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Abstract

When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by
gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have
assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of
1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center
of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission
ring with a diameter of 42±3 μas, which is circular and encompasses a central depression in brightness with a flux
ratio 10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and
width remaining stable over four different observations carried out in different days. Overall, the observed image is
consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in
brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to
the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic
magnetohydrodynamic simulations of black holes and derive a central mass of M=(6.5±0.7)×109 Me. Our radio-
wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies
and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme
limit and on a mass scale that was so far not accessible.
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1. Introduction

Black holes are a fundamental prediction of the theory of
general relativity (GR; Einstein 1915). A defining feature of
black holes is their event horizon, a one-way causal boundary in
spacetime from which not even light can escape (Schwarzschild
1916). The production of black holes is generic in GR (Penrose
1965), and more than a century after Schwarzschild, they remain
at the heart of fundamental questions in unifying GR with
quantum physics (Hawking 1976; Giddings 2017).

Black holes are common in astrophysics and are found over
a wide range of masses. Evidence for stellar-mass black holes
comes from X-ray (Webster & Murdin 1972; Remillard &
McClintock 2006) and gravitational-wave measurements
(Abbott et al. 2016). Supermassive black holes, with masses
from millions to tens of billions of solar masses, are thought to
exist in the centers of nearly all galaxies(Lynden-Bell 1969;
Kormendy & Richstone 1995; Miyoshi et al. 1995), including
in the Galactic center (Eckart & Genzel 1997; Ghez et al. 1998;
Gravity Collaboration et al. 2018a) and in the nucleus of the
nearby elliptical galaxy M87 (Gebhardt et al. 2011; Walsh et al.
2013).

Active galactic nuclei (AGNs) are central bright regions that
can outshine the entire stellar population of their host galaxy.
Some of these objects, quasars, are the most luminous steady
sources in the universe (Schmidt 1963; Sanders et al. 1989) and
are thought to be powered by supermassive black holes
accreting matter at very high rates through a geometrically thin,

optically thick accretion disk (Shakura & Sunyaev 1973; Sun &
Malkan 1989). In contrast, most AGNs in the local universe,
including the Galactic center and M87, are associated with
supermassive black holes fed by hot, tenuous accretion flows
with much lower accretion rates (Ichimaru 1977; Narayan & Yi
1995; Blandford & Begelman 1999; Yuan & Narayan 2014).

In many AGNs, collimated relativistic plasma jets (Bridle &
Perley 1984; Zensus 1997) launched by the central black hole
contribute to the observed emission. These jets may be
powered either by magnetic fields threading the event horizon,
extracting the rotational energy from the black hole (Blandford
& Znajek 1977), or from the accretion flow (Blandford &
Payne 1982). The near-horizon emission from low-luminosity
active galactic nuclei (LLAGNs; Ho 1999) is produced by
synchrotron radiation that peaks from the radio through the far-
infrared. This emission may be produced either in the accretion
flow (Narayan et al. 1995), the jet (Falcke et al. 1993), or both
(Yuan et al. 2002).

When viewed from infinity, a nonrotating Schwarzschild
(1916) black hole has a photon capture radius R r27c g= ,
where r GM cg

2º is the characteristic lengthscale of a black
hole. The photon capture radius is larger than the Schwarzschild
radius RS that marks the event horizon of a nonrotating black
hole, RS ≡ 2 rg. Photons approaching the black hole with an
impact parameter b<Rc are captured and plunge into the black
hole (Hilbert 1917); photons with b>Rc escape to infinity;
photons with b=Rc are captured on an unstable circular orbit
and produce what is commonly referred to as the lensed “photon
ring.” In the Kerr (1963) metric, which describes black holes
with spin angular momentum, Rc changes with the ray’s
orientation relative to the angular-momentum vector, and
the black hole’s cross section is not necessarily circular
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(Bardeen 1973). This change is small (4%), but potentially
detectable (Takahashi 2004; Johannsen & Psaltis 2010).

The simulations of Luminet (1979) showed that for a black
hole embedded in a geometrically thin, optically thick accretion
disk, the photon capture radius would appear to a distant
observer as a thin emission ring inside a lensed image of the
accretion disk. For accreting black holes embedded in a
geometrically thick, optically thin emission region, as in
LLAGNs, the combination of an event horizon and light
bending leads to the appearance of a dark “shadow” together
with a bright emission ring that should be detectable through
very long baseline interferometery (VLBI) experiments (Falcke
et al. 2000a). Its shape can appear as a “crescent” because of
fast rotation and relativistic beaming (Falcke et al. 2000b;
Bromley et al. 2001; Noble et al. 2007; Broderick & Loeb
2009; Kamruddin & Dexter 2013; Lu et al. 2014).

The observed projected diameter of the emission ring, which
contains radiation primarily from the gravitationally lensed
photon ring, is proportional to Rc and hence to the mass of the
black hole, but also depends nontrivially on a number of
factors: the observing resolution, the spin vector of the black
hole and its inclination, as well as the size and structure of the
emitting region. These factors are typically of order unity and
can be calibrated using theoretical models.

Modern general-relativistic simulations of accretion flows
and radiative transfer produce realistic images of black hole
shadows and crescents for a wide range of near-horizon
emission models (Broderick & Loeb 2006; Mo� cibrodzka et al.
2009; Dexter et al. 2012; Dibi et al. 2012; Chan et al. 2015;
Mo� cibrodzka et al. 2016; Porth et al. 2017; Chael et al. 2018a;
Ryan et al. 2018; Davelaar et al. 2019). These images can be
used to test basic properties of black holes as predicted in GR
(Johannsen & Psaltis 2010; Broderick et al. 2014; Psaltis et al.
2015), or in alternative theories of gravity (Grenzebach et al.
2014; Younsi et al. 2016; Mizuno et al. 2018). They can also be
used to test alternatives to black holes (Bambi & Freese 2009;
Vincent et al. 2016; Olivares et al. 2019).

VLBI at an observing wavelength of 1.3 mm (230 GHz) with
Earth-diameter-scale baselines is required to resolve the shadows of
the core of M87 (M87* hereafter) and of the Galactic center of
Sagittarius A* (Sgr A*, Balick & Brown 1974), the two super-
massive black holes with the largest apparent angular sizes
(Johannsen et al. 2012). At 1.3 mm and shorter wavelengths, Earth-
diameter VLBI baselines achieve an angular resolution sufficient to
resolve the shadow of both sources, while the spectra of both
sources become optically thin, thus revealing the structure of the
innermost emission region. Early pathfinder experiments (Padin
et al. 1990; Krichbaum et al. 1998) demonstrated the feasibility of
VLBI techniques at ∼1.3 mm wavelengths. Over the following
decade, a program to improve sensitivity of 1.3 mm-VLBI through
development of broadband instrumentation led to the detection of
event-horizon-scale structures in both Sgr A* and M87* (Doeleman
et al. 2008, 2012). Building on these observations, the Event
Horizon Telescope (EHT) collaboration was established to
assemble a global VLBI array operating at a wavelength of
1.3 mm with the required angular resolution, sensitivity, and
baseline coverage to image the shadows in M87* and Sgr A*.

In this paper, we present and discuss the first event-horizon-
scale images of the supermassive black hole candidate M87*

from an EHT VLBI campaign conducted in 2017 April at a
wavelength of 1.3 mm. The accompanying papers give a more
extensive description of the instrument (EHT Collaboration

et al. 2019a, Paper II), data reduction (EHT Collaoration et al.
2019b, hereafter Paper III), imaging of the M87 shadow (EHT
Collaboration et al. 2019c, hereafter Paper IV), theoretical
models (EHT Collaboration et al. 2019d, hereafter Paper V),
and the black hole mass estimate (EHT Collaboration et al.
2019e, hereafter Paper VI).

2. The Radio Core in M87

In Curtis (1918), Heber Curtis detected a linear feature in
M87, later called a “jet” by Baade & Minkowski (1954). The
jet is seen as a bright radio source, VirgoA or 3C 274 (Bolton
et al. 1949; Kassim et al. 1993; Owen et al. 2000), which
extends out to 65 kpc with an age estimated at about 40 Myr
and a kinetic power of about 1042 to 1045 erg s−1 (de Gasperin
et al. 2012; Broderick et al. 2015). It is also well studied in the
optical (Biretta et al. 1999; Perlman et al. 2011), X-ray
(Marshall et al. 2002), and gamma-ray bands (Abramowski
et al. 2012). The upstream end of the jet is marked by a
compact radio source (Cohen et al. 1969). Such compact radio
sources are ubiquitous in LLAGNs (Wrobel & Heeschen 1984;
Nagar et al. 2005) and are believed to be signatures of
supermassive black holes.

The radio structures of the large-scale jet (Owen et al. 1989;
de Gasperin et al. 2012) and of the core of M87 (Reid et al.
1989; Junor et al. 1999; Hada et al. 2016; Mertens et al. 2016;
Kim et al. 2018b; Walker et al. 2018) have been resolved in
great detail and at multiple wavelengths. Furthermore, the
leveling-off of the “core-shift” effect (Blandford & Königl
1979), where the apparent position of the radio core shifts in
the upstream jet direction with decreasing wavelength from
increased transparency to synchrotron self-absorption, indicates
that at a wavelength of 1.3 mm M87* is coincident with the
supermassive black hole (Hada et al. 2011). The envelope of
the jet limb maintains a quasi-parabolic shape over a wide
range of distances from ∼105 rg down to ∼20 rg (Asada &
Nakamura 2012; Hada et al. 2013; Nakamura & Asada 2013;
Nakamura et al. 2018; Walker et al. 2018).

VLBI observations at 1.3 mm have revealed a diameter of the
emission region of ∼40 μas, which is comparable to the expected
horizon-scale structure (Doeleman et al. 2012; Akiyama et al.
2015). These observations, however, were not able to image the
black hole shadow due to limited baseline coverage.

Based on three recent stellar population measurements, we here
adopt a distance to M87 of 16.8±0.8 Mpc (Blakeslee et al. 2009;
Bird et al. 2010; Cantiello et al. 2018, see Paper VI). Using this
distance and the modeling of surface brightness and stellar velocity
dispersion at optical wavelengths (Gebhardt & Thomas 2009;
Gebhardt et al. 2011), we infer the mass of M87* to be
M 6.2 100.6

1.1 9= ´-
+ Me (see Table 9 in Paper VI). On the other

hand, mass measurements modeling the kinematic structure of the
gas disk (Harms et al. 1994; Macchetto et al. 1997) yield
M 3.5 100.3

0.9 9= ´-
+ Me (Walsh et al. 2013, Paper VI). These two

mass estimates, from stellar and gas dynamics, predict a theoretical
shadow diameter for a Schwarzschild black hole of 37.6 as3.5

6.2 �N-
+

and 21.3 as1.7
5 �N-

+ , respectively.

3. The Event Horizon Telescope

The EHT (Paper II) is a VLBI experiment that directly
measures “visibilities,” or Fourier components, of the radio
brightness distribution on the sky. As the Earth rotates, each
telescope pair in the network samples many spatial frequencies.
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The array has a nominal angular resolution of λ/L, where λ is the
observing wavelength and L is the maximum projected baseline
length between telescopes in the array (Thompson et al. 2017). In
this way, VLBI creates a virtual telescope that spans nearly the
full diameter of the Earth.

To measure interferometric visibilities, the widely separated
telescopes simultaneously sample and coherently record the
radiation field from the source. Synchronization using the
Global Positioning System typically achieves temporal align-
ment of these recordings within tens of nanoseconds. Each
station is equipped with a hydrogen maser frequency standard.
With the atmospheric conditions during our observations the
coherent integration time was typically 10 s (see Figure 2 in
Paper II). Use of hydrogen maser frequency standards at all
EHT sites ensures coherence across the array over this
timescale. After observations, recordings are staged at a central
location, aligned in time, and signals from each telescope-pair
are cross-correlated.

While VLBI is well established at centimeter and millimeter
wavelengths (Boccardi et al. 2017; Thompson et al. 2017) and
can be used to study the immediate environments of black holes
(Krichbaum et al. 1993; Doeleman et al. 2001), the extension of
VLBI to a wavelength of 1.3 mm has required long-term
technical developments. Challenges at shorter wavelengths
include increased noise in radio receiver electronics, higher
atmospheric opacity, increased phase fluctuations caused by
atmospheric turbulence, and decreased efficiency and size of
radio telescopes in the millimeter and submillimeter observing
bands. Started in 2009 (Doeleman et al. 2009a), the EHT began
a program to address these challenges by increasing array
sensitivity. Development and deployment of broadband VLBI
systems (Whitney et al. 2013; Vertatschitsch et al. 2015) led to
data recording rates that now exceed those of typical cm-VLBI
arrays by more than an order of magnitude. Parallel efforts to
support infrastructure upgrades at additional VLBI sites,
including the Atacama Large Millimeter/submillimeter Array
(ALMA; Matthews et al. 2018; Goddi et al. 2019) and the
Atacama Pathfinder Experiment telescope (APEX) in Chile
(Wagner et al. 2015), the Large Millimeter Telescope Alfonso
Serrano (LMT) in Mexico (Ortiz-León et al. 2016), the IRAM
30 m telescope on Pico Veleta (PV) in Spain (Greve et al. 1995),
the Submillimeter Telescope Observatory in Arizona (SMT;
Baars et al. 1999), the James Clerk Maxwell Telescope (JCMT)
and the Submillimeter Array (SMA) in Hawai’i (Doeleman et al.
2008; Primiani et al. 2016; Young et al. 2016), and the South

Pole Telescope (SPT) in Antarctica (Kim et al. 2018a), extended
the range of EHT baselines and coverage, and the overall
collecting area of the array. These developments increased the
sensitivity of the EHT by a factor of ∼30 over early experiments
that confirmed horizon-scale structures in M87* and Sgr A*

(Doeleman et al. 2008, 2012; Akiyama et al. 2015; Johnson et al.
2015; Fish et al. 2016; Lu et al. 2018).

For the observations at a wavelength of 1.3 mm presented
here, the EHT collaboration fielded a global VLBI array of
eight stations over six geographical locations. Baseline lengths
ranged from 160 m to 10,700 km toward M87*, resulting in an
array with a theoretical diffraction-limit resolution of ∼25 μas
(see Figures 1 and 2, and Paper II).

4. Observations, Correlation, and Calibration

We observed M87* on 2017 April 5, 6, 10, and 11 with the
EHT. Weather was uniformly good to excellent with nightly

median zenith atmospheric opacities at 230 GHz ranging from
0.03 to 0.28 over the different locations. The observations were
scheduled as a series of scans of three to seven minutes in
duration, with M87* scans interleaved with those on the quasar
3C 279. The number of scans obtained on M87* per night
ranged from 7 (April 10) to 25 (April 6) as a result of different
observing schedules. A description of the M87* observations,
their correlation, calibration, and validated final data products is
presented in Paper III and briefly summarized here.

At each station, the astronomical signal in both polarizations
and two adjacent 2 GHz wide frequency bands centered at
227.1 and 229.1 GHz were converted to baseband using
standard heterodyne techniques, then digitized and recorded
at atotal rate of 32 Gbps. Correlation of the data was carried
out using a software correlator (Deller et al. 2007) at the MIT
Haystack Observatory and at the Max-Planck-Institut für
Radioastronomie, each handling one of the two frequency
bands. Differences between the two independent correlators
were shown to be negligible through the exchange of a few
identical scans for cross comparison. At correlation, signals
were aligned to a common time reference using an apriori
Earth geometry and clock model.

A subsequent fringe-fitting step identified detections in
correlated signal power while phase calibrating the data for
residual delays and atmospheric effects. Using ALMA as a highly
sensitive reference station enabled critical corrections for iono-
spheric and tropospheric distortions at the other sites. Fringe
fitting was performed with three independent automated pipelines,
each tailored to the specific characteristics of the EHT
observations, such as the wide bandwidth, susceptibility to
atmospheric turbulence, and array heterogeneity (Blackburn et al.
2019; Janssen et al. 2019, Paper III). The pipelines made use of
standard software for the processing of radio-interferometric data

Figure 1. Eight stations of the EHT 2017 campaign over six geographic
locations as viewed from the equatorial plane. Solid baselines represent mutual
visibility on M87* (+12° declination). The dashed baselines were used for the
calibration source 3C279 (see Papers III and IV).
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(Greisen 2003; Whitney et al. 2004; McMullin et al. 2007, I. M.
van Bemmel et al. 2019, in preparation).

Data from the fringe-fitting pipelines were scaled from
correlation coefficients to a uniform physical flux density scale
(in Jansky) by using an independent apriori estimate of the
sensitivity of each telescope. The accuracies of the derived
station sensitivities were estimated to be 5%–10% in amplitude,
although certain uncharacterized losses (e.g., from poor
pointing or focus) can exceed the error budget. By assuming
total flux density values derived from ALMA interferometric
data (Goddi et al. 2019) and utilizing array redundancy via
network calibration (Paper III), we refined the absolute
amplitude calibration of telescopes that are colocated and have
redundant baselines, i.e., ALMA/APEX and JCMT/SMA.

The median scan-averaged signal-to-noise ratio for M87*

was >10 on non-ALMA baselines and >100 on baselines to
ALMA, leading to small statistical errors in visibility amplitude

and phase. Comparisons between the three independent
pipelines, the two polarizations, and the two frequency bands
enabled estimation of systematic baseline errors of around 1° in
visibility phase and 2% for visibility amplitudes. These small
limiting errors remain after fitting station sensitivities and
unknown station phases via self-calibration (Pearson & Readhead
1984) and affect interferometric closure quantities (Rogers et al.
1974; Readhead et al. 1980). Following data validation and
pipeline comparisons, a single pipeline output was designated as
the primary data set of the first EHT science data release and used
for subsequent results, while the outputs of the other two pipelines
offer supporting validation data sets.

The final calibrated complex visibilities V(u, v) correspond to
the Fourier components of the brightness distribution on the
sky at spatial frequency (u, v) determined by the projected
baseline expressed in units of the observing wavelength (van
Cittert 1934; Thompson et al. 2017). Figure 2 shows the (u, v)
coverage and calibrated visibility amplitudes of M87* for
April11. The visibility amplitudes resemble those of a thin
ring (i.e., a Bessel function J0; see Figure 10.12 in Thompson
et al. 2017). Such a ring model with diameter 46 μas has afirst
null at 3.4 Gλ, matching the minimum in observed flux density
and is consistent with a reduced flux density on the longest
Hawai’i–Spain baseline (JCMT/SMA-PV) near 8 Gλ. This
particular ring model, shown with a dashed line in the bottom
panel of Figure 2, is only illustrative and does not fit all features
in the data. First, visibility amplitudes on the shortest VLBI
baselines suggest that about half of the compact flux density
seen on the ∼2 km ALMA–APEX baseline is resolved out by
the interferometer beam (Paper IV). Second, differences in the
depth of the first minimum as a function of orientation, as well
as highly nonzero measured closure phases, indicate some
degree of asymmetry in the source (Papers III, VI). Finally, the
visibility amplitudes represent only half of the information
available to us. We will next explore images and more complex
geometrical models that can fit the measured visibility
amplitudes and phases.

5. Images and Features

We reconstructed images from the calibrated EHT visibi-
lities, which provide results that are independent of models
(Paper IV). However, there are two major challenges in
reconstructing images from EHT data. First, EHT baselines
sample a limited range of spatial frequencies, corresponding to
angular scales between 25 and 160 μas. Because the (u, v)
plane is only sparsely sampled (Figure 2), the inverse problem
is under-constrained. Second, the measured visibilities lack
absolute phase calibration and can have large amplitude
calibration uncertainties.

To address these challenges, imaging algorithms incorporate
additional assumptions and constraints that are designed to produce
images that are physically plausible (e.g., positive and compact) or
conservative (e.g., smooth), while remaining consistent with the
data. We explored two classes of algorithms for reconstructing
images from EHT data. The first class of algorithms is the
traditional CLEAN approach used in radio interferometry (e.g.,
Högbom 1974; Clark 1980). CLEAN is an inverse-modeling
approach that deconvolves the interferometer point-spread function
from the Fourier-transformed visibilities. When applying CLEAN, it
is necessary to iteratively self-calibrate the data between rounds of
imaging to solve for time-variable phase and amplitude errors in the
data. The second class of algorithms is the so-called regularized

Figure 2. Top: (u, v) coverage for M87*, aggregated over all four days of the
observations. (u, v) coordinates for each antenna pair are the source-projected
baseline length in units of the observing wavelength λ and are given for
conjugate pairs. Baselines to ALMA/APEX and to JCMT/SMA are
redundant. Dotted circular lines indicate baseline lengths corresponding to
fringe spacings of 50 and 25 μas. Bottom:final calibrated visibility amplitudes
of M87* as a function of projected baseline length on April 11. Redundant
baselines to APEX and JCMT are plotted as diamonds. Error bars correspond
to thermal (statistical) uncertainties. The Fourier transform of an azimuthally
symmetric thin ring model with diameter 46 μas is also shown with a dashed
line for comparison.
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maximum likelihood (RML; e.g., Narayan & Nityananda 1986;
Wiaux et al. 2009; Thiébaut 2013). RMLis a forward-modeling
approach that searches for an image that is not only consistent with
the observed data but also favors specified image properties (e.g.,
smoothness or compactness). As with CLEAN, RML methods
typically iterate between imaging and self-calibration, although
they can also be used to image directly on robust closure quantities
immune to station-based calibration errors. RMLmethods have been
extensively developed for the EHT (e.g., Honma et al. 2014;
Bouman et al. 2016; Akiyama et al. 2017; Chael et al. 2018b; see
also Paper IV).

Every imaging algorithm has a variety of free parameters
that can significantly affect the final image. We adopted a two-
stage imaging approach to control and evaluate biases in the
reconstructions from our choices of these parameters. In
the first stage, four teams worked independently to reconstruct
the first EHT images of M87* using an early engineering data
release. The teams worked without interaction to minimize
shared bias, yet each produced an image with a similar
prominent feature: a ring of diameter ∼38–44 μas with
enhanced brightness to the south (see Figure 4 in Paper IV).

In the second imaging stage, we developed three imaging
pipelines, each using a different software package and
associated methodology. Each pipeline surveyed a range of
imaging parameters, producing between ∼103 and 104 images
from different parameter combinations. We determined a “Top-
Set” of parameter combinations that both produced images of
M87* that were consistent with the observed data and that
reconstructed accurate images from synthetic data sets
corresponding to four known geometric models (ring, crescent,
filled disk, and asymmetric double source). For all pipelines,
the Top-Set images showed an asymmetric ring with a diameter
of ∼40 μas, with differences arising primarily in the effective
angular resolutions achieved by different methods.

For each pipeline, we determined the single combination of
fiducial imaging parameters out of the Top-Set that performed
best across all the synthetic data sets and for each associated
imaging methodology (see Figure 11 in Paper IV). Because the
angular resolutions of the reconstructed images vary among the
pipelines, we blurred each image with a circular Gaussian to a
common, conservative angular resolution of 20 μas. The top part
of Figure 3 shows an image of M87* on April11 obtained by
averaging the three pipelines’ blurred fiducial images. The image
is dominated by a ring with an asymmetric azimuthal profile that
is oriented at a position angle ∼170° east of north. Although the
measured position angle increases by ∼20° between the first two
days and the last two days, the image features are broadly
consistent across the different imaging methods and across all
four observing days. This is shown in the bottom part of Figure 3,
which reports the images on different days (see also Figure 15 in
Paper IV). These results are also consistent with those obtained
from visibility-domain fitting of geometric and general-relativistic
magnetohydrodynamics (GRMHD) models (Paper VI).

6. Theoretical Modeling

The appearance of M87* has been modeled successfully using
GRMHD simulations, which describe a turbulent, hot, magnetized
disk orbiting a Kerr black hole. They naturally produce a powerful
jet and can explain the broadband spectral energy distribution
observed in LLAGNs. At a wavelength of 1.3 mm, and as
observed here, the simulations also predict a shadow and an
asymmetric emission ring. The latter does not necessarily coincide

with the innermost stable circular orbit, or ISCO, and is instead
related to the lensed photon ring. To explore this scenario in great
detail, we have built a library of synthetic images (Image Library)
describing magnetized accretion flows onto black holes in GR145

(Paper V). The images themselves are produced from a library
of simulations (Simulation Library) collecting the results of
four codes solving the equations of GRMHD (Gammie et al.
2003; Sa�dowski et al. 2014; Porth et al. 2017; Liska et al.
2018). The elements of the Simulation Library have been
coupled to three different general-relativistic ray-tracing and
radiative-transfer codes (GRRT, Bronzwaer et al. 2018;
Mo� cibrodzka & Gammie 2018; Z. Younsi et al. 2019, in
preparation). We limit ourselves to providing here a brief
description of the initial setups and the physical scenarios
explored in the simulations; see Paper V for details on both the
GRMHD and GRRT codes, which have been cross-validated

Figure 3. Top: EHT image of M87* from observations on 2017 April 11 as a
representative example of the images collected in the 2017 campaign. The
image is the average of three different imaging methods after convolving each
with a circular Gaussian kernel to give matched resolutions. The largest of the
three kernels (20 μas FWHM) is shown in the lower right. The image is shown
in units of brightness temperature, T S k2b

2
B�M= W, where S is the flux density,

λ is the observing wavelength, kB is the Boltzmann constant, and � is the solid
angle of the resolution element. Bottom: similar images taken over different
days showing the stability of the basic image structure and the equivalence
among different days. North is up and east is to the left.

145 More exotic spacetimes, such as dilaton black holes, boson stars, and
gravastars, have also been considered (Paper V).
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