Advancements in effect-based surface water quality assessment

DOI
10.1016/j.watres.2020.116017

Publication date
2020

Document Version
Final published version

Published in
Water Research

License
CC BY-NC-ND

Citation for published version (APA):
Advancements in effect-based surface water quality assessment

M.L. De Baat a, *, R. Van der Oost b, G.H. Van der Lee a, N. Wieringa a, T. Hamers c, P.F.M. Verdonschot a, d, P. De Voogt a, M.H.S. Kraak a

a Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
b Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
c Department of Environment & Health, Vrije Universiteit Amsterdam, the Netherlands
d Wageningen Environmental Research, Wageningen, UR, the Netherlands

ABSTRACT

Legally-prescribed chemical monitoring is unfit for determining the pollution status of surface waters, and there is a need for improved assessment methods that consider the aggregated risk of all bioavailable micropollutants present in the aquatic environment. Therefore, the present study aimed to advance effect-based water quality assessment by implementing methodological improvements and to gain insight into contamination source-specific bioanalytical responses. Passive sampling of non-polar and polar organic compounds and metals was applied at 14 surface water locations that were characterized by two major anthropogenic contamination sources, agriculture and wastewater treatment plant (WWTP) effluent, as well as reference locations with a low expected impact from micropollutants. Departing from the experience gained in previous studies, a battery of 20 in vivo and in vitro bioassays was composed and subsequently exposed to the passive sampler extracts. Next, the bioanalytical responses were divided by their respective effect-based trigger values to obtain effect-based risk quotients, which were summed per location. These cumulative ecotoxicological risks were lowest for reference locations (4.3–10.9), followed by agriculture locations (11.3–27.2) and the highest for WWTP locations (47.7–128.7), and were mainly driven by polar organic contaminants. The bioanalytical assessment of the joint risks of metals and (non-)polar organic compounds resulted in the successful identification of pollution source-specific ecotoxicological risk profiles: none of the bioassays were significantly associated with reference locations nor with multiple location types, while horticulture locations were significantly characterized by anti-AR and anti-PR activity and cytotoxicity, and WWTP sites by ERz activity and toxicity in the in vivo bioassays. It is concluded that the presently employed advanced effect-based methods can readily be applied in surface water quality assessment and that the integration of chemical- and effect-based monitoring approaches will foster future-proof water quality assessment strategies on the road to a non-toxic environment.

1. Introduction

Surface waters are contaminated with an increasing diversity of anthropogenic compounds, giving rise to the presence of complex contaminant mixtures that can cause serious harm to aquatic ecosystems (Bernhardt et al., 2017; Schwarzenbach et al., 2006; Vörösmarty et al., 2010). Legislations like the European Water Framework Directive (WFD) (European Commission, 2013) and the United States Clean Water Act (CWA) (EPA, 2019) aim to protect surface waters from human impacts by the implementation of chemical and ecological water quality criteria. However, the separate interpretations of the chemical and ecological status of water bodies often yield divergent water quality management advice, which poses practical problems for the implementation of measures to protect surface waters from further degradation (Posthuma et al., 2019). As a result, there is a growing consensus among scientists and authorities that the methods currently used for chemical and ecological water quality assessment require a revision to obtain a more coherent and future-proof approach (Altenburger et al., 2019; Escher et al., 2020b; Faust et al., 2019). Traditionally,
chemical water quality is assessed by the monitoring of concentrations of a limited list of individual priority compounds. However, environmental concentrations of these compounds are decreasing, and consequently, currently identified risks to aquatic ecosystems are caused by complex mixtures of (un)known, unregulated and unmonitored compounds (Brack et al., 2019; Neale et al., 2017). Hence, the legally-prescribed strategies are unfits for the monitoring of chemical pollution of surface waters, and there is thus a need for improved assessment methods that consider the aggregated risk of all bioavailable micropollutants present in the aquatic environment (Drakvik et al., 2020). Consequently, there is an increasing interest in the use of bioanalytical tools in environmental quality assessment (Brack et al., 2019; Brooks et al., 2020; Di Paolo et al., 2016; Escher et al., 2018; Villeneuve et al., 2019). Bioanalytical responses to environmental samples are caused by the combined action of all bioavailable mixtures of (un)known compounds and their metabolites present in the sample, thereby overcoming the limitations posed by chemical analysis of a limited number of target compounds (Brack et al., 2019; Doyle et al., 2015). Effect-based strategies have been successful in the identification of ecotoxicological risks in surface waters and the ranking of locations based on these risks (Blackwell et al., 2019; De Baat et al., 2019; Hamers et al., 2018; Novák et al., 2018; van der Oost et al., 2017a). However, the regular implementation of effect-based methods in chemical water quality monitoring is still in its infancy, and several scientific challenges in this field remain to be addressed (Brack et al., 2019). Among these are the establishment and standardization of a coherent battery of bioassays that covers all chemical groups that can potentially harm aquatic ecosystems, the agreement on effect-based trigger values (EBTs) that differentiate between acceptable and poor water quality, and the need for evaluation and validation of effect-based methods in field-based studies (Brack et al., 2019). Furthermore, the development of a better understanding of contamination source-specific bioanalytical response profiles is important because it can aid in the application of mitigation efforts following from effect-based water quality assessment (Müller et al., 2020). Hence, refinement of the current methods and an improved interpretation of bioanalytical responses is recommended for the implementation of effect-based methods in regulatory frameworks like the CWA and the WFD (Bopp et al., 2018; Drakvik et al., 2020).

To answer the research needs outlined above, the present study aimed to advance effect-based water quality assessment by implementing methodological improvements and to gain insight into contamination source-specific bioanalytical responses. To this end, the presently applied monitoring strategy combined passive sampling, a battery of in vivo and in vitro bioassays, and EBTs to screen for potential ecotoxicological risks in surface waters. The methodological improvements explored here were the bioanalytical risk assessment of metals and the streamlining of previously used bioassay batteries to represent those endpoints most relevant to aquatic ecosystem health (De Baat et al., 2019). Due to a strong focus on emerging organic contaminants, metals have only rarely been included in the combination of passive sampling and bioanalytical assessment of chemical surface water quality (Brack et al., 2019; Roig et al., 2011), despite their potential toxicity. Therefore, in the present study, the bioanalytical risk assessment of metals was integrated with that of organic contaminants. Furthermore, to simultaneously investigate the increasing risk of polar compounds in aquatic ecosystems (Reemtsma et al., 2016), the in vivo bioassays were performed not only on non-polar organic extracts, as in previous studies, but also on polar organic and metal extracts. The streamlining of the bioassay battery followed from the experience gained in previous studies (De Baat et al., 2019) and resulted in the exclusion of tests that were previously unresponsive in surface water quality assessment (GR CALUX, antibiotics waterSCAN and algal growth inhibition) and their replacement with relevant and responsive endpoints (anti-PR CALUX and algal photosynthetic inhibition). Bioassay battery responses for the investigated locations were used to gain insight in contamination source-specific toxicity profiles and the potential risks they pose to aquatic ecosystems. Therefore, locations were selected that were distinctly characterized by two major anthropogenic contamination sources, agriculture and wastewater treatment plant (WWTP) effluent, as well as reference locations with a low expected impact from micropollutants.

2. Material & methods

2.1. Sampling locations

Sampling locations were selected in collaboration with nine Dutch regional water authorities. This resulted in a set of 14 lowland streams and drainage ditches in The Netherlands within three location types (Fig. 1 and Table S1), either surrounded by ornamental flower bulb horticulture (horticulture; n = 5), directly receiving WWTP effluent (WWTP; n = 4), or reference locations with no known contamination sources (reference; n = 5). The locations were comparable in width, depth and flow velocity (Table S2). Sampling of micropollutants was conducted by the continuous deployment of passive samplers at the sampling locations between August 20th and October 5th, 2018.

2.2. Passive sampler deployment, extraction and sampled volume estimation

2.2.1. Passive sampling devices

Silicone rubber (SR) sheets, with a weight of 20 g per set of six sheets, spiked with performance reference compounds (PRCs),
were obtained from Deltares (Utrecht, The Netherlands) and applied for the sampling of non-polar compounds (Booij et al., 2002). Polar organic chemical integrative samplers (POCIS) containing 0.2 g of Oasis hydrophilic-lipophilic balance sorbent (HLB; Waters, Etten-Leur, The Netherlands) were constructed in the laboratory at the University of Amsterdam (SI 2) and applied for the sampling of compounds in the more polar range (Alvarez et al., 2004). Diffusive gradients in thin-films (DGT) containing a 0.15 mL mixed chelax and TiO2 (Metsorb) binding layer were obtained from DGT Research (Lancaster, UK) and applied for the sampling of metals from the surface water (Panther et al., 2014).

The samplers were transported to the study sites in airtight packaging at 4 °C. Unexposed blanks of all sampler types were included in all subsequent analyses. Additional information on passive sampler construction, extraction and sampled volume calculation is given in SI 2.

2.2.2. Field deployment of passive samplers
SR sheets and POCIS were deployed simultaneously at each sampling location in separate stainless steel cages. The mesh size of the cages allowed a largely unobstructed flow of water around the samplers. Cages with samplers were suspended in the middle of the water column to ensure permanent inundation of the samplers, while avoiding direct diffusion of compounds from the sediment to the samplers. Per location, six SR sheets and four POCIS were exposed for a period of 6 wk. After exposure, the samplers were cleaned in the field with local water and a scrubbing sponge to remove biofouling, transported to the laboratory on ice, and stored at −20 °C until extraction.

Three DGTs per location were deployed for 2 wk, halfway through the POCIS and SR deployment period. DGTs were retained in polycrlylate holders in the middle of the water column. After exposure, DGTs were rinsed in the field with deionized water, transported to the laboratory on ice, and stored at 4 °C until extraction.

2.2.3. Extraction of SR
All equipment used in the SR extraction procedure was cleaned with acetone and LC grade acetonitrile (BioSolve, The Netherlands) before use. SR sheets were thawed and dried and the six sheets per location were folded and stacked in a harmonica shape to maximize the surface contact area with the extraction solvent and placed at the bottom of a 150 mL Erlenmeyr flask (Fig. S1). After the addition of 75 mL LC grade acetonitrile, the flasks were closed and placed on a shaker for 2 d at 110 rpm. Extracts were stored at 4 °C and the extraction procedure was repeated once more. Both extracts were combined in round bottom flasks and evaporated on a Büchi Rotavap system (Flawil, Switzerland) at 45 °C and 115 mbar to approximately 5 mL. The extracts were subsequently transferred to glass vials, filled up to exactly 10 mL with LC grade acetonitrile by weight and stored at −20 °C until analyses.

2.2.4. Extraction of POCIS
Frozen POCIS were freeze-dried overnight at −53 °C in a Scanvac CoolSafe freeze-dryer. All equipment used in the POCIS extraction procedure was cleaned with acetone and LC grade acetonitrile before use. Each POCIS was disassembled and the dry sorbent of the four POCIS that were exposed per location was pooled and transferred to a 6 mL glass Supelco SPE column with Teflon frit (Sigma-Aldrich, The Netherlands) using a glass funnel. The mass of the recovered sorbent per location was recorded with an analytical balance. The SPE columns were placed on an SPE manifold and eluted three times with 3 mL LC grade acetonitrile under vacuum. Finally, the extracts were topped up to exactly 10 mL with acetonitrile by weight and stored at −20 °C until analyses.

2.2.5. Extraction of DGT
All equipment used in the DGT extraction procedure was acid cleaned with 0.1 M HNO3 and ultrapure water. The three DGTs per location were disassembled and their binding layers combined in 3 mL of 1.0 M HNO3 extracted for 24 h at room temperature, after which the extracts were stored at 4 °C until analyses.

2.2.6. Estimation of sampled water volumes
2.2.6.1. SR. Sampling rates for SR were calculated based on the rate of PRC dissipation from the sheets during the field exposure (Booij and Smedes, 2010). PRC chemical analysis was performed at the laboratory of TNO (Utrecht, The Netherlands; analytical details provided in SI 2). Subsequently, 50% of the calculated sampling rate for each location was used as a provisional estimation of the average extracted water volume per day, based on the assumption that 50% of the organic contaminants present in the surface water reach equilibrium with the SR during field exposure, as described by van der Oost et al. (2017a).

2.2.6.2. POCIS. The reported average sampling rate for POCIS of 0.18 L/d (Harman et al., 2012), that was previously successfully applied in combination with effect-based water quality assessment (De Baat et al., 2019), was used to determine the concentration factor of the field deployed POCIS to compare bioassay responses between sites. A correction for the HLB sorbent recovery was applied to incorporate sorbent loss during the extraction procedure. To this end, the remaining sorbent mass after extraction was divided by the initial sorbent mass (0.8 g for four POCIS) and the total estimated volume per location (30.24 L for four POCIS) was multiplied by this fraction to obtain a final sampled volume and to ensure an impartial comparison between locations.

2.2.6.3. DGT. Since no general approach for the interpretation of bioassay results in combination with DGT extracts was available (Roig et al., 2011), a novel approach to determine sampled volumes of DGT samplers was presently developed. By using sampled water volumes for toxicity interpretation, this new approach is now in line with that for organic extracts. The sampling rate for the DGT samplers was determined using a theoretical approach, as well as an approach based on the detected masses of metals that had accumulated in the samplers. Both approaches rely on DGT theory, as outlined in numerous publications that confirm the usability of DGTs to obtain time-weighted average field concentrations of metals (e.g. Allan et al., 2007; Davison and Zhang, 2012). For the theoretical approach, a formula was derived from the equations reported by Allan et al. (2007):

\[R_s = \frac{DA}{\Delta g} \]

By using the constants given in Table S3 and assuming a mean value for D of 5.0 · 10⁻⁶ cm s⁻¹, a daily sampling rate (R_s) per 3 DGT samplers was derived of 44.2 mL/d. This theoretically derived sampling rate was subsequently confirmed using the labile metal concentrations in the water (C_{water}) which were calculated using the metal concentrations detected in the DGT extracts (C_e). To allow for these calculations, concentrations of Cd, Cu, Fe, Pb and Zn in the DGT extracts were determined using an inductively coupled plasma mass spectrometer (Optima 8300; PerkinElmer). Only Cu, Fe and Zn were detected (Table S4) and the calculations were therefore based on these concentrations. C_{water} values were calculated as follows, using the variables and constants listed in Table S3. First, the mass of metal accumulated in the resin gel layer (M) was calculated for each metal using equation (2):

\[M = C_e (V_{\text{HNO3}} + V_{\text{gel}}) / \varepsilon_e \]
Second, C_{water} was calculated using equation (3):

$$C_{\text{water}} = \frac{M \Delta g}{D \Delta t} \quad (3)$$

Last, the sampling rate of the DGT samplers was calculated using equation (4):

$$R_s = \left(\frac{M}{C_{\text{water}}} \right) / 14 \quad (4)$$

These calculations resulted in an experimentally derived mean sampling rate per 3 DGT samplers of 44.9 mL/d, which is very close to the theoretically derived sampling rate (44.2 mL/d). The small difference between the theoretical and experimental sampling rate is attributable to the variation of D with temperature, which was accounted for in the experimentally derived sampling rate calculation. Therefore, a mean sampled volume of 44.9 mL/d for 3 DGT samplers was used in the subsequent data interpretation.

2.3. Bioassay battery

A battery of 20 bioassays (i.e. 20 unique bioassay x passive sampler extract combinations) was applied for the detection of ecotoxicological effects at the investigated locations (Table 1). The whole organism Daphnia and PAM tests were performed at the laboratory of the University of Amsterdam, and the All nvibrio fischeri bioluminescence inhibition assay was performed at the laboratory of the Vrije Universiteit Amsterdam. The in vitro CALUX assays were performed at the BioDetection Systems laboratory (Amsterdam, The Netherlands).

2.3.1. Sample pre-treatment

Organic extracts were transferred to dimethyl sulfoxide (DMSO) before application in the bioassays. To this end, the extracts were evaporated to dryness under N2 flow at room temperature and redissolved in DMSO. Bioassays with organic extracts were performed at a 0.1–1% DMSO concentration to improve compound solubility in the exposure media and a control was always included to confirm the non-toxicity of the solvent. Inorganic extracts were freeze-dried overnight at ~53 °C in a Scanvac CoolSafe freeze-dryer and redissolved in exposure medium before exposure in the bioassays, to eliminate the NO3 from the extracts. Full recovery of metal concentrations using this sample treatment method was confirmed in a separate experiment using internal standards (data not shown).

2.3.2. Whole organism bioassays

The whole organism All nvibrio fischeri bioluminescence inhibition, Daphnia, and PAM bioassays were performed on dilution series of the extracts of all three passive samplers, resulting in nine in vivo responses. The All nvibrio fischeri bioluminescence inhibition assay (further referred to as bacterial bioluminescence assay) was performed according to Hamers et al. (2001). Luminescence inhibition was measured after 15 min of exposure to the passive sampler extracts. The Daphnia test was performed with D. magna (<24 h) originating from an in house culture, according to OECD guideline 202 with reduced test volumes, as previously described (van der Oost et al., 2017A). Daphnix immobilization was recorded after 48 h of exposure. The PAM test was performed using the freshwater microalga Raphidocelis subcapitata originating from an in house culture, according to de Baat et al. (2018). Photosynthetic inhibition was measured after 4.5 h of exposure. Toxicity in the in vivo assays was expressed as toxic units (TU), wherein one TU represented the dilution at which the extract caused 50% effect for the respective endpoints (EC50). EC50 values were determined by nonlinear regression analysis with the built-in log logistic model in GraphPad Prism® (GraphPad Software Inc., v. 5.00, San Diego, CA, USA). Next, the bioassay responses were corrected for the estimated sampled water volumes of the passive samplers to represent the TU at the sampling locations.

2.3.3. CALUX assays

The passive sampler extracts were analysed by a panel of in vitro CALUX® bioassays. Specific CALUX assays were performed on either non-polar (SR) or polar (POCIS) organic extracts. SR extracts were subjected to DR, PAH, PPARg, Nrf2, PRX and p53 (without S9 metabolism) assays and POCIS extracts were subjected to ERα, anti-PR and anti-AR assays, according to previously described protocols (Alygizakis et al., 2019). The DR CALUX assay was performed with a sulfuric acid clean-up step to eliminate degradable compounds (e.g. PAHs) and to isolate the persistent compounds (e.g. dioxins and dioxin-like polychlorinated biphenyls). Cytotoxicity of the CALUX cells was monitored in both POCIS and SR extracts to rule out confounding influences on test outcomes. Responses in the in vitro assays were expressed as concentrations of bioanalytical equivalents (BEQ) of the reference compounds (Table 1) or as TU (p53 and cytotoxicity) and corrected for the estimated sampled water volumes of the passive samplers to represent the BEQ/L and TU at the sampling locations.

<table>
<thead>
<tr>
<th>bioassay</th>
<th>endpoint</th>
<th>reference compound</th>
<th>EBT</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>in vivo all extracts</td>
<td>Daphnia</td>
<td>Mortality</td>
<td>n/a</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>PAM algae</td>
<td>Photosynthetic inhibition</td>
<td>n/a</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Bacterial bioluminescence inhibition</td>
<td>Luminescence inhibition</td>
<td>n/a</td>
<td>0.05</td>
</tr>
<tr>
<td>in vitro CALUX organic non-polar</td>
<td>cytoxicity nonpolar</td>
<td>Cytotoxicity</td>
<td>n/a</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>DR</td>
<td>Dioxin(-like) activity</td>
<td>2,3,7,8-TCDD</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>PAH</td>
<td>PAH activity</td>
<td>benzo[a]pyrene</td>
<td>62.1</td>
</tr>
<tr>
<td></td>
<td>PPARg</td>
<td>Lipid metabolism inhibition</td>
<td>rosiglitazone</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Nrf2</td>
<td>Oxidative stress</td>
<td>curcumin</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>PRX</td>
<td>Toxic compound metabolism</td>
<td>nicardipine</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>p53</td>
<td>Genotoxicity</td>
<td>n/a</td>
<td>0.005</td>
</tr>
<tr>
<td>in vitro CALUX organic polar</td>
<td>cytoxicity polar</td>
<td>Cytotoxicity</td>
<td>n/a</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>ERα</td>
<td>Estrogenic activity</td>
<td>17β-estradiol</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>anti-AR</td>
<td>Antiandrogenic activity</td>
<td>flutamide</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>anti-PR</td>
<td>Antiprogestagenic activity</td>
<td>Ru486</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 1

Bioassay battery applied to assess the toxicity of surface water from 14 locations in The Netherlands. Effect-based trigger (EBT) values were previously defined by Escher et al. (2018) (anti-AR), Brion et al. (2015) (ERα), and van der Oost et al., 2017b. EBT values for anti-PR as well as for the in vivo bioassays performed with inorganic extracts were defined in the present study. Previously reported EBT values for the PAH and PRX assays by van der Oost et al., 2017b and Escher et al. (2018) were strongly divergent and intermediate EBT values were presently proposed. TU = toxic unit, … EQ/L = equivalent concentration of the reference compound.
2.4. Risk interpretation using EBTs

Bioanalytical responses were compared to EBTs for ecotoxicological risk interpretation. EBTs reported by van der Oost et al. (2017b) were used, unless more recently derived EBTs were available, which was the case for the ERs (Brion et al., 2019) and anti-AR (Escher et al., 2018) CALUX assays. For the PAH and PXR CALUX assays, strongly divergent EBTs were reported by van der Oost et al. (2017b) and Escher et al. (2018), hampering consolidated conclusions on ecotoxicological risks for these endpoints (Alygizakis et al., 2019). Therefore, the influence of the EBTs on the risk interpretation for these tests was explored in the present study, and intermediate values were derived based on the methods outlined by Escher et al. (2018) as described in SI 3 (PAH 62.1 ng BEQ/L; and PXR 5.4 µg NEQ/L). Additionally, a preliminary EBT was derived for the anti-PR CALUX assay (13 ng Ru486 eq./L) based on the value previously reported by Escher et al. (2018), as the reported reference compound differed from the one used in the present study (SI 3).

Since no EBTs were previously defined for the application of DGT extracts in bioassays, a preliminary EBT of 0.05 TU was presently derived for all three in vivo bioassays based on the approach outlined by van der Oost et al. (2017b) (SI 3). This allowed for the interpretation of the bioassay responses to the DGT extracts in line with the approach for the organic extracts.

2.5. Statistical analysis

The responses of all bioassays were divided by their respective EBTs to obtain an effect-based risk quotient, where a quotient >1 represents a potential ecotoxicological risk indicated by that particular bioassay. These effect-based risk quotients were used for two purposes: i) The sum of these values yielded a cumulative ecotoxicological risk (Σ effect-based risk quotient) for each location, and ii) the quotients were subjected to multivariate analysis to gain insight into location type-specific ecotoxicological response profiles. To this end, non-metric multidimensional scaling (nMDS) was performed in R (R Core Team, v. 3.6.1, Vienna, Austria) using the ‘metaMDS’ function in the ‘vegan’ package, based on dissimilarities calculated with the Bray–Curtis index. Statistical differences between the location types were investigated using an analysis of similarity (ANOSIM) using the ‘anosim’ function. The ‘multifa’ function (with r.g association function, 9999 permutations, and α = 0.05) in the ‘indicspecies’ package was then used to perform a multilevel pattern analysis to identify the bioassays that were significantly associated with the different location types.

3. Results

3.1. Bioassay response frequencies

All 20 unique bioassay x passive sampler extract combinations were successfully performed and all assays met their respective validity criteria. Responses of all bioassays for all locations, converted to surface water concentrations, are given in the Supporting Information 4. Next, it was determined how frequently the different extract x bioassay combinations resulted in the detection of potential ecotoxicological risks (Fig. 2). Bioassay responses were categorized as no response, or a response below or above the EBT of that test. The response frequencies ranged from no response at all locations for the Daphnia assay exposed to metal extracts to EBT exceedance at >75% of locations for the ERs and anti-AR CALUX assays, which were exposed to polar extracts. Out of the battery of 20 bioassays, 11 showed responses above their EBTs. Hence, 55% of the applied bioassays indicated the presence of a potential ecotoxicological risk at one or multiple locations. The most responsive assays (EBT exceedance at >50% of locations) were the ERz, anti-AR, PXR and anti-PR CALUX assays. The least responsive assays (no response at >50% of locations) were the DR and PPARY CALUX assays and the Daphnia assay exposed to non-polar and metal extracts, and the PAM algae bioassay in combination with all three extracts. The substantial differences in the responsiveness of the applied bioassays to the passive sampler extracts illustrates that bioassays can be more or less effective in the bioanalytical assessment of surface water quality, and highlights the need for the establishment and standardization of a coherent battery of bioassays.

3.2. Bioassay battery response profiles

EBT exceedances were observed for all location types, including the reference locations (Fig. 3). The cumulative effect-based risk quotients allowed the ranking of sites based on the potential ecotoxicological risks, and the specific bioassay battery response profiles gave insight into the compound groups responsible for the risks at each location. Reference locations exhibited the lowest cumulative effect-based risk quotients (4.3–10.9), followed by horticulture locations (11.3–27.2) and WWTP locations (12.8–47.7). On average, EBTs were most frequently exceeded at horticulture locations (22% of bioassays), followed by WWTP locations (18%) and least frequently at reference locations (13%). These observations suggest distinct differences in bioanalytical response profiles between the location types, which was subsequently corroborated by multivariate analysis of the bioassay responses. The nMDS ordination showed that the locations could indeed be grouped based on the location type (Fig. 4; stress = 0.086), and the ANOSIM test confirmed that the bioassay battery response profiles differed significantly between location types (ANOSIM statistic R = 0.6414, p = 0.0001). The multilevel pattern analysis revealed that none of the bioassays were significantly associated with reference locations, nor were any bioassays significantly associated with multiple location types. Contrarily, horticulture locations were significantly characterized by responses in the anti-PR (stat = 0.962, p = 0.0001), cytotoxicity (polar: stat = 0.811, p = 0.0014), and anti-AR (stat = 0.651, p = 0.0052) CALUX assays. WWTP locations, on the other hand, were significantly characterized by responses in the bacterial bioluminescence assay (polar: stat = 0.899, p = 0.0006; metals: stat = 0.548, p = 0.0036), ERz CALUX (stat = 0.845, p = 0.0006), Daphnia (non-polar: stat = 0.713, p = 0.0087; polar: stat = 0.674, p = 0.0106), and PAM algae (polar: stat = 0.663, p = 0.021) assays. These observations confirm that each of the investigated contamination sources induced specific and non-overlapping characteristic bioanalytical response profiles. This, in turn, suggests that horticulture and WWTP effluent give rise to distinct chemical pollution profiles in surface waters, which was not observed for unpolluted locations.

4. Discussion

4.1. Methodological improvements for a better ecotoxicological risk identification

4.1.1. Bioanalytical risk assessment of metals

The identification of ecotoxicological risks in effect-based surface water quality assessment depends strongly on the applied sampling methodology. Only compounds that are captured by the applied sampling methods, present at concentrations above bioanalytical detection limits, will elicit effects in the bioassays, highlighting the importance of effective sampling strategies that ensure the sequestration of a wide range of compounds (Abbas...
et al., 2019). Passive sampling is often used in combination with bioassays, as it allows for the sampling of a wide variety of bioavailable compounds and simultaneously concentrates the water, resulting in lower bioanalytical detection limits (Altenburger et al., 2019). However, effect-based strategies often have a strong focus on organic contamination and only rarely have metals been included in the combination of passive sampling and bioanalytical assessment of chemical surface water quality (Roig et al., 2011).

In the present study, passive sampling of metals was applied in combination with three in vivo bioassays, matching the approach used for the bioanalytical risk assessment of organic compounds. Toxic effects of the metal extracts were observed in the PAM algae and bacterial bioluminescence bioassays and comparison of the effects to the presently derived EBTs elucidated potential risks to bacteria by metals at WWTP locations, highlighting the relevance of effect-based risk assessment of metals in surface waters. As shown here, this novel approach can easily be merged with existing effect-based monitoring strategies to include the bioanalytical assessment of risks of bioavailable metal concentrations in aquatic systems.

4.1.2. Streamlining of previously used bioassay batteries to better represent endpoints relevant to aquatic ecosystem health

To encompass a wide range of responsive endpoints that are representative of micropollutant risks in surface waters, several adjustments to previously applied bioassay batteries were made. The revised battery allowed for the detection of potential ecotoxicological risks caused by the presence of metals and polar and non-polar organic compounds. The addition of the anti-PR CALUX assay resulted in the detection of potential ecotoxicological risks at 50% of the investigated locations and is thus a relevant amendment to previously applied bioassay batteries (De Baat et al., 2019; van der Oost et al., 2017a). Furthermore, performing the three in vivo assays not only on non-polar organic extracts but also on polar organic and metal extracts elucidated potential ecotoxicological risks of polar compounds and metals that would have otherwise gone undetected. This is in line with the study of Hamers et al. (2018), who
found generally higher in vivo responses to polar extracts than to non-polar extracts, and reflects the expected increased risk caused by the increasing presence of polar compounds in surface waters (Reemtsma et al., 2016). However, to meet the monitoring requirements that are related to future shifts in the chemical properties of contaminants of emerging concern (CECs), effect-based monitoring strategies should be open to further modifications and improvements. Improved (passive) sampling techniques for highly polar as well as ionizable organic compounds (Augusto et al., 2013; Escher et al., 2020a), combined with bioassays responsive to such compounds, should result in future-proof solutions that allow for risk assessment of these CECs.

Considering assays that were not responsive in the currently applied bioassay battery, the presently observed lack of DR CALUX activity is in line with previous predictions that dioxins and dioxin-like compounds do not contribute substantially to the risks of organic micropolllutants in surface waters (De Baat et al., 2019). Therefore, the inclusion of the DR CALUX assay in bioassay batteries for surface water quality monitoring appears to present little relevance. However, as the sediment is the ultimate sink for dioxins and as such also represents a repository for legacy contamination with dioxins, the use of the DR CALUX assay in sediment quality assessment remains relevant.

In the present study, the traditional algal growth inhibition test was substituted by the PAM algal bioassay, which was expected to better elucidate the frequent presence of herbicides in surface waters (de Baat et al., 2018; Schreiner et al., 2016). However, the assay never showed an EBT exceedance and was, in fact, one of the least responsive assays in the battery. Nonetheless, the PAM algal assay gave a response at ~29% of the locations, which is a substantial increase compared to the previously observed response frequency of only 4% in the standard 72 h algae growth inhibition test (De Baat et al., 2019). The lack of responses that exceed the EBT may be attributable to an actual low risk caused by herbicides in surface waters in The Netherlands (Vonk and Kraak, 2020), at least at the sites presently sampled in late summer. In many other intensive agricultural areas, however, the presence of hazardous concentrations of herbicides has been reported (Vonk and Kraak, 2020) and hence, an even more sensitive algal bioassay may better elucidate the risks of herbicides in surface waters in effect-based monitoring strategies (Riegraf et al., 2019).

The presently applied bioassay battery represents endpoints at all organizational levels that are relevant to aquatic ecosystem health, as was proposed for holistic effect-based water quality assessment by Neale et al. (2017). Yet although it spans a wide variety of relevant endpoints, some gaps remain in terms of the establishment of reliable EBTs. A substantial increase in environmental samples. This highlights the importance of the establishment of reliable EBTs, a field of research that is gaining traction in recent years (Brons et al., 2019; Escher et al., 2018; Tang et al., 2013; van der Oost et al., 2017b). Although there is consensus on the EBTs for many bioassays, for several, strongly divergent EBTs are reported, hindering consolidated conclusions on ecotoxicological risks for those endpoints (Alygizakis et al., 2019). This is most
strikingly the case for the PAH and PXR CALUX assays, for which the EBTs derived by van der Oost et al. (2017b) and Escher et al. (2018) differ substantially (PAH 150 vs. 6.2 ng BEQ/L; and PXR 3 vs. 54 µg NEQ/L, respectively). Therefore, in the present study, the influence of the EBTs of these two assays on the ecotoxicological risk assessment was investigated by comparing the resulting number of EBT exceedances and effect-based risk quotients for all investigated locations (Table 2). Additionally, to merge the divergent EBTs, preliminary empirical intermediate EBTs for both assays are presently proposed and used in the final effect-based risk assessment (PAH 62.1 ng BEQ/L; and PXR 5.4 µg NEQ/L). For these two assays, it appears that the activity, except for two locations where the PAH CALUX assay exhibited very high responses, is uniformly present at all the investigated locations. The application of the different EBTs clearly illustrates their large and divergent impact on the resulting risk interpretation. The van der Oost et al. (2017b) values would result in almost no EBT exceedance for the PAH CALUX and exceedance at almost all locations for the PXR CALUX. Contrastingly, the Escher et al. (2018) values would result in EBT exceedances at almost all locations for the PAH CALUX and no exceedance at all for the PXR CALUX. Whether the presently proposed intermediate EBTs are, in fact, more representative of the risks of non-specific chemical stress and PAHs in surface waters is to be determined in future research.

The present exploration of the influence of EBTs on the outcome of effect-based risk assessments highlights the need for a consensus on EBTs for a unified application in environmental monitoring frameworks. The continuation of empirical research, that links bioassay responses with adverse effects on the ecological status of water bodies, is expected to further develop the scientific basis that is necessary for the reliable derivation of environmentally relevant EBTs. Nonetheless, bioanalytical responses are absolute and can be compared and ranked between locations and between studies, regardless of the availability of EBTs for risk interpretation. Moreover, for spatiotemporal monitoring of ecotoxicological risks, currently obtained bioanalytical responses can retroactively be compared to refined EBTs that may be developed in the future. Hence, the current lack of a consensus on EBTs for a few bioassays is no practical limitation to the wide application of effect-based tools in surface water quality assessment.

4.3. Location type-specific bioanalytical response profiles

The cumulative effect-based risk quotients obtained in the present study indicated that ecotoxicological risks are potentially present even at reference locations. This illustrates that micro-pollutants are ubiquitous and pervasive in densely populated river deltas like The Netherlands, which is corroborated by the general presence of non-specific chemical stress at all locations as indicated by the ‘promiscuous’ PXR CALUX assay. Nonetheless, horticulture and WWTP locations always exhibited higher cumulative effect-based risk quotients than the reference locations.

Ecotoxicological profiles at horticulture locations were characterized by responses to polar extracts in the anti-AR, anti-PR, and cytotoxicity CALUX assays. Apart from toxicity to target organisms, pesticides and their metabolites can have endocrine-disrupting activities, and the presently observed characteristic response profile for horticulture locations is likely a result of agricultural activity and the resulting use of pesticides on the surrounding fields (Mnif et al., 2011). The WWTP locations, contrastingly, were characterized by responses to polar extracts in the ERα CALUX assay and the three in vivo bioassays, and for the Daphnia bioassay to non-polar extracts and the bacterial bioluminescence assay to metal extracts. These responses were partly previously reported for WWTP effluent-impacted surface waters, in which they were related to the presence of complex mixtures of CECs, like pharmaceuticals, personal care products, pesticides and industrial chemicals (Altenburger et al., 2018; Alygizakis et al., 2019). Hence, the two main

Table 2

Side-by-side comparison of effect-based risk quotients for PAH and PXR CALUX assays at 14 surface water locations for effect-based trigger (EBT) values reported by van der Oost et al. (2017b) and Escher et al. (2018) and preliminary EBT values derived in the present study. EBT exceedances are indicated with a grey cell fill. WWTP = wastewater treatment plant.

<table>
<thead>
<tr>
<th>location ID</th>
<th>location type</th>
<th>PAH effect-based risk quotient</th>
<th>PXR effect-based risk quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>reference</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>reference</td>
<td>0.1</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>reference</td>
<td>0.1</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>reference</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>reference</td>
<td>0.4</td>
<td>8.6</td>
</tr>
<tr>
<td>6</td>
<td>horticulture</td>
<td>0.2</td>
<td>4.2</td>
</tr>
<tr>
<td>7</td>
<td>horticulture</td>
<td>0.2</td>
<td>4.77</td>
</tr>
<tr>
<td>8</td>
<td>horticulture</td>
<td>0.2</td>
<td>5.3</td>
</tr>
<tr>
<td>9</td>
<td>horticulture</td>
<td>0.1</td>
<td>2.2</td>
</tr>
<tr>
<td>10</td>
<td>horticulture</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>11</td>
<td>WWTP</td>
<td>0.4</td>
<td>9.6</td>
</tr>
<tr>
<td>12</td>
<td>WWTP</td>
<td>9.5</td>
<td>230.2</td>
</tr>
<tr>
<td>13</td>
<td>WWTP</td>
<td>0.2</td>
<td>4.1</td>
</tr>
<tr>
<td>14</td>
<td>WWTP</td>
<td>0.2</td>
<td>5.8</td>
</tr>
</tbody>
</table>

a Van der Oost et al. 2017b
b Escher et al. 2018
c Present study
anthropogenic contamination sources investigated in the present study give rise to unique ecotoxicological response profiles. This is important because characteristic bioassay responses that are related to specific sources of pollution can aid the identification of potential causative contamination sources at impacted surface water locations for which the origin of pollution is not known. Furthermore, this will allow the targeted implementation of mitigation measures that reduce the risks of chemical contamination in surface waters.

Interestingly, the majority of the potential ecotoxicological risks in the present study were caused by polar organic contaminants, in both in vivo and in vitro assays, underlining the urgency of the increasing risks caused by polar CECs in surface waters (Reemtsma et al., 2016). These risks were especially pronounced in WWTP effluent impacted surface waters, which highlights the critical need for the use of safer compounds, input prevention, and the implementation of advanced wastewater treatment technologies (Kümmerer et al., 2018).

5. Conclusions

Passive sampling combined with effect-based methods allows the detection of ecotoxicological risks of mixtures of a much wider range of bioavailable compounds than traditional chemical-based methods prescribed by the WFD and CWA. Thus, effect-based methods are highly effective and superior to traditional chemical analytical methods in the screening of surface waters for potential ecotoxicological risks. An elaborate bioanalytical toolbox is now available that allows the identification of contamination source-specific ecotoxicological response profiles, paving the way for the identification of causative (groups of) compounds. The advancement of effect-based monitoring methods, and their implementation in regulatory frameworks like the WFD and CWA, will empower scientists and authorities to work together on the way forward to protect water resources. Nonetheless, chemical analyses, that transcend a priori selected target compound lists, are still fundamental to the identification of specific compounds that drive the observed risks and, as such, allow mitigation efforts for risk abatement. Ultimately, the integration of chemical- and effect-based monitoring approaches will foster future-proof water quality assessment strategies on the road to a non-toxic environment.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was part of the Smart Monitoring project (443.324), funded by the Foundation for applied water research (STOWA), The Netherlands. The authors want to thank Eline Reus for her assistance with field- and laboratory work. Jasperien de Weert and Henry Beeltje are acknowledged for their advice on passive sampler extraction and sampled volume estimations, and Peter Cenijn for his guidance during the bacterial bioluminescence assay procedure.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.watres.2020.116017.

References

Di Paolo, C., Ottermanns, R., Keiter, S., Ait-Aissa, S., Bluhm, K., Brack, W.,