SWLM empowers the feedback system to deal with the poison pills.

1This is an extended abstract of Dehghani et al. [3].

\begin{table}[h]
\centering
\begin{tabular}{ |c|c|c|c|c|c|c|c| }
\hline
Dataset & SMM & DMM & RM3 & RM4 & RMM & MEDMM & SWLM \\
\hline
Robust04 & 0.8663 & 0.7841 & 0.8716 & 0.8681 & 0.8843 & 0.8914 & 0.9319 \\
WT10G & 0.8504 & 0.8190 & 0.8783 & 0.8961 & 0.8990 & 0.9082 & 0.9583 \\
GOV2 & 0.8456 & 0.8062 & 0.8809 & 0.8519 & 0.8910 & 0.8801 & 0.9386 \\
\hline
\end{tabular}
\caption{Robustness of different systems against bad relevant documents based on $RI(D_r)$ measure.}
\end{table}

3. CONCLUSIONS

So, SWLM inoculates the feedback model against poison pills by automatically determining whether adding a specific relevant document to the feedback set hurts the retrieval performance for a specific topic or not and controls its effect in the feedback model.

References
\begin{thebibliography}{9}
\end{thebibliography}